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Abstract

We analyze the complexity of reasoning in £L£ with
defeasible inclusions and extensions thereof. The
results by Bonatti et al., 2009a are extended by
proving tight lower complexity bounds and by re-
laxing the syntactic restrictions adopted there. We
further extend the old framework by supporting ar-
bitrary priority relations.

1 Introduction

Literature shows a recurrent interest in extending descrip-
tion logics with nonmonotonic reasoning. Early approaches
date back to [Brewka, 1987; Straccia, 1993; Baader and Hol-
lunder, 1995al). Some of the latest motivations originate
from the ontologies for biomedical domains and the need
of modelling prototypical entities (cf. [Rector, 2004; Stevens
et al., 2007]); others arise from the policy languages based
on description logics [Uszok et al., 2004; Kagal et al., 2003;
Tonti et al., 2003] where nonmonotonic reasoning is needed
to express default policies and exceptions [Bonatti et al.,
2009al. So far practical solutions have not been found mainly
because of high asymptotic complexity coupled with the ab-
sence of effective optimization methods.

Circumscription is particularly interesting in this context.
It supports in a natural way specificity-based overriding of
inherited properties [Bonatti et al., 2009al, that is, the cru-
cial feature needed to address the aforementioned application
requirements.! In general, reasoning with circumscribed de-
scription logics is very complex, e.g. NExpNF-hard for cir-
cumscribed ALC knowledge bases [Bonatti et al., 2009b].
For this reason, in [Bonatti et al., 2009a] we investigated cir-
cumscribed low-complexity description logics of practical in-
terest, such as DL-litep [Calvanese et al., 2005] and the ££
family [Baader, 2003; Baader et al., 20051, proving that com-
plexity can be reduced within the second level of the poly-
nomial hierarchy. However, no matching lower complexity
bounds were provided.

*This work is very partially supported by the Italian national
project LoDeN ( http://loden.fisica.unina.it ).

IThis feature is known also as defeasible inheritance and is anal-
ogous to the inheritance mechanism of object-oriented languages.
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In this paper we extend our previous results on £ L+ in sev-
eral ways. First, the characterization of complexity for the old
framework is completed by providing matching hardness re-
sults and tightening some upper complexity bounds. Then we
extend the framework to support more general queries, gen-
eral defeasible inclusions (whose left-hand side can be a com-
pound concept), and explicit priorities over defeasible inclu-
sions (that generalize the specificity-based priorities adopted
in [Bonatti et al., 2009a]). Finally, we relax the LL restric-
tion adopted in our previous paper (that forbids qualified ex-
istentials in the left-hand side of inclusions) by supporting a
more liberal use of existential quantification and terminolo-
gies (that is, acyclic sets of definitions of the form A = C,
where C' may depend on qualified existential restrictions).
This extension covers axioms commonly used by important
knowledge bases such as GALEN and SNOMED. Some re-
strictions on acyclic definitions are still needed to confine
complexity within the second level of the polynomial hier-
archy. Further contributions will be discussed later.

The rest of the paper is organized as follows: In Section 2,
we recall the basics of circumscribed DLs. Sections 3 and 4
deal with the characterization of complexity for variable and
fixed concept names, respectively. Section 5 proves that—
in some contexts—extensions such as arbitrary partitions in
fixed and variable concepts, general defeasible inclusions,
and arbitrary priorities do not increase the complexity of rea-
soning. Section 6 studies the complexity of LL with acyclic
terminologies. Two sections on related work and conclusions
complete the paper.

2 Syntax and Semantics of Circumscribed ££

We assume the reader to be familiar with the syntax and
semantics of monotonic Description Logics. We refer to
[Baader et al., 2003, Chap. 2] for details and notation. The
sets of concept names, role names, and individual names are
denoted by N¢, Nr, and Nj, respectively. By predicate we
mean any member of Nc U Ng. Hereafter, letters A and B
range over N¢, P and R range over N, and a, b, c range over
N;. Letters C, D range over concepts.

