
Relating the Semantics of Abstract
Dialectical Frameworks and Standard AFs∗

Gerd Brewka

Computer Science Institute
Univ. of Leipzig, Germany

Paul E. Dunne

Dept. of Computer Science
Univ. of Liverpool, UK

Stefan Woltran

Institute of Information Systems
Vienna Univ. of Technology, Austria

Abstract

One criticism often advanced against abstract ar-
gumentation frameworks (AFs), is that these con-
sider only one form of interaction between atomic
arguments: specifically that an argument attacks
another. Attempts to broaden the class of relation-
ships include bipolar frameworks, where arguments
support others, and abstract dialectical frameworks
(ADFs). The latter, allow “acceptance” of an argu-
ment, x, to be predicated on a given propositional
function, Cx, dependent on the corresponding ac-
ceptance of its parents, i.e. those y for which 〈y, x〉
occurs. Although offering a richly expressive for-
malism subsuming both standard and bipolar AFs,
an issue that arises with ADFs is whether this ex-
pressiveness is achieved in a manner that would be
infeasible within standard AFs. Can the semantics
used in ADFs be mapped to some AF semantics?
How many arguments are needed in an AF to “sim-
ulate” an ADF? We show that (in a formally defined
sense) any ADF can be simulated by an AF of sim-
ilar size and that this translation can be realised by
a polynomial time algorithm.

Keywords: Argumentation, Knowledge representation

1 Introduction

The widely studied approach to abstract argumentation pro-
posed by Dung [1995] uses a directed graph scheme (called
an argumentation framework – AF), 〈X ,A〉, in which X
defines a set of atomic arguments and A a binary rela-
tion between these. In Dung’s model, A is seen as cap-
turing a concept of “incompatibility” of arguments, x and
y say, in the sense that 〈x, y〉 ∈ A indicates “the argu-
ment x attacks the argument y”. Recognising that inter-
action between arguments may involve relationships other
than that of “attack”, [Cayrol and Lagasquie-Schiex, 2005;
Amgoud et al., 2008] introduced bipolar frameworks wherein
an additional support relation, R, between arguments is spec-
ified: hence 〈x, y〉 ∈ R allows both x and y simultane-
ously to be accepted on the grounds that “the argument x

∗The third author is supported by the Vienna Science and Tech-
nology Fund (WWTF) under grant ICT08-028.

provides support for the argument y”. Recently, Brewka and
Woltran [2010] have proposed a new model – Abstract Di-
alectical Frameworks (ADFs) – in which such treatments of
how arguments interact are generalised as follows. Each ar-
gument, x, is associated with an acceptance condition, Cx,
which is some propositional function whose truth status is
determined by the corresponding (values of) the acceptance
conditions for those arguments, y, with 〈y, x〉 a link in the
ADF. In this way standard Dung style AFs are recovered by
setting as acceptance condition for each argument the func-
tion ∧y : 〈y,x〉 ¬y, i.e. x is accepted if none of its parents is.1
The concept of associating individual acceptance conditions
with arguments provides ADFs with a rich expressive capa-
bility that appears to be a more intuitive and natural mech-
anism with which to describe application scenarios, e.g. in
later work [Brewka and Gordon, 2010] it is shown that the
Carneades formalism of [Gordon et al., 2007] can be recon-
structed using ADFs.

Although it is not hard to show that standard AFs may be
directly realised as ADFs with the basic stable extension se-
mantics of the former corresponding to the so-called models
of the latter, it is far from clear to what extent efficient trans-
lations in the reverse direction are possible: naive simulations
in which ADF models map to AF stable extensions lead to an
exponential increase in the number of arguments. The main
result of this paper is to show that any ADF may be simulated
(in a sense to be made precise) by an AF only polynomially
larger and that this translation can be effected by a polynomial
time algorithm.

We first review the basic elements of AFs and ADFs in Sec-
tion 2; Section 3 recalls some supporting ideas from Boolean
function complexity and its relation to AFs as these are ap-
plied in our constructions. The main results of the paper are
presented in Sections 4 and 5 with discussion of these and
conclusions offered in Section 6.2

2 Background

We first recall the abstract model of argumentation presented
in [Dung, 1995].

1An alternative mechanism is implicit in [Gabbay, 2009].
2Due to space restrictions some proofs were omitted. Proofs for

results fundamental for the rest of the paper are included.

