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Abstract ferred from an inconsistent set of assumptions, is a pri-
P P

o mary condition for properly handling contradictory data.
Many Al applications are based on some underly- ) ) ] )
ing logic that tolerates inconsistent information in 2. Sufficient expressive power. Clearly, a logical system is
a non-trivial way. However, it is not always clear useless unless it can express non-trivial, meaningful as-
what should be the exact nature of such a logic, and sertions. In our framework, a corresponding language
how to choose one for a specific application. In this should contain at least a negation connective, which is
paper, we formulate a list of desirable properties needed for deﬁn.m.g paraconsistency, and an implication
of “ideal” logics for reasoning with inconsistency, connective, admitting the deduction theorem.
identify a variety of logics that have these proper- 3. Faithfulness to classical logic. As observed by Newton

ties, and provide a systematic way of constructing,
for every n > 2, a family of such n-valued logics.

1

Handling contradictory data is one of the most complex and
important problems in reasoning under uncertainty. To han-
dle inconsistent information one needs a logic that, unlike
classical logic, allows contradictory yet non-trivial theories.
Logics of this sort are called paraconsistent [da Costa, 1974].
There are many Al applications that are based, in one way
or another, on some paraconsistent logic. For instance, the
inconsistency measurements in [Oller, 2004] are based on
Priest’s three-valued paraconsistent logic LP [Priest, 1989],
the database mediator system in [de Amo et al, 2002] is
based on the logic of formal inconsistency LFI1 [Carnielli
et al., 2007], and the preference modeling approach in [Perny
and Tsoukias, 1998] is based on Belnap’s four-valued logic
[Belnap, 1977]. In many of these applications, however, it is
not clear what are the criteria for choosing a certain paracon-
sistent logic for the application at hand, and — what is more
— whether such a logic can be extended or modified (say, to
accommodate beliefs, certainty factors, and so forth) with-
out affecting its basic properties regarding the inconsistency
maintenance. This is also realized in light of the fact that
already in the early stages of investigating reasoning with in-
consistency it has been acknowledged that paraconsistency by
itself is not sufficient for a plausible handling of contradictory
data. This implies that other considerations should be taken
into account in the choice of a proper paraconsistent logic.
In this paper we identify the following properties as desir-
able for a ‘decent’ logic for reasoning with inconsistency:

Introduction

1. Paraconsistency. The rejection of the principle of ex-
plosion, according to which any proposition can be in-
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da Costa, one of the founders of paraconsistent reason-
ing, a useful paraconsistent logic should be faithful to
classical logic as much as possible. This implies, in par-
ticular, that entailments of a paraconsistent logic should
also be valid in classical logic.

4. Maximality. The aspiration to “retain as much of classi-
cal logic as possible, while still allowing non-trivial in-
consistent theories” is reflected by the property of max-
imal paraconsistency, according to which any extension
of the underlying consequence relation yields a logic
that is not paraconsistent anymore.

We call logics that satisfy all the properties above ideal (for
reasoning with inconsistency). In what follows we define in
exact terms the above properties of ideal logics, investigate
known logics in light of these properties, and provide a sys-
tematic way of constructing ideal n-valued logics for any nat-
ural number n greater than two.

2 Preliminaries

In the sequel, £ denotes a propositional language with a set
A, of atomic formulas and a set YW, of well-formed formu-
las. We denote the elements of A, by p, ¢, r (possibly with
subscripted indexes), and the elements of W, by ¢, ¢, 0.
Given a unary connective ¢ of £, we denote %) = v and
ol = o(otep) (for i > 1). Sets of formulas in W, are
called theories and are denoted by I or A. Following the
usual convention, we shall abbreviate I' U {1} by I, ¢). More
generally, we shall write I, A instead of I' U A.

Definition 2.1 A (Tarskian) consequence relation for a lan-
guage L (a tcr, for short) is a binary relation I between theo-
ries in YW, and formulas in W,, satisfying the following three
conditions:



Reflexivity: ify € T'thenT' F .

Monotonicity: if ' and ' C IV, then TV I 9.