A (strong) knowledge base is a finite set of (i) concept in-
clusions (Cls) C C D, (ii) concept assertions A(a), and (iii)
role assertions P(a,b). Recall that an interpretation Z satis-
fies ) a CI C C D if CT C DZ, (ii) an assertion C(a) if
a® € CZ, (iii) an assertion R(a,b) if (a,b?) € rL. Then, Z



is a model of a strong knowledge base S iff Z satisfies all the
elements of S. We write C' Cg D iff for all models Z of S, Z
satisfies C C D.

The logic £L [Baader, 2003; Baader et al., 2005] restricts
the language to the following constructs:

c A|T|CiNCy | 3PC

The extension of ££ with L is denoted by ££*.

A general defeasible inclusion (GDI) is an expression
C C,, D whose intended meaning is: C'’s elements are nor-
mally in D.

Example 2.1 [Bonatti et al., 2009a] The sentences: “in hu-
mans, the heart is usually located on the left-hand side of
the body; in humans with situs inversus, the heart is lo-
cated on the right-hand side of the body” [Rector, 2004;

Stevens et al., 2007] can be formalized with the £ £ axioms
and GDIs:

Human C,, Jhas_heart.Jhas_position.Left;
Situs_Inversus C Jhas_heart.Jhas_position.Right;
Jhas_heart.Jhas_position.Left I
Jhas_heart.Jhas_position.Right C 1. 1

A defeasible knowledge base (DKB) in a logic DL is a pair
(K, <), where K = Kg UKp, Kg is a strong DL KB, Kp, is
a set of GDIs C C,, D such that C T D is a DL inclusion,
and < is a strict partial order (a priority relation) over Kp.

The priority relation <x adopted in [Bonatti et al., 2009a]
is based on specificity: For all GDIs §; = (Cy C,, D;) and
d2 = (C2 Ty, Do), let

01 <xc 02 iff Cy Ly C5 and Cq Z)Cs .

Example 2.2 The access control policy: “Normally users
cannot read project files; staff can read project files; black-
listed staff is not granted any access” can be encoded with:

Staff C User

Blacklisted C Staff

UserRequest = Jsubj.User N dtarget.Proj M Jop.Read
StaffRequest = Jsubj.Staff [ Jtarget.Proj N Jop.Read
UserRequest C,, Jdecision.Deny

StaffRequest C,, Jdecision.Grant
Jsubject.Blacklisted C Jdecision.Deny
Jdecision.Grant M ddecision.Deny C | .

Staff members cannot simultaneously satisfy the two defeasi-
ble inclusions (due to the last inclusion above). With speci-
ficity, the second defeasible inclusion overrides the first one
and yields the intuitive inference that non-blacklisted staff
members are indeed allowed to access project files. 1

The semantics of DKBs depends on which predicates are al-
lowed to vary in order to maximize the set of individuals sat-
isfying the GDIs. In [Bonatti et al., 2009al, roles are always
allowed to vary, to avoid undecidability problems. The set
of concept names N¢, on the contrary, can be arbitrarily par-
titioned into two sets [' and V' containing fixed and varying
predicates, respectively. Fixed predicates retain their classi-
cal semantics, while varying predicates can be affected by
nonmonotonic inferences.
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The set F, the GDIs p, and their ordering < induce a
strict preference ordering over interpretations, defined below.
Roughly speaking, 7 is preferred to 7 if some GDIs are sat-
isfied by more individuals in Z than in J, possibly at the
cost of satisfying less lower-priority GDIs. Formally, for all
0 = (C C,, D) and all interpretations Z let the set of individ-
uals satisfying 0 be:

satz(0) = {x € AT |z ¢ CT orz € D*}.

Definition 2.3 Let B = (K, <) be a DKB. For all interpre-
tations Z and 7, and all F' C N¢, letZ <xp r J iff:

1. AT=A7,

2. a* = a7, foralla € Nj;

3. AT = A7 forall A € F;

4. forall § € Kp, if satz(d) 2 satz(d) then there exists 6’ €
Kp such that 6’ < & and satz(6") D satz (&) ;

5. there exists a § € Kp such that satz(d) D sats ().

The subscript B will be omitted when clear from context.
Now a model of a DKB can be defined as a maximally pre-
ferred model of its strong (i.e. classical) part.