780

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Definition 1 An argumentation framework (AF) is a pair
〈X ,A〉, in which X is a finite set of arguments and A ⊆
X × X is the attack relationship. A pair 〈x, y〉 ∈ A is re-
ferred to as ‘y is attacked by x’ or ‘x attacks y’; x ∈ X is
acceptable with respect to S ⊆ X if for every y ∈ X that at-
tacks x there is some z ∈ S that attacks y. The characteristic
function, F : 2X → 2X is the mapping which, given S ⊆ X ,
reports the set of y ∈ X for which y is acceptable to S. The
grounded extension is the (unique) least fixed point of F , i.e.
defining F0 = ∅, Fk = F(Fk−1) the set corresponding to
the least value i with F i = F i−1. We denote by GE(〈X ,A〉)
the arguments in the grounded extension of 〈X ,A〉. The set
S ⊆ X is conflict free if no argument in S is attacked by any
other argument in S. A conflict free set S is: admissible if
every y ∈ S is acceptable w.r.t S; and a stable extension if
every y
∈ S is attacked by some x ∈ S;

The development of Dung’s model which is the focus of
the current paper are the Abstract Dialectical Frameworks
(ADFs) from [Brewka and Woltran, 2010].
Definition 2 An abstract dialectical framework is a triple
〈S,L, C〉 with S = {s1, . . . , sm} a finite set of arguments,
L ⊆ S × S a set of binary links, and C = 〈C1, C2, . . . , Cm〉
a collection of acceptance conditions described as (total)
propositional functions Ci : 2par(si) → 〈�,⊥〉 where
par(si) = {r ∈ S : 〈r, si〉 ∈ L}. A subset M of S
is conflict-free if for all s ∈ M , Cs[M ∩ par(s)] = �;
M is a model if M is conflict-free and for each s ∈ S,
Cs[M ∩ par(s)] = � implies s ∈ M , i.e. M is a model if for
for each s ∈ S: s ∈ M if and only if Cs[M ∩ par(s)] = �.
In Section 5 we will recall the notions of well-founded and
stable models for ADFs.

We use the following notational convention: for par(s) =
〈r1, . . . , rm〉, Cs[R] with R ⊆ par(s) corresponds to the as-
signment αR of propositional values in 〈⊥,�〉m with αi = �
if and only if ri ∈ R. Similarly, for α ∈ 〈⊥,�〉m, Rα ⊆
par(s) contains exactly {ri : αi = �}. In general, in de-
scribing evaluations of Cs, square brackets ([]) will be used
for subsets of par(s), and parentheses – () – for proposi-
tional assignments, so that Cs[R] is the same as Cs(αR) and
Cs(α) corresponds to Cs[Rα].

Central to the results of Section 4 is the concept of “an AF
simulating an ADF”.
Definition 3 Let 〈S,L, C〉 be an ADF. The AF 〈X ,A〉 simu-
lates 〈S,L, C〉 if all of the following properties hold.
S1. S ⊆ X .
S2. If M ⊆ S is a model of 〈S,L, C〉 there is a subset, YM

of X , for which M ∪YM is a stable extension of 〈X ,A〉.
S3. If T ⊆ X is a stable extension of 〈X ,A〉 then T ∩S is a

model of 〈S,L, C〉.
In informal terms, the AF HD = 〈X ,A〉 simulates the ADF
D = 〈S,L, C〉 if we can map models in the latter to stable
extensions in the former and vice versa.

3 Boolean functions and AFs

The presentation of an ADF 〈S,L, C〉 in a computational set-
ting must describe two components: the directed graph struc-

ture 〈S,L〉; and the set of propositional functions (accep-
tance conditions) prescribed by C. In considering notions of
how “efficiently” an arbitrary ADF, 〈S,L, C〉, can be simu-
lated using an AF, 〈X ,A〉, we cannot assess this solely in
terms of how |X | relates to |S|. Some cost is incurred in
describing C and thus a more “reasonable” measure of sim-
ulation efficiency is in terms how |X | compares to the total
cost of describing the set |C|. In order to formalise this we
need to consider what representations for propositional func-
tions could be used together with associated size measures.
There is, of course, a wide variety of schemes that have been
considered for representing propositional functions. We shall
concentrate on two related methods: propositional formulae
over a fixed logical basis (an approach that has been widely
exploited in AI contexts); and the Boolean combinational net-
work model (or straight-line program) which is of importance
in providing a benchmark for efficient realisation.3

Definition 4 Let Zn = 〈z1, z2, . . . , zn〉 be a set of n proposi-
tional variables. An {∧,∨,¬}-formula (or simply formula),
ϕ(Zn), is any expression formed by a finite number of appli-
cations of the following rules:

1. ∀ z ∈ Zn, z and ¬z are formulae.