Transitivity: ifCF¢and TV, ¢ - ¢ then T, TV F ¢.
Let I be a tcr for L.

e I is structural, if for every uniform L-substitution 6 it
holds that T" I ¢ implies §(T") - 6(2).!

e |- is non-trivial, if there exist some non-empty theory I'
and some formula 1) such that I" I/ 1.

e - is finitary, if whenever I' |- ), there is a finite theory
IV C I such that I - 2.

Definition 2.2 A (propositional) logic is a pair (L, |}, so that
L is a propositional language, and F is a structural, non-
trivial, and finitary consequence relation for L.

The most standard semantic way of defining logics is by
using the following structures (see, e.g., [Urquhart, 2001]).

Definition 2.3 A (multi-valued) matrix for a language L is a
triple M = (V, D, O), where
e Vis anon-empty set of truth values,

e D is a non-empty proper subset of V), consisting of the
designated elements of V,> and

e O includes an n-ary function ¢ : V™ — V for every
n-ary connective ¢ of L.

Let M = (V,D, O) be a matrix for £. An M-valuation
for £ is a function v : W, — V such that for every n-ary
connective ¢ of £ and every formulas v¢1,...,%, € W,,
v(o(Wr, ..., ¥n)) = om(v(¢1),...,v(1y)). We denote the
set of all the M-valuations by A r¢. A valuation v € A 54 is an
M-model of a formula ¢ if it belongs to the set mod aq(¢)) =
{v € Am | v(¢p) € D}. The M-models of a theory I" are
the elements of the set moda(I')) = Nyer modap(¢). A
formula 1) is M-satisfiable if moda () # 0. A theory T is
M-satisfiable (or M-consistent) if moda(T) # 0.
Definition 2.4 Given a matrix M, the relation k4 that is
induced by M, is: T' b aq 0 if modpq(T) C modaqg(v0). We
denote Lnq = (£, q), where M is a matrix for £ and F 4
is the relation induced by M.

Example 2.5
1. Propositional classical logic is induced, e.g., by the two-
valued matrix Mo = ({¢, f},{t},{V, A, =}) with the
standard two-valued interpretations for V, A and —.
2. Priest’s LP [Priest, 1989] is induced by the matrix LP =
{t. £, TH{t, TH{V, A, 5}), where:

VIt f T Alt f T = |
t |t t ¢t tlt Ff T t|f
flt f T fir fr f flt
Tt T T T|T f T TIT

Proposition 2.6 [Shoesmith and Smiley, 1971] For every
propositional language L and every finite matrix M for L,
L = (L, ) is a propositional logic.?

'Where (T') = {0(v) | v € T}.

*We shall denote D = V\D.

3The non-trivial part in this result is that -, is finitary; It is
easy to see that for every matrix M (not necessarily finite), -4 is a
structural and consistent tcr.
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3 Ideal Paraconsistent Logics

We now consider the properties of ‘robust’ logics for reason-
ing with inconsistency. First, we define paraconsistency.

Definition 3.1 A logic (£,F), where L is a language with a
unary connective -, and - is a tcr for £, is —-paraconsistent,
if there are formulas 1), ¢ in W,, such that ¢, =) t/ ¢.

Note 3.2 As - is structural, it is enough to require in Defini-
tion 3.1 that there are atoms p, q such that p, —p I/ q.

3.1 Maximal Paraconsistency

The requirement that a logic will not only be paraconsistent,
but also maximal with respect to paraconsistency, is widely
considered in the literature and motivated by the aspiration to
tolerate inconsistencies but at the same time retain from clas-
sical logic as much as possible (see, e.g., [Karpenko, 2000;
Marcos, 2005; Carnielli et al., 2007]). This property is de-
fined in [Arieli et al., 2011] as follows:

Definition 3.3 Let L = (£,F) be a —-paraconsistent logic.
Then L is maximally paraconsistent, if every logic (£, ) that
properly extends L without changing the language (i.e., - C
IF), is not —-paraconsistent.

In what follows we shall say that a matrix M is (maxi-
mally) paraconsistent, if so is the logic L x4 that it induces.

Note 3.4 The notion of maximal paraconsistency given in
Definition 3.3 is a strengthening of a weaker notion, accord-
ing to which L is maximally paraconsistent in the weak sense,
if every logic (£,I) that extends L without changing the
language (i.e., = C IF), and whose set of theorems properly
includes that of L, is not —-paraconsistent. This alternative
definition of maximal paraconsistency refers to extending the
set of theorems of the underlying logic rather than extending
its consequence relation, as in Definition 3.3. Clearly, maxi-
mal paraconsistency implies maximal paraconsistency in the
weak sense. As shown in [Arieli et al., 2011], the converse
does not hold.