Definition 2.4 [Model] Let B = (KC, <) and F' C N¢. An
interpretation Z is a model of Circy(KB) iff Z is a (classical)
model of g and for all models J of Kg, J £r Z.

In order to enhance readability, <., and Circ,,, stand for <y
and Circy, respectively; <gx and Circgy stand respectively for
<n, and Circy.. The standard reasoning tasks are adapted to

DKBs as follows:2

Concept consistency Given a concept C' and a DKB KB, check
whether C'is satisfiable w.r.t. KB , that is, there exists a model
7T of Circr (KB) such that CT # (.

Subsumption Given two concepts C, D and a DKB KB, check
whether Circp(KB) = C C D, that is, for all models Z of
Circr(KB), C* C D™

Instance checking Given a € N,, a concept C, and a DKB KB,
check whether Circr(KCB) = C(a), that is, for all models Z
of Circp (KB), a* € CT.

It has been proved in [Bonatti et al., 2009a] that reasoning

in circumscribed £ is ExpTime-hard, and that complexity

decreases for left local € Lt knowledge bases (LL £ CL, for
short). This fragment consists of the following schemata:

A E[n] B A E[n] dP.B A MNA;CB
JPC B 4P CdP.B

where A can be either a concept name or T, and B either a
concept name or L. A LL EL* concept is any concept that
can occur in the above inclusions. It has been proved that if
KB is a LL ££* knowledge base, then LL ££* subsump-
tion and instance checking3 are in I1%, and LL & Lt concept
consistency in 5.

KB consistency is equivalent to its classical counterpart [Bonatti
et al., 2009al, therefore it will not be dealt with in this paper.

*Subsumption is LL ££* if C and D are LL ££ concepts; in-
stance checking and concept consistency are LL ££1 if C is. Simi-
lar terminology applies to other fragments.



3 Complexity of Circ,, (LL EL")

Now we prove that reasoning in Circ,,r(LL ELT) is actually
hard (and hence complete) for 35 and T15. For this purpose,
we provide a reduction of minimal entailment over positive,
propositional disjunctive logic programs (PDLP for short),
that was proved to be I, hard in [Eiter and Gottlob, 1995,
Theorem 5]. A PDLP over a set of propositional variables
PV = {p1,...,pn} is a set of clauses S = {c1,...,cm}
over PV where each c¢; contains at least one positive literal.
The minimal-entailment problem can be then defined as fol-
lows: given a literal [, S |y [ if and only if every C-
minimal Herbrand model I of S satisfies /.

For each propositional variable p;, 1 < i < n, introduce
two concept names P; and P; — where the latter encodes —p;.
In the following we will denote by L;, 1 < j < 2n, a generic
P; or P;. For each clause ¢; € S introduce a concept name
C;. Then, two other concept names True and False repre-
sent the set of true and false literals respectively. Finally,
the concept names Lit and Min are used to model minimal
propositional assignments; we need also an auxiliary role R.

First, literals are reified, i.e. modelled as individuals, with
the axioms:

TC (3R.LyM---N3R.Lay)
L;NnL; C 1
Li En 1

)]
3]
3)
The first axiom makes all L; nonempty. Axioms (2) make
them pairwise disjoint. Finally, axioms (3) minimize the L;
and make them singletons. Then, we represent S by adding
for each clause c; = l;; V -+ V [j, 1 < j < m, the axioms

(1<i<j<2n)
(1<i<2n)

L;jiCC, (1<j<mand1<i<h) (4
C;Cn L 1<j<m) (@)
TLC3IR.(C;NTrue) (1<j<m) (6)

By axioms (4) and (5), C; equals the set of literals in c;. Ax-
ioms 6 make sure that each clause holds.