2. If ψ1 and ψ2 are formulae then (ψ1∨ψ2) and (ψ1∧ψ2)
are both formulae.

The size of ϕ(Zn), denoted |ϕ(Zn)|, is one plus the total num-
ber of applications of (2) in constructing it, i.e. |z| = |¬z| =
1 and |ψ1 θ ψ2| = 1 + |ψ1|+ |ψ2| (for θ ∈ {∧,∨}).

It should be noted that we do not explicitly allow the constant
values {�,⊥} as formulae.

Propositional formulae (over {∧,∨,¬}) may be viewed
as a restricted class of Boolean networks (also known as
straight-line programs).

Definition 5 A Boolean network C(V,E) over the basis
{∧,∨,¬} and inputs 〈z1, . . . , zn〉 is defined by a directed
acyclic graph in which no vertex has in-degree exceeding
2. The vertices of C are either gates whose in-degree is 2;
or inputs which have in-degree 0. The network C has ex-
actly 2n input vertices each mapped to a unique member of
〈z1,¬z1, z2,¬z2 . . . , zn,¬zn〉 while gates are mapped to one
of the operations {∧,∨} (when the in-degree is 2). Exactly
one vertex (called the output) has out-degree 0 (note that we
assume every input vertex has out-degree at least 1, other-
wise the corresponding literal cannot influence the network
computation). A topological sort of the vertices in a Boolean
network C is a mapping τ : V → {1, 2, . . . , |V |} with the
following properties:

a. The input vertex associated with zi has τ(zi) = i.

b. The input vertex associated with ¬zi has τ(zi) = n+ i.

c. If w is a ∧-gate or ∨-gate vertex with 〈u,w〉 ∈ E and
〈v, w〉 ∈ E then τ(w) > max{τ(u), τ(v)}.

3By which we mean that within the field of Boolean function
complexity theory, see e.g. [Dunne, 1988], this model has a similar
status to that of Turing machines in standard computational com-
plexity theory.

781

It is well-known (e.g. using depth-first search) that a
topological sort labelling always exists and can be con-
structed in O(|V | + |E|) steps. Given C(V,E) let
〈z1, . . . , zn,¬z1, . . . ,¬zn〉 ⊂ V denote its inputs and
〈g1, g2, . . . , gm〉 its gates where C may be topologically
sorted so that τ(gi) = 2n + i. Notice that gm is the
unique output. A Boolean network represents the proposi-
tional function f : 〈�,⊥〉n → 〈�,⊥〉 at gm via: res(gm) =
f(z1, . . . , zn) where for u ∈ V ,

res(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zi if u is the input zi,
i.e. τ(u) = i

¬zi if u is the input ¬zi,
i.e. τ(u) = n+ i

res(v) θ res(w) if {〈v, u〉, 〈w, u〉} ⊆ E and
u is an θ-gate (θ ∈ {∧,∨})

The size of a Boolean network, C(V,E) with inputs
〈z1, . . . , zn〉 is the number of gate vertices in V , i.e. |V |−2n.
One view of propositional formulae is as Boolean networks
in which the out-degree of any gate vertex is at most 1.

4 Efficient computation of ADF models via AFs

We now present the main result of this paper: that for any
ADF, 〈S,L, C〉, there is an AF, 〈X ,A〉, simulating it, in the
sense of Defn. 3 and for which |X | is linear in the total size
of the representations used for C. Noting the view of formulae
as a restricted type of Boolean network, without loss of gen-
erality, it is assumed that each acceptance condition Cs ∈ C
is described by a network, Cs(Vs, Es).

The first step, presented in Lemma 1 shows that we can
transform an arbitrary Boolean network into a corresponding
AF. We then use this construction as the basis of the ADF
simulation described in Thm. 1.
Lemma 1 Let C(V,E) be a Boolean network with in-
puts 〈z1, . . . , zn,¬z1, . . . ,¬zn〉, output gate gm (so that
|V | = 2n + m) and using (gate) operations from
{∧,∨}. Suppose C realises the propositional function
f(z1, . . . , zn), i.e. res(gm) = f(z1, . . . , zm). There is
an AF, 〈X ,A〉 such that: 1) X contains arguments la-
belled {z1, . . . , zn,¬z1. . . . ,¬zn, g1, . . . , gm}; 2) For every
assignment α ∈ 〈�,⊥〉n (α = 〈α1, . . . , αn〉) and ver-
tex v with res(v)(α) = �, there is a subset Y of X \
{z1, . . . , zn,¬z1, . . . ,¬zn} such that the set Sv

α given by
Y ∪ {v} ∪ { zi : αi = �} ∪ {¬zi : αi = ⊥} is an admis-
sible set of 〈X ,A〉. Furthermore if res(gm)(α) = f(α) = �
then Sgm

α is a stable extension of 〈X ,A〉. 3) For any stable
extension S ⊆ X the assignment αi = � if zi ∈ S; αi = ⊥
if ¬zi ∈ S is well-defined (that is, S must contain exactly one
of {zi,¬zi} for each 1 ≤ i ≤ n) and is such that gm ∈ S if
and only if f(α) = �. 4) |X | = 2n+O(m).