3.2 Expressivity

A useful logic must have a reasonable expressive power. As it
turns out, maximal paraconsistency by itself is not enough for
assuring this. Indeed, as shown in [Arieli ef al., 2011], there
are maximally paraconsistent logics with a very weak expres-
sive power, such as the three-valued one, whose only connec-
tive is Sette’s negation [Sette, 1973]. To avoid this, we require
a negation connective (with respect to which paraconsistency
is defined) that is classically closed, and an implication con-
nective that allows to reduce entailments to theoremhood.

First, we make sure that the negation connective resembles,
as much as possible, the one of classical logic.

Definition 3.5 Let L = (£, }F) be a propositional logic for a
language £ with a unary connective —.

o A bivalent —-interpretation for L is a function F that as-
sociates a two-valued truth-table with each connective of
L, such that F(—) is the classical truth table for negation.
We denote by My the two-valued matrix for £ induced
by F.



e Given a bivalent —-interpretation F for £, we say that
L is F-contained in classical logic, if ¢1,..., 0, FL ¥
implies 1, ..., 0n Fagp P.

e L is —-contained in classical logic, if it is F-contained
in classical logic for some F'.

We say that a matrix M is F-contained (—-contained) in clas-
sical logic if so is the logic it induces, L x4.

Proposition 3.6 No two-valued paraconsistent matrix is —-
contained in classical logic.

Proof. Let M = (V, D, O) be a paraconsistent matrix and let
F be a bivalent —-interpretation, such that L o4 is F-contained
in classical logic. Since p . —p, also p ¥4 —p, so there
is some t € D, such that 5t ¢ D. Since M is paraconsistent,
p, 7P ¥ q, and so there is some T € D, such that =T € D.
It follows that there are at least two different elements (¢ and
T)in D. Since D C V, V must contain at least three truth-
values. O

By Definition 3.5, — indeed acts as a negation connective:

Proposition 3.7 Let (L,F) be a logic that is —-contained in
classical logic. For every formula v: 1) I/ =) and — t 1.

We now turn to the other connective:

Definition 3.8 A (primitive or defined) binary connective D
is a proper implication for L = (L, F), if the classical deduc-
tion theorem holds for Dand : T, - iff T'F 9 D .

By the definition of a bivalent —-interpretation F, F(—) is
the classical truth-table. The next proposition shows that this
is the case also for a proper implication:

Proposition 3.9 Let L be a logic that is F-contained in clas-
sical logic for some F. If D is a proper implication for L,
then F(D) is the classical interpretation for implication.

Proof. Let F be a bivalent —-interpretation such that L is a
logic F-contained in classical logic. Since p -, pand D is a
proper implication, k1, p D p, thus Faq. p D p. Hence Mg
satisfiest Dt = f D f =t. Next, also ¢ Fr, p D p and so
Fr ¢ D (p D p), thus Faq ¢ D (p D p). It follows that Mg
satisfiers f D ¢ = ¢. Finally, p D q F1, p D ¢, and again since
D is a proper implication, p D ¢,p Fr, ¢g. Hence, also p D
q,p Fmpe ¢, and so My must satisfy ¢ O f = f (otherwise,
v(p) =t and v(q) = f would be a counter-example). ad

Definition 3.10 A —-paraconsistent logic L is called normal,
if it is —-contained in classical logic and D is a proper impli-
cation for L.

3.3 Maximal Containment in Classical Logic

As noted in [Avron er al., 2010], maximal paraconsistency of
n-valued logics may be easily achieved when all the n values
are definable in the language:

Proposition 3.11 Any logic Ly of an n-valued matrix M
for a language L in which all the n values are definable®, is
maximal in the strongest possible sense: it has no non-trivial
extensions.

“That is, for every truth value x there is a formula v, in £, such
that for every valuation v, v(¢;) = x.
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Corollary 3.12 Let Lypg = (L, ) be an n-valued para-
consistent logic, where L is functionally complete for M.
Then L g is maximally paraconsistent.