In order to model the concepts True and False and the cor-
rect meaning of complementary literals we add the axioms

True M False C 1 @)
P, M True C IR.(P, NMFalse) (1 <i<n) (8)
P, MFalse C 3R.(P;NTrue) (1<i<n) ©)
P, M True C IR.(P, MFalse) (1 <i<n) (10)
P, MFalse C 3R.(P;NTrue) (1<i<n) (11

The axioms defined so far encode the classical semantics of S. To
minimize models, add the following axioms:

MinM P; C False (1<i<n) (12)
MinM P, C True (1 <i<n) (13)
L; C Lit (1<i<2n) (14)
C,CLt  (1<j<m) (15)

Lit C,, Min (16)

By (12) and (13), Min collects false positive literals and true
negative literals. By (14) and (15), Lit contains all the (rep-
resentations of) literals and clauses. The purpose of these
axioms is giving defeasible inclusions (3) and (5) higher
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(specificity-based) priority than (16), so that model minimiza-
tion cannot cause any L; to be larger than a singleton, nor
any C; to be different from the set of literals of c;. Now
(16) prefers those models where as many P; as possible are
in False.

In the following, given a PDLP S, let Bg be the Tbox
defined above.

Lemma 3.1 Given a PDLP S, a literal | in S’s language,
and the encoding L of I, the following are equivalent:

(minimal entailment) S =i [

(subs) Circyar(KBs) E T C 3R.(True M L);

(co-sat) False M L is not satisfiable w.r.t Circyar(KBg);

(instance checking) Circyar(KCBs) = (3R.(True M L))(a).

The conjunctions (M) nested in 3 can be easily replaced with
anew atom A by adding the equivalence A = True M L, that
can itself be encoded in LL £ LJ‘, so we have:

Theorem 3.2 Subsumption and instance checking over
Circyar(LL EL7F) are T15-hard; concept satisfiability is ¥5-
hard. These results hold even if queries are restricted to LL
ect concepts, and priorities are specificity-based.

4 Complexity of Circg, (ELT)

When concept names are all fixed, reasoning in LL ££7 is
tractable:

Theorem 4.1 LL EL* subsumption, instance checking, and
concept consistency over Circay(LL € ﬁJ‘) DKBs are in P.

The proof is based on a deterministic version of Algorithm 1
(see below), and exploits the fact that defeasible inclusions
cannot interfere with each other in LL £ EL, regardless of <
(details are omitted due to space limitations).

Complexity is low under Circg, because in this context LL
axioms are not general enough to simulate quantifier nesting
nor conjunctions of existential restrictions. In Circ,,, these
features can be simulated by abbreviating compound con-
cepts C' with concept names A using equivalences A = C
such that C' does not depend on qualified existentials (hence
the LL restriction is preserved). With Circgy, such equiva-
lences change the semantics of C' whenever C'is (or contains)
an existential restriction, because A is fixed and prevents C
from varying freely. As we reintroduce the missing features,
complexity increases again.

Let LLyEL" support the schemata:

A E[n] dP.B 3dpP, N3P, C dPs;.B
ACdP.B dPC B

The reader may easily verify that LLoE L* s equivalent to
LL EL* plus schema 3P, M 3P, C 3P;.B. The missing
axioms can be reformulated using fresh roles R and suitable
equivalences IR = C (that preserve C’s semantics because
R is a varying predicate).

Theorem 4.2 Subsumption and instance checking over
CircﬁX(LLQSEJ‘) are coNP-hard; concept satisfiability is
NP-hard. These results hold even if queries are restricted to
LL.EL* concepts, and priorities are specificity-based.



Proof. By reduction of SAT. For each propositional variable
p; introduce the concept names A;, A;, and role U;, represent-
ing p;’s truth value (resp. true, false, and undefined). These
alternatives are made mutually inconsistent with:

For each given clause ¢; = ;1 V- - -V; »,, introduce a concept
name C; representing c;’s falsity. Add L;11---ML; , E Cj,
where L; j, represents the complement of [; ,, (k =1,...,n).

Define a concept name F representing the falsity of the
given set of clauses, and a disjoint concept F' with:

éj C F  (for all input clauses cj) FNFCL.

Now, with a defeasible inclusion, 3U; is forced to be true for
all individuals that satisfy neither A; nor A;; moreover, a role
U detects undefined literals:

TC,3U; JU; C 3U.

Let K be the set of above inclusions and KB = (I, <x). It
can be proved that the given set of clauses S is unsatisfiable
iff Circix(KB) |= F' C 3U, therefore subsumption checking
is coNP-hard.