Proof: We form a sequence of AFs, {〈Xi,Ai〉}0≤i≤m with:

{z1, . . . , zn,¬z1. . . . ,¬zn, g1, . . . , gi} ⊆ Xi ⊆ Xi+1

Ai ⊆ Ai+1

and 〈Xi,Ai〉 satisfies (1)–(4) wrt the sub-network of C in-
duced by

{z1, . . . , zn,¬z1, . . . ,¬zn, g1, . . . , gi}

For the inductive base we have i = 0 and there are only input
vertices of C to consider.

X0 := {z1, . . . , zn,¬z1. . . . ,¬zn}
A0 := {〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n}

It is easily seen that 〈X0,A0〉 already satisfies (1)–(4) (condi-
tion (3) being redundant since no gate arguments are present)
as res(zi) = � if and only if zi = � (similarly res(¬zi) =
� if and only if zi = ⊥).

For the inductive step, suppose we have constructed
〈Xi−1,Ai−1〉 with the desired properties. Consider, there-
fore gi (i ≥ 1) and the inductively defined AF, 〈Xi−1,Ai−1〉.
Suppose that 〈uj , gi〉 ∈ E and 〈uk, gi〉 ∈ E. Since we are ob-
serving topological order, by the inductive hypothesis it fol-
lows that {uj , uk} ⊆ Xi−1.
Case 1: gi is an ∧-gate in C(V,E).

Xi := Xi−1 ∪ {gi, h1
i , h

2
i }

Ai := Ai−1 ∪ {〈uj , h
1
i 〉, 〈uk, h

2
i 〉, 〈h1

i , gi〉, 〈h2
i , gi〉}

In this case res(gi)(α) = � if and only if res(uj)(α) = �
and res(uk)(α) = �. It is immediate that (1) is satisfied;
furthermore (2) holds: given α with res(gi)(α) = � let Zα

be given by { zi : αi = �} ∪ { ¬zi : αi = ⊥}, Yj be
the subset defined from the fact res(uj)(α) = � and Yk that
from res(uk)(α) = �. Then it can be shown that Yj ∪ Yk ∪
{gi} ∪ Zα is is conflict-free and, thus, a stable extension of
〈Xi,Ai〉: the arguments {h1

i , h
2
i } being attacked by {uj , uk}.

Condition (3) holds by considering any stable extension S of
〈Xi,Ai〉 for which gi
∈ S. In this case S ∩ {h1

i , h
2
i }
= ∅

thus at least one of uj
∈ S or uk
∈ S holds. Let α be the
assignment to 〈z1, . . . , zn〉 arising from S: that res(gi)(α) =
⊥ follows by induction using the subset of S defining a stable
extension in 〈Xj ,Aj〉 (uj
∈ S) or 〈Xk,Ak〉 (when uk
∈ S).

Finally |Xi| = |Xi−1|+ 3 establishing that (4) holds.
Case 2: gi is an ∨-gate in C(V,E).

Xi := Xi−1 ∪ {gi, pi}
Ai := Ai−1 ∪ {〈uj , pi〉, 〈uk, pi〉, 〈pi, gi〉}

From res(gi)(α) = � if and only if at least one of
res(uj)(α) = � or res(uk)(α) = �, a similar argument
to the ∧-gate case establishes this case. �

Theorem 1 Let 〈S,L, C〉 be an ADF and assume that
each acceptance condition Ci ∈ C is described using a
Boolean network, (Vi, Ei) with output gate si such that
res(si)(par(si)) = Ci. There is an AF, 〈X ,A〉 that: sim-
ulates 〈S,L, C〉; has |X | linear in the total size of networks
encoding C; and is constructible in polynomial time.

Proof: For any s ∈ S for which par(s) = ∅, we have
Cs(par(s)) ∈ {�,⊥} and the AFs in Fig 1 are used (note
that these are not dealt with in Lemma 1).