Clearly, the languages of the logics considered in the last
proposition and corollary depend on the many-valuedness of
the logic, and so these logics are not —-contained in classical
logic. This shows that maximal paraconsistency can be eas-
ily achieved, but on the expense of the aspiration to preserve
as much as possible from classical logic. To avoid this, we
consider below languages that can be interpreted classically.

Definition 3.13 Let £ be a language with a unary connective
-, and let F' be a bivalent —-interpretation for L.

e We say that a L-formula 1 is a classical F-tautology, if
every two-valued valuation, which for every connective
o of L respects the truth-table F (o), satisfies .

e We say that a logic L = (£,F) is F-complete, if its set
of theorems includes all the classical F-tautologies.

Definition 3.14 Let F be a bivalent —-interpretation. A logic
L = (L,F) is F-maximal relative to classical logic, if the
following conditions hold:

e L is F-contained in classical logic.

e If ¢ is a classical F-tautology not provable in L, then by
adding ¢ to L as a new axiom schema, an F-complete
logic is obtained.

We say that L is maximal relative to classical logic, if for
some bivalent —-interpretation F it holds that L is F-maximal
relative to classical logic.

Note 3.15 One could define a stronger notion of maximality
relative to classical logic, taking into account extensions of
the consequence relation rather than extending only the set
of axioms (just as we did in the case of maximal paraconsis-
tency; cf. Definition 3.3 and Note 3.4). That is, it is possible
to define a logic L as maximal relative to classical logic in
the strong sense, if there is some bivalent —-interpretation F
for which the following properties hold:

e L is F-contained in classical logic for some bivalent —-
interpretation F, and

e If T' I/, v and ' -y, 1, then the minimal extension
L' = (L,Fy/) of L, so that T by, 1, is Ly = (£, Fadg ).

However, as the next result shows, as we are interested in
normal paraconsistent logics, there is no point in considering
this stronger definition of containment in classical logic:

Proposition 3.16 No paraconsistent normal logic is maxi-
mal relative to classical logic in the strong sense.

We are now ready to define what we consider to be optimal
logics for reasoning with inconsistency.

Definition 3.17 A —-paraconsistent logic L is called ideal,
if it is normal (i.e., —-contained in classical logic and has a
proper implication), maximal relative to classical logic, and
maximally paraconsistent.

SThat is, every function g : V¥ —V is representable in £: There
is a formula ¢, (whose atoms are in {p1,...,px}), such that for
every valuation v it holds that v(vg) = g(v(p1), ..., v(pk)).



4 A Systematic Construction of Ideal Logics

A natural question to ask at this point is whether ideal logics
do exist. In this section we not only give a positive answer
to this question, but also show that for every n > 2 there is
an extensive family of n-valued ideal logics, each of which is
not equivalent to any k-valued logic with k& < n.°

Proposition 4.1 Let Ly = (L, ) be a —-paraconsistent
logic for a language L that includes a unary connective <.
Suppose that L o4 is —-contained in classical logic and that
for some n. > 2 the following conditions are satisfied:

1. p,=p baqg 0" 2p,
2. p,=p,ofp bag g forl <k <n-—3,
3. p,p,mokp by g forl <k <n-—3,

4. P l_M —p.
Then M has at least n elements, including at least n—2 non-
designated elements.

Proof. By the proof of Proposition 3.6, there should be at
least one element ¢ € D, such that f = =t € D and at least
one element T € D, such that =T € D. Let 1} = 3*T for
1<k<n—-3.Then 1l eDforl <k<n-3(e, L €
V\ D; otherwise p, —p, o*p a4 q). Moreover, Lq,..., L, 3
are different from each other, because otherwise we would get
that 3T € D for every ¢ > 0, and this violates the condition
that p, =p Faq " 2p. It follows that £, T, L;,..., L, 5 are
all different from each other. Now, by Rule (3) above, =1}, €
D (otherwise the assignment v(p) = T would contradict this
rule). On the other hand, Rule (4) implies that =f € D.
Hence, f is different from Lq,..., 1, 3. Obviously, f is
also different from ¢ and T (since it is in D). It follows that
t,T,f, Lq,..., L, 3 are all different from each other. O