Similarly, it can be proved that S is unsatisfiable iff
Circix(KB') E (3U)(a), where KB’ (K',<x/) and
K' = KU{F(a)}; therefore instance checking is coNP-hard.

Finally, it can be proved that S is satisfiable iff ' 11 3OK
is satisfiable w.r.t. Circax(KB"), where KB" = (K", <)
and K" = K U {3U N3OK C 1}; therefore satisfiability
checking is NP-hard. We are only left to remark that /C can
be easily encoded in LL,EL™S. ]

We prove that this bound is tight using Algorithm 1. There,
we assume without loss of generality that C = Ag M
[7_, 3P;.B;. The algorithm nondeterministically looks for
an individual z (in some model) that satisfies C' and not D.
S1 guesses any additional fixed concept names satisfied by x;
So guesses the concept names that are satisfied somewhere in
the model (not necessarily by x) and finally <’ guesses a total
extension of < that determines the application order of GDIs.

The algorithm selects, according to <’, the defeasible in-
clusions that are active in  and accumulates the rhs of those
that are not blocked. A defeasible inclusion A C,, 3R.B is
blocked only if IR. B (i) entails locally L or a concept name
not satisfied by z, or (ii) entails globally the non-emptyness
of a concept name that should be empty. The rationale be-
hind blocking is that concept names are fixed and circum-
scription cannot change their extension as the application of
A C,, 3R.B would instead require in cases (i) and (ii). Con-
ditions (i)-(ii) are checked, respectively, by means of the sets
of concepts SupCls(X) (the set of atomic concepts that sub-
sume X) and NonEmpty(X, Kg) (the set of concept names
that must be nonempty if X is).

Note that the variable part of C' (i.e. [ ], 3P;.B;) is intro-
duced in X only in line 8, after all defeasible inclusions have
been applied, because defeasible inclusions can influence the
variable part (e.g. by forcing it to be empty).

Theorem 4.3 LL,ELY subsumption and instance checking
over Circaix(LL2E £L) are in coNP; LL.EL* concept satis-
fiability is in NP.
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Algorithm 1:

Data: C = Ac N[} 3P:.Bi, D, KB = (K, <).
1 Guess S1,52 C N¢, where 151 = Ac and S1 C S», and a
linearization <’ of <;
2 A:={ALC,3P.B|NS1 E A}
3 X:= |_| S1;
4 while A # () do
5 remove from A the <’-minimal inclusion A C,, 3P.B;
6 if SupCls(X 3P.B) C S1 and
NonEmpty(XM3AP.B,Ks) C S, then
L X:=XMN3P.B;

X:=XnT[1} 3P.B;;
return SupCls(X) € S1 or NonEmpty(X,Ks) € S2 or

2

b=}

Proof. (Sketch) Assume without loss of generality that C' =
Ac N |_|?’:1 3P;.B;. It can be proved that Algorithm 1 re-
turns true iff the subsumption C' C D is valid. Moreover,
SupCls(-) and NonEmpty(-,-) can be computed in polyno-
mial time using standard £ L reasoning. The theorem for sub-
sumption immediately follows. Concept consistency can be
solved by setting D = 1. An instance checking problem
D(a) can be solved by collecting in C all the properties of a
classically entailed by K. ]

It can be verified that the LLs fragment does not support
quantifier nesting.

Let full LL EL£* (in symbols, LL fSEL) support all the
inclusions A C,, D and C C D such that A € Nc U{T},
C and D are L concepts, and no qualified existentials oc-
cur in C. The reader may easily verify that full LL & o
is equivalent to LLyEL" plus quantifier nesting. The exact
complexity of Circgx(LL fSLJ‘) is still unknown. A lower
bound is provided in the next section.

5 Complexity of Circ(££") and Extensions

The circuscribed €L introduced in Section 2 generalizes the
definitions of [Bonatti et al., 2009a] in two ways: First, GDIs
can be freely prioritized through <, and are not restricted to
<k (specificity-based priority). Second, ina GDI C' C,, D,
C is not restricted to concept names. These extensions do not
increase complexity. We first show how to encode extended
DKBs in the old framework using additional fixed concepts.