For the remaining cases, recalling that each acceptance
condition, Cs, describes a propositional function of the vari-
ables par(s), first construct, for each s ∈ S an AF, 〈Xs,As〉
with the properties described in Lemma 1. In these AFs,
let s be the argument (of Xs) corresponding to the output
gate of (Vs, Es) and 〈r1, . . . , rt,¬r1, . . . ,¬rt〉 be the argu-
ments defining the inputs of (Vs, Es) (so that par(s) =

782

s

s Cs

s

¬s

¬s

C ({}) =T ({}) =

Figure 1: AFs simulating Cs(∅) ∈ 〈�,⊥〉

{r1, . . . , rt} in 〈S,L, C〉). It is convenient (although not es-
sential) to add for each (non-constant) case, an additional
argument to 〈Xs,As〉 which is denoted ¬s and the attacks
{〈¬s, s〉, 〈s,¬s〉}.

To complete the construction, for each 〈Xs,As〉 we iden-
tify the input arguments, i.e. 〈r1, . . . , rt,¬r1, . . . ,¬rt〉 with
the respective output arguments, i.e from 〈Xrj ,Arj 〉. The
only exception is when Cr is a constant function in which
case the mutual attack {〈r,¬r〉, 〈¬r, r〉} in 〈Xs,As〉 is re-
moved and the appropriate structure from Fig 1 used instead.
Notice that one property of the construction is that an argu-
ment p corresponding to the output of (Vp, Ep) – the network
encoding Cp – is never in conflict with any argument q cor-
responding to the output of (Vq, Eq) even when 〈p, q〉 ∈ L
so that p is one of the input node of (Vq, Eq). Suppose that
M ⊆ S is a model of 〈S,L, C〉. By definition, M is conflict-
free and the corresponding subset SM = { s ∈ X : s ∈ M}
is also conflict-free in 〈X ,A〉 from our earlier observations.
It remains to construct a stable extension, TM in 〈X ,A〉 with
SM ⊆ TM . From the fact that M is a model in 〈S,L, C〉 we
have s ∈ M if and only if Cs[M ∩ par(s)] = �. It follows
that by considering (Vs, Es) the Boolean network encoding
of Cs and the inputs from M ∩ par(s), that the assignment
αM∩par(s) to par(s) is such that res(gs)(αM∩par(s)) = �.
Thus, via Lemma 1, for every s ∈ M we find a stable exten-
sion Ys in 〈Xs,As〉. It follows, via a similar argument to that
used previously, that MS ∪ ⋃

s∈M Ys is a stable extension
of 〈X ,A〉 completing the proof of (b). For space reasons we
omit the proof that if T is stable extensions of 〈X ,A〉 then
T ∩ S is a model. �

We conclude this section with a small illustrating example.

Example 1 Consider the ADF D given as
〈{a, b, c}, {〈a, b〉, 〈b, a〉, 〈b, c〉}, {Ca, Cb, Cc}〉, i.e.

a b c

In this Ca(b) = b, Cb(a) = a and Cc(b) = ¬b. The AF,
HD adds to {a, b, c} two auxiliary arguments – za and zb
– and has attack set {〈za, a〉, 〈a, zb〉, 〈zb, b〉, 〈b, za〉, 〈b, c〉}.
HD has two stable extensions – {a, b} and {za, zb, c} – the
former corresponding to the model {a, b} and the latter to the
model {c}.

5 Grounded and stable ADF models

As we have seen, models of an ADF D can be computed ef-
ficiently by translating D into an argumentation framework
HD. The stable models of the latter exactly characterize the
models of D. Now, although models certainly are a funda-
mental notion in the ADF approach, they are not the most sig-

nificant semantic notions. As for AFs, well-founded, stable
and preferred semantics appear far more interesting. For this
reason we extend our analysis, focusing on well-founded and
stable models.4

5.1 Well-founded models

We recall that the well-founded model of an ADF, D =
〈S,L, C〉 is defined via the operator ΓD with ΓD(A,R) =
(acc(A,R), reb(A,R)) where acc(A,R) is {r ∈ S : A ⊆
S′ ⊆ S \ R ⇒ Cr[S

′ ∩ par(r)] = �} and reb(A,R) is
{r ∈ S : A ⊆ S′ ⊆ S \ R ⇒ C[S′ ∩ par(r)] = ⊥]}.
As shown in [Brewka and Woltran, 2010], it has a least
fixed point obtained by iterating ΓD(∅, ∅). The well-founded
model of D is defined as the set E ⊆ S for which there is
some E′ ⊆ S having (E,E′) the least fixed point of ΓD.