Now we can construct the promised family of ideal n-
valued logics:

Theorem 4.2 Let M = (V, D, O) be an n-valued matrix for
a language containing the unary connectives — and <, a bi-
nary connective O, and a propositional constant f. Suppose
that n > 3, and that the following conditions hold in M.:

L. V={t,f,T,L1,...,Lps}tand D ={¢t, T},

2. the interpretation of the constant f is the element f,

3. St = f,5f =t, and =x = x otherwise,

4. 3t=f,3f =t,3T = 141,31, = L1 fori <n-3,

andol, 3=T,
aDb=tifa & Danda>b=Dbotherwise,

S =

for every other n-ary connective * of L, % is classi-
cally closed, i.e., whenever ay,...,a, € {t,f}, also
;(al, NN 704“) S {t, f}

Then Lyng = (L,b ) is an ideal n-valued paraconsistent
logic that is not equivalent to any k-valued logic with k < n.

Proof. It can be easily checked that all the conditions in
Proposition 4.1 are satisfied, so by that proposition, for ev-
ery matrix M’ with less than n elements, b aq # Faqr.

5By Proposition 3.6 there are no ideal logics for n = 2.
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We divide the rest of the proof to several lemmas, showing
that L o satisfies all the properties of an ideal paraconsistent
logic. In the sequel we shall assume that M is an n-valued
matrix satisfying the conditions in the theorem.

Lemma 4.3 L, is a normal —-paraconsistent logic.

Proof. Clearly, L o¢ is —-paraconsistent. By the definitions
of the connectives in £, M is —-contained in classical logic.
It is also easy to verify that the classical deduction theorem
obtains for D and - r4, and so D is a proper implication. Thus
L is normal. O

Lemma 4.4 M is maximally —-paraconsistent.

Proof. Note first that for any a € V\ {t, f} thereis 0 < j, <
n—2, such that a valuation v is a model in M of {¢72p, —oJap}
iffv(p) =a (@t =0o0rjTr =n—2,and j, = n—2—1).
Let L = (£, }1,) be any proper extension of L y¢. Then there
are some 1, ..., Yy and @, such that ¢1, ..., ¢, FL ¢, but
U1, .., Uk Far . From the latter it follows that there is
a valuation v, such that v(vy;) € D for every 1 < i < k,
and v(p) € D. Let py,...,pn be the atoms occurring in
{¢1,...,vk,¢}. Since we can substitute the propositional
constant f for any p such that v(p) = f, and —f for any p
such that v(p) = ¢, we may assume that v(p) isin V' \ {¢, f}
for any atom p. Accordingly, let j; = j,(p,) for 1 < i < m.
By the observations above, v is the only model of the set ¥ =
U1<i<m{<>jipi , =odip;}. Tt follows that W a4 1; for every
1<i<k,and ¥ U{p}Fr g (where qis a new variable).
Hence U Fy, g. Now, by substituting "7 2p for p; (where p
is different from ¢), we can unify ¥ to {o"2p, =o"2 p}. But
in Ly both elements of this set follow from {p, —p}. Thus,
p, —p F1, g, and so L is not paraconsistent. O

Lemma 4.5 M is maximal relative to classical logic.

Proof outline. Let o be a formula that is not M-valid, and
let A be the set of instances of ¢. Suppose for contradiction
that there is a classical tautology 6 such that A t/, 6. Let "
be a maximal theory extending A, such that I" t/5, 6. Then
for every formula 1, either ¢p € T', or I';9) Fq 6 and so
I' Faq v D 6. Now, for any truth value ¢ € V and formula
¥ € We, define formulas ¢§ (1) and ¢3(v)) as follows:

¢t () = ¢ (1) = (=) D 0
o1 (1) =~ W) =1 >0
o (¥) =¥ 3 (1) = 0

63" (1) = =61 (¥)
@t=1,...,.n—3)
Define a valuation v by: v(¢) = a if ¢$ () € T'and ¢5(¢)) €
I". It can be verified that v is a well-defined classical valuation
that is a model of I" but is not a model of 8. Now, since 0 is a
classical tautology and v is a classical valuation, necessarily
v(0) = t, contradicting the fact that v is not a model of §. O
This concludes the proof of Theorem 4.2. O