Let KB = (K, <) be any given DKB in ££. First we
need to define a new fixed concept A that encodes the do-
main without being equivalent to T. This requires the follow-
ing transformation:

A" =AM A (HR.C)*:AATIHR.(AAHC*)
T = Aa (cnD)y=Cc*nbD*
1" =1 (C ;[n] D)* =C ;['n] D

(3R)* = AAM 3R (only if XBis LLy).

Obtain * from /C by transforming all inclusions in X and by
adding a nonemptiness axiom T C Jauz.Aa (auz a fresh
role) plus an assertion A (a) for each a € N occurring in K.
It is not hard to see that the restrictions to A of the models
of C* correspond to the classical models of K. Now we have
to remove the new features. For all GDIs 6 = (C' C,, D) €



K7, add two fresh predicates As, Rs and replace § with the
following axiom schemata:

Aa C As As T A5 foralld’ < 6. (17

As C,, dRs dRsMCCD. (18)
Call the new DKB KB’ = (K', <x/). By (17), the specificity-
based relation < prioritizes the new GDIs according to the
original priorities. It is not difficult to verify that all the rea-
soning tasks such that none of the new predicates A5 and
Rs occur in the query yield the same answer in (K*, <*)
and KCB'. Note that the above transformations preserve the
LL;E £ format. As a consequence of the above discussion,
by combining the transformation -* and (17), (18), we have:

Theorem 5.1 Let DL be either EL or LLfEEJ‘. Reason-
ing in Circix(DL) with explicit priorities and GDIs can be
reduced in polynomial time to reasoning in Circsix(DL) with
only specificity-based priority and defeasible inclusions of the
form A C,, 3R.

One of the applications of this theorem is proving that Circp
(and hence Circy,,) can be reduced to Circgy in full LL.

Theorem 5.2 Let DL be either EL* or LL f&CL. Reason-
ing in Circp(DL) with explicit priorities and GDIs can be
reduced in polynomial time to reasoning in Circi(DL) with
only specificity-based priority and defeasible inclusions of the
form A C,, 3R.

Proof. (Sketch) First remove all variable concepts by in-
troducing a fresh role name R4 for each A ¢ F', and uni-
formly replacing A with 3R 4. Then apply the reduction of
Lemma 5.1 to remove explicit priorities and general defeasi-
ble inclusions (including those introduced by the elimination
of variable predicates). 1

As a corollary of Theorem 5.2 and Theorem 3.2 we have:

Corollary 5.3 Subsumption and instance checking over
Circax(LLELT) are 15-hard; concept satisfiability is ¥5-
hard. These results hold even if queries are restricted to LL
ect concepts, and priorities are specificity-based.

6 Supporting Acyclic Terminologies

In this section the expressive power of acyclic terminologies*
is partially recovered.

Definition 6.1 An ££" knowledge base KB = (K, <) is al-
most LL (aLL for short) iff () X = K UK,, (i) K is
in full LL, (iii) KB, is a classical acyclic terminology, and
(iv) if a concept name A defined in /C, occurs in the left-hand
side of an inclusion in Ky 1, , then A does not depend (in /C,,)
on any qualified existential restriction.

Example 6.2 This DKB is in alLL. /C, consists of the first
two equivalences:

Yes = Jdecision.Grant No = ddecision.Deny
UserRequest T Jsubj.User I dtarget.Proj M Jop.Read
StaffRequest C Jsubj.Staff M Jtarget.Proj M Jop.Read
UserRequest C,, No StaffRequest C,, Yes.

* A finite set of definitions A = C is a terminology if no A occurs
in the left-hand side of two different definitions. Given A = C, if B
occurs in C' then A directly uses B; uses is the transitive closure of
directly uses. A terminology is acyclic if no A uses itself.
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In general, a concept name A occurring in a terminology 7
can be extended with default properties by means of an inclu-
sion A C,, C in the following cases: A can be a primitive
concept (with no definition in 7, e.g. Grant), or a concept
partially defined by a one-way inclusion (e.g. UserRequest),
or even a concept with a definition A = D in T, provided that
A does not depend on any qualified existentials. ]

The small model property of LL [Bonatti et al., 2009a] can
be extended to Circy, (aLL E L’L) and more general queries.
Let depth(D) be the maximum quantifier nesting level in D.