It turns out that the AF simulating an ADF captures the well-
founded model via its grounded extension in the same way as
it captures ADF models via its stable models.

Theorem 2 Let D = 〈S,L,C〉 be an ADF with well-founded
model W . Let HD the AF resulting from translating D, G its
grounded extension. Then we have G ∩ S = W .

5.2 Stable models: loop formulas

We first recall the definition of stable models from [Brewka
and Woltran, 2010]. They are defined for bipolar ADFs
(BADFs) only where each link is supporting or attacking:
formally a link, (r, s) is supporting (attacking) iff there is
no R ⊆ par(s) for which Cs(R) = � (resp. ⊥) but
Cs(R ∪ {r}) = ⊥ (resp. �).

Let D = 〈S,L,C〉 be a BADF. A model M of D is called
stable if M is the least model5 of the reduced ADF DM ob-
tained from D by

1. eliminating all nodes not contained in M together with
all links in which any of these nodes appear,

2. eliminating all attacking links,

3. replacing in each acceptance condition Cs of a node s in
DM each occurrence of a statement t /∈ M with ⊥.

This definition, inspired by the definition of the same notion
for logic programs [Gelfond and Lifschitz, 1991], excludes
models containing self-supporting cycles, i.e., each node in a
stable model is required to have independent support.

Rather than modifying the simulating AF to exclude un-
wanted, non-stable models, we stay at the ADF level and pro-
ceed in 2 steps as follows: we first show how an arbitrary
BADF D can be translated into an ADF D∗ such that the sta-
ble models of D coincide with the models of D∗. We then
simulate D∗ using the translation described above. We thus
obtain an AF HD∗

whose stable models are in one-to-one cor-
respondence with the stable models of D.

For the construction of D∗ we will adapt a technique based
on so-called loop formulas, originally proposed by Lin and
Zhao [2004] for logic programming. Lin and Zhao showed
that by adding adequate formulas to the Clark completion of

4Preferred models depend on the definition of stable models and
thus may be considered somewhat less fundamental.

5There is a unique such model [Brewka and Woltran, 2010].

783

a logic program one can obtain a propositional theory whose
models are exactly the stable models of the original program.

The definition of the loop formulas required for BADFs is
simplified because (1) supporting cycles can directly be “read
off” the BADF graph, and (2) an explicit acceptance condition
for each node, rather than a set of rules, is given.

Let D be a BADF. We call a non-empty set L =
{A1, . . . , An} of nodes in D a support loop whenever
Ai, Aj ∈ L implies that Aj is reachable from Ai through
a (nonempty) sequence of supporting links in D.

Let L = {A1, . . . , An} be a support loop and C1, . . . , Cn

the acceptance conditions of A1, . . . , An, respectively. The
loop formula of L is the implication

A1 ∧ . . . ∧An → C¬L
1 ∨ C¬L

2 ∨ . . . ∨ C¬L
n .

Here, C¬L
i stands for the formula which is obtained by re-

placing in the acceptance condition Ci each occurrence of any
element in L by ⊥. Intuitively, the implication says that when
the nodes in L are �, then there must be independent support
for at least one of the nodes Ai in L. Independent support
means: Ai’s acceptance condition Ci is satisfied even if the
predecessors of Ai in the support loop are not �.

For the construction of D∗ we need to compute the loop
formulas of all support loops in D. Let LF1, . . . , LFk be the
(complete) collection of the loop formulas.

We must guarantee that D∗ has no model in which any of
the loop formulas is violated. This can be achieved by in-
troducing a new, self-attacking node, say F . The self-attack
must become “active” whenever one of the loop formulas is
violated. This can be achieved by choosing for F the follow-
ing acceptance condition:

CF : (¬LF1 ∨ . . . ∨ ¬LFk) ∧ ¬F.
This is similar to the use of constraints in logic program-

ming. As long as no loop formula is violated, F cannot be �
and does not do any harm. However, if there is a violation,
then the respective set of nodes cannot be a model, as F is
missing although CF is satisfied; yet adding F also does not
lead to a model, as ¬F and thus CF is then not satisfied.