Example 4.6 Let M = ({¢t, f, T, L}, {t, T}, O) be a four-
valued matrix for a language £ that consists of a propositional
constant f, an implication connective O , defined by:

adb=tifae{f,L}andaDb=bifa € {t, T},

and the following two unary connectives:

o1 (1) ="y



1. Belnap’s negation [Belnap, 19771, denoted —, in which
St=f, af =t 5T =T and =1L = 1.

2. Fitting’s conflation [~Fitting, 1991],~den0ted —, in which
—t=t —f=f, -T=1Land —L =T.

It is east to verify that the connective ¢ from Theorem 4.2
can be defined by a composition of the two unary connectives
above: forallz € {t, f, T, L}, %a = 5—a = —~a.

By Theorem 4.2, L 4 is an ideal four-valued paraconsistent
logic, and it is equivalent to no three-valued logic. Note that
the extensions of this logic by the standard (Belnap/Fitting)
four-valued conjunction and disjunction, defined by:

VIt f T L Alt f T 1L
tlt t t t tlt f T L
fle f 174 frrrr
Tt T T ¢t TIT f T f
Lt L ¢t L L)L f f 4L

are still ideal logics. As shown already in [Arieli and Avron,
1998], these logics provide a very natural framework for rea-
soning with inconsistent information, and have corresponding
cut-free, sound and complete Hilbert-type and Gentzen-type
proof systems.

5 The Three-Valued Case

Three-valued semantics is the most popular framework for
reasoning with inconsistency. Among other reasons, this is
because it is the minimal framework adhering paraconsistent
reasoning (recall Proposition 3.6). Below, we study in greater
detail ideal logics in this context.

Proposition 5.1 Let M = (V, D, O) be a three-valued para-
consistent matrix that is —-contained in classical logic. Then
M is isomorphic to a matrix M" = ({t, f, T},{t, T},0), in
which =t = f, 5f =tand =T € {t, T}

Proof. Let F be a bivalent —-interpretation, such that L aq
is F-contained in classical logic. By the proof of Proposi-
tion 3.6, there are t, T € D, suchthat f = 5t € Dand =T €
D. Since |V| = 3, necessarily V = {¢, f, T} and D = {¢, T }.
Now, since p, 7 p Fame —p, also p,=—p Fag —p. Thus,
there is a model v of {p, -—p} that does not satisfy —p. For
this v, it holds that v(p) € D and v(—p) & D, thus v(p) = .
Since also v(——p) € D, we get that =f = 55t € D, and
so &f € {t, T}. Let us now show that ===T € D. If
5T = t, then 55T = 5t = f and 5557 = 5f € D.
If =T = T, then ==5T = T. Hence === T € D. Now,
since p /aq ———p, necessarily =5t = S5f & D, and so
=f # T. It follows that = f = ¢. |

Interestingly, in the three-valued case, maximal paracon-
sistency implies maximality relative to classical logic.

Theorem 5.2 Let M be a three-valued matrix that is —-
contained in classical logic. If Laq is maximally paracon-
sistent then Linq is maximally paraconsistent relative to clas-
sical logic.

Proof. First, we need the following lemmas:
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Lemma 5.3 Let M be a three-valued maximally paraconsis-
tent matrix, for which there is some classical —-interpretation
F, such that Ly, is F-contained in classical logic, but L a4
is not F-maximal relative to classical logic. Then the opera-
tions of M are classically closed.”

Lemma 5.4 Let M = (V,D,0) be a three-valued matrix
for L. If M is classically closed, then L is —-contained in
classical logic.

Proof of Lemma 5.4. Suppose that M is classically closed.
Consider the —-interpretation F rq(0) = d/{t, f}, where
Sm/{t, f} is the reduction of S to {t,f}. Now, let
©1,--5Pn, ¥ € We,such that p1,..., ¢, |7‘MFM 1. Then
there is some M, -valuation v, such that v(p;) € D for all
1 <i < nandv(y) € D. By the definition of Mg,,, v is
also an M-valuation, and so @1, ..., ¥, #aq . Hence Ly
is F p(-contained in classical logic. O

To prove Theorem 5.2, let M be a three-valued matrix that
is —-contained in classical logic and such that L is maxi-
mally paraconsistent. Then in particular L is paraconsis-
tent and is F-contained in classical logic for some F.