Lemma 6.3 Let KB = (K, <) be an aLL EL™ knowledge
base (where K = K, UK ) and let C, D be et concepts.
For all models T € Circ,,,(KB) and for all z € CT\ D? there
exists a model J € Circya,(KB) such that (i) AT C AT,
(i) x € C7\ D7, and (iii) |A7 | is O((|[KB| + |C|)9), where
d = depth(D) + 1+ |Ky|?

Consequently, as in [Bonatti et al., 2009al, we can prove:

Theorem 6.4 In Circy,(aLL EEL) with specificity-based
priorities concept satisfiability is in 5. Moreover, deciding
ELY subsumptions C T D or instance checking problems
D(a) with a constant bound on the quantifier depth of D’s
unfolding (w.r.. the given DKB) is in I15.

Currently, we do not know whether the bound on quanti-
fier nesting depth is necessary to the above result. However,
we can prove that the restriction to Circ,,, and <y is essen-
tial. By means of a reduction of quantified boolean formulae
(QBF) satisfiability, it can be proved that:

Theorem 6.5 Subsumption checking in Circix(aLL EEL) is
PSPACE-hard, even if quantifier mesting depth is bounded by
a constant.

It can be proved that the same holds for Circ,,,(aLL & EJ‘)
with general priorities, that can simulate fixed concepts.

7 Related Work

DLs have been extended with nonmonotonic constructs such
as default rules [Straccia, 1993; Baader and Hollunder,
1995a; Baader and Hollunder, 1995b], autoepistemic oper-
ators [Donini et al., 1997; Donini et al., 2002], and cir-
cumscription [Cadoli et al., 1990; Bonatti et al., 2009b;
Bonatti et al., 2009a; Bonatti et al., 2010]. The paper [Bon-
atti et al., 2009a] and this paper have the same goals and
adopt essentially the same framework. Here the results of
[Bonatti et al., 2009a] are refined and extended as summa-
rized in the next section. The results of [Bonatti et al.,
2009b] concern languages more expressive that those con-
sidered here; accordingly, complexity is much higher and
may reach NEXPTIMENP. A hybrid of Circsx and closed
world assumption has been proved to be in PTIME [Bon-
atti et al., 2010]. A recent approach based on rational
closures and ALC can be found in [Casini and Straccia,
2010]; complexity ranges from PSPACE to EXPTIME. A
nonmonotonic version of ££ based on a modal typicality
operator has been introduced in [Giordano et al., 2009b;
Giordano et al., 2009a]. Reasoning is NP-hard; the exact
complexity is still unknown.



1 subsumption and concept
EL™ DKBs instancepchecking* consistency
[varLL-oLL [ TIh-complete | Y2 _complete ]
fix LL PTIME T
fix LLo coNP-complete T NP-complete |
fix LLy I15-hard Y:P-hard
fixaLL PSPACE-hard

() with constant bound on the quantifier depth of the rhs
() for LL2EL™ queries only (= LL EL™ queries)

Figure 1: Main complexity results for ££+
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We proved lower complexity bounds for Circy,, and Circp,
matching the IT5 and 35 membership results of [Bonatti et al.,
2009al, and extended those upper bounds to more general
queries (partially supporting quantifier nesting), general de-
feasible inclusions, and acyclic definitions (as in aL L knowl-
edge bases); these results are summarized in the upper part
of Fig. 1. The lower part summarizes the analysis of Circgy,
that we proved to be less complex than Circ,,,, in some cases,
because under Circgy, LL is not a normal form for full LL
(LLy). The analysis shows the impact of reintroducing con-
junctions of existential restrictions (L L) and quantifier nest-
ing (LLy). In Theorem 5.2 we introduced a general method
for eliminating variable concepts, GDIs, and general prior-
ities for sufficiently expressive languages. The exact com-
plexity of Circix(LLE L’l) is still an open question, and so
is the question on whether limiting quantifier depth is essen-
tial to the upper bounds. Another open question is whether
the NP/coNP upper bounds for L Ly can be extended beyond
LLyE Lt queries. Additional features, such as the constructs
supported by EL£ T, will be the subject of further work.

Conclusions and Further Work
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