Example 2 Consider the BADF given in Example 1 above.
Recall links (a, b) and (b, a) are supporting (that is, Ca =
b, Cb = a) and (b, c) is attacking (Cc = ¬b). The single
support loop is {a, b}. Its loop formula is a∧ b → ⊥ which is
equivalent to ¬(a ∧ b). To construct D∗ we introduce a new
node F with CF = a ∧ b ∧ ¬F . It is easy to verify that the
single model of D∗ is exactly the single stable model of D.
Now consider the extended BADF D′:

a b cd e

Links (e, d) and (d, e) are attacking (Ce = ¬d, Cd = ¬e).
(e, a) is an additional supporting link for a and Ca becomes
e ∨ b. D′ has three models, namely M1 = {e, a, b}, M2 =
{d, c} and M3 = {d, a, b}. M1 as well as M2 are stable, M3

is not.
As before, the single support loop is {a, b}. Its loop for-

mula (after simplifications) now is a ∧ b → (e ∨ ⊥). To con-
struct D′∗ we add a node F with CF = a ∧ b ∧ ¬e ∧ ¬F .

M1 and M2 are models of D′∗ (the acceptance condition of
F is not satisfied). As intended, M3 is not a model as the
self-attack of F is enforced whenever a, b are � and e is ⊥.

Theorem 3 Let D be a BADF, D∗ the ADF constructed as de-
scribed above. The stable models of D are exactly the models
of D∗.

Although D∗ has only a single additional node F , the size
of CF may obviously be exponential as there may be an ex-
ponential number of loops. The (indirect) translation to AD∗

thus may lead to an exponential blowup. We thus present next
an alternative translation which avoids such a blowup.

5.3 Stable models: a polynomial translation

The idea here is to cope with self-supporting loops by observ-
ing that the existence of a certain order for checking the sat-
isfaction of the acceptance excludes such self-supports. We
can in fact use ADFs themselves for guessing such orders, and
in case an order exists, the models of a suitably extended ADF
will correspond to the stable models of the original ADF. Thus
compared to the previous approach which followed the ideas
of loop formulas, we generalize here another concept from
logic programs, viz. level mappings as, for instance, used in
[Ben-Eliyahu and Dechter, 1994].

For this purpose we need a certain ADF for guessing orders
between statements S. To this end, we define the ADF

D<
S = (S(1) ∪ · · · ∪ S(n) ∪ S<, L, C)

where n is the cardinality of S, S(i) = {si : s ∈ S}
carries a copy si for each s ∈ S, and S< = {f} ∪ {(t <
s) : s, t ∈ S, s
= t} provides statements (t < s) which are
used to indicate an order between elements from S and f will
be a “constraint” statement which ensures the order. We next
describe the parts of L and C. First we have links between all
si for a given i, i.e. {(si, ti) : s, t ∈ S, s
= t} ⊆ L for each
i. All these links are simply attacking, thus at most one si is
selected for each level i in a model. In order to ensure that
exactly one such si is selected and that for each i different
statements are selected, we use the constraint f , i.e. we have
links in L from each si to f and the acceptance condition for
f is given as

((n∨
i=1

∧
s∈S

¬si) ∨ (n−1∨
i=1

n∨
j=i+1

∨
s∈S

(si ∧ sj)
)) ∧ ¬f.

Finally, for each statement (t < s) we link all si’s and ti’s to
(t < s) and define as acceptance condition for (t < s):

n∧
i=1

(
si →

i−1∨
j=1

tj).

Thus, (t < s) has to be in a model iff tj and si with j <
i are in the model. We note that for given S, D<

S can be
constructed from S in polynomial time.
Lemma 2 Let S be a set of statements and D<

S as given
above. Then, (i) for each order < on S, there exists a model
M of D<

S such that (t < s) ∈ M ∩ S< iff t < s holds; (ii)
for each model M of D<

S the statements in M ∩ S< describe
a valid total order on S.

784

We are now ready to define a translation which maps an
ADF D = 〈S,L,C〉 to an ADF D† such that the stable mod-
els of D are in correspondence with the models of D†. The
construction of D† is as follows:

1. it contains the original ADF D;
2. it contains a certain copy D′ of D which is linked to
3. the order-guessing ADF D<

S ; and
4. has a further constraint node g linked from D and D′.

The copy D′ = 〈S′, L′, C ′〉 is the same as D but for each sup-
porting link (t, s) in D there is now also a link from (t < s)
to s′. Accordingly the acceptance conditions C ′

s′ are obtained
from Cs by replacing each occurrence of t (where (t, s) is
supporting in D) by (t′ ∧ (t < s)), and all remaining occur-
rences of statements u (i.e. (u, s) is attacking in D) by u′.
Finally, the acceptance condition for the additional node g is:(∨

s∈S

(
(s ∧ ¬s′) ∨ (¬s ∧ s′)

)) ∧ ¬g.