If L o is F-complete, or if for every classical F-tautology
1o not provable in L x4, the addition of iy to Lo as an ax-
iom results in an F-complete logic, then we are done. Other-
wise, by Lemma 5.3, M is classically closed, and by Propo-
sition 5.1, =t = f and =f = ¢. Thus, by Lemma 5.4, L o is
F p-contained in classical logic.

We end by showing that Ly is F y(-maximal relative to
classical logic. Let ¢’ be a classical F y¢-tautology not prov-
able in L and let A’™* be the set of all of its substitution
instances. Let L’* be the logic obtained by adding 1’ as a
new axiom to L. Then for every theory I' we have that
T b ¢ iff T, A™ Faq ¢. In particular, since M is maxi-
mally paraconsistent,

A", = Faq ¢ forevery o, ¢. (1

Suppose for contradiction that there is some classical F o-
tautology o not provable in L', Since /1~ o, also A™
o. Hence, there is a valuation v € A which is a model of
A", but v(c) = f. Note that since M is a —-paraconsistent
three-valued matrix, by Proposition 5.1, T € D and =T €D.
If there is some % such that v(v)) = T, then since v is a
model of A, it is also a model of A™* U {¢, ¢}, and so
by (1) above, it is a model of o, in contradiction to the fact
thatv(o) = f. Otherwise, v(v) € {t, f} forall ¢, and so v is
an My, -valuation, assigning f to o, in contradiction to the
fact that - Mg, 0- Hence, all the classical F y-tautologies

are provable in L’*, and so L is F r(-maximal relative to
classical logic, which implies that it is also maximally para-
consistent relative to classical logic. a

Corollary 5.5 Every normal and maximally paraconsistent
three-valued logic is ideal.

In order to identify three-valued ideal logics, then, one
may incorporate the following criterion, given in [Arieli et
al., 2011], for checking maximal paraconsistency.

"That is, for every n-ary connective, if a1, . . ., an € {t, f}, then

also (ay,...,an) € {t, f}.



Proposition 5.6 Let M be a three-valued paraconsistent
matrix that is —-contained in classical logic. Suppose that
there is a formula V(p,q) in L such that for all v € Apy,
v(U) = t if either v(p) # T or v(q) # T. Then M is
maximally —-paraconsistent for L.

By Corollary 5.5 and Proposition 5.6, we have, therefore,
the following result.

Proposition 5.7 Let M be a three-valued normal paracon-
sistent matrix. Suppose that there is a formula V(p, q) in L
such that for all v € A, v(V) = t if either v(p) # T or
v(q) # T. Then (L,Faq) is an ideal logic.

Example 5.8 Among the three-valued logics that meet the
conditions of Proposition 5.7 (and so they are ideal) are
Sette’s logic Py [Sette, 1973] (and all of its fragments con-
taining Sette’s negation), the logic PAC [Batens, 1980; Avron,
19911, J5 [D’Ottaviano, 19851, and all the 229 three-valued
logics considered in [Arieli et al., 2011] (including the 2'3
LFIs introduced in [Carnielli et al., 2007]).

The three-valued logic LP [Priest, 1989], considered in Ex-
ample 2.5, is nevertheless not ideal, since it lacks a proper
implication connective. Note that by Proposition 5.6 and by
Theorem 5.2 (respectively), LP is both maximally paracon-
sistent and maximal relative to classical logic. It follows that
these two properties (the former of which was investigated in
[Avron et al., 2010; Arieli et al., 2011] and the latter is real-
ized in [Carnielli et al., 2007]) are not enuogh for getting an
ideal paraconsistent logic.

6 Conclusion

The contribution of this paper is threefold: first, setting up a
desiderata list of the properties of useful logics for reasoning
with inconsistency, second: identifying known logics (in par-
ticular, three-valued ones) that meet these requirements, and
third: showing that for any n > 2 there are ideal n-valued
logics (and providing a constructive way of defining them).

The diversity of ideal logics for paraconsistent reasoning
leaves a lot of room for further considerations in the choice
of an appropriate paraconsistent logic for specific needs. Our
framework should be regarded, then, as a directive approach
on how to choose such a logic, rather than a definite one.
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