Again, D† can be constructed from D in polynomial time.
Theorem 4 For any BADF D = 〈S,L, C〉, the stable models
of D are given by {M ∩ S : M is a model of D†}.
We thus can compute stable models of D by constructing the
AF HD†

. Each stable model of the latter will contain a stable
model of D, and each stable model of D will be contained
in a model of HD†

. Contrary to the loop formula approach
this construction is polynomial. This comes at a cost, though:
the models of HD†

contain numerous nodes whose intuitive
meaning is entirely technical and not interpretable in terms of
the original statements in D.

6 Discussion and Conclusions

Our main aim in this paper has been to consider the relation-
ship between the ADF model of abstract argumentation from
[Brewka and Woltran, 2010] and the widely studied approach
of argumentation frameworks from [Dung, 1995]. An impor-
tant motivation for ADFs (as indeed had earlier been the case
for bipolar AFs) concerns the restrictive view of argument in-
teraction within AFs: in AFs arguments are related only in
terms of one attacking another. Bipolar frameworks recog-
nize that arguments may interact in other ways (e.g. through
notions of support); ADFs continue and enrich the sphere of
explicitly recognized interaction between arguments through
their use of specified propositional acceptance conditions.

Our simulation shows that computation of ADF models is
equivalent to computing the stable extensions in a related
AF. For well-founded and stable models of ADFs we ob-
tain a similar picture. The well-founded model is captured by
the grounded extension of the related AF. For stable models
the situation is somewhat more involved: we presented two
ADF-to-ADF translations which provide a relation between
stable models of an ADF and models of its translation. The
translation based on loop formulas was exact yet exponential,
the non-exact translation introduces numerous nodes whose
meaning is entirely technical. In total the results may be in-
terpreted as demonstrating that arbitrarily complex interac-
tions describing the acceptability of an argument x in terms

of acceptability of its parent arguments, par(x), can always
be expressed in terms of attacks between arguments in an AF
〈Y ∪ {x} ∪ par(x),A〉. Of course while in principle it is
sufficient to consider only “attack” as the basis for argument
interaction, this will often render direct modeling of specific
argumentation scenarios rather opaque: this is most apparent
for stable models where users must specify arguments whose
purpose is entirely technical.

In this light, noting contributions such as that of [Brewka
and Gordon, 2010] in reconstructing the less abstracted and
more natural expressive formalism defined by the Carneades
framework of [Gordon et al., 2007], we can view our results
in a much more positive light: since ADFs can be “compiled”
into “equivalent” AFs with polynomial overhead, ADFs can
be used as a convenient representation device but examined
and analysed at the basic AF level. One issue, and the subject
of current empirical study, is the extent to which the resulting
AF structures have reasonable algorithmic properties.

References

[Amgoud et al., 2008] L. Amgoud, C. Cayrol, M.-C.
Lagasquie-Schiex, and P. Livet. On bipolarity in argumen-
tation frameworks. Int. J. Intell. Syst., 23(10):1062–1093,
2008.

[Ben-Eliyahu and Dechter, 1994] R. Ben Eliyahu and
R. Dechter. Propositional semantics for disjunctive logic
programs Ann. Math. Artif. Intell. 12(1-2): 53–87, 1994.

[Brewka and Gordon, 2010] G. Brewka and T. F. Gordon.
Carneades and abstract dialectical frameworks: A recon-
struction. In Proc. 3rd COMMA, volume 216 of FAIA,
pages 3–12. IOS Press, 2010.

[Brewka and Woltran, 2010] G. Brewka and S. Woltran. Ab-
stract dialectical frameworks. In Proc. KR 2010, pages
102–111, 2010.

[Cayrol and Lagasquie-Schiex, 2005] C. Cayrol and M.-C.
Lagasquie-Schiex. On the acceptability of arguments in
bipolar argumentation frameworks. In Proc. 8th EC-
SQARU, volume 3571 of LNCS, pages 378–389. 2005.

[Dung, 1995] P. M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming, and N -person games. Artif. Intell., 77:321–
357, 1995.

[Dunne, 1988] P. E. Dunne. The Complexity of Boolean Net-
works. Academic Press, 1988.

[Gabbay, 2009] D. M. Gabbay Fibring argumentation
frames. Studia Logica, 93:231–295, 2009

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9:365–386, 1991.

[Gordon et al., 2007] T. F. Gordon, H. Prakken, and D. Wal-
ton. The Carneades model of argument and burden of
proof. Artif. Intell., 171:875–896, 2007.

[Lin and Zhao, 2004] F. Lin and Y. Zhao. ASSAT: comput-
ing answer sets of a logic program by sat solvers. Artif.
Intell., 157(1-2):115–137, 2004.

785

