
A Practical Automata-Based Technique
for Reasoning in Expressive Description Logics∗

Diego Calvanese

KRDB Research Centre
Free Univ. of Bozen-Bolzano

Piazza Domenicani 3, Bolzano, Italy
calvanese@inf.unibz.it

Domenico Carbotta and Magdalena Ortiz

Institute of Information Systems
Vienna Univ. of Technology

Favoritenstraße 9-11, Vienna, Austria
ortiz@kr.tuwien.ac.at, domenico.carbotta@gmail.com

Abstract

In this work we describe the theoretical foundations
and the implementation of a new automata-based
technique for reasoning over expressive Descrip-
tion Logics that is worst-case optimal and lends it-
self to an efficient implementation. In order to show
the feasibility of the approach, we have realized a
working prototype of a reasoner based upon these
techniques. An experimental evaluation of this pro-
totype shows encouraging results.

1 Introduction

Description Logics (DLs) [Baader et al., 2007] are a well-
established family of logics designed for knowledge repre-
sentation and reasoning. In DLs, the domain of interest is
represented in terms of concepts and roles, denoting unary
and binary predicates, respectively. Knowledge about the do-
main is represented in a knowledge base, which is constituted
in general by a set of (inclusion) assertions between concepts
and roles In expressive DLs, there is no limitation on the form
of inclusion assertions, and it is well known that this makes
reasoning EXPTIME-hard in general, though decidable and
EXPTIME-complete in many significant cases [Baader et al.,
2007].

A reason for the robust decidability of DLs (shared with
Modal Logics) is the fact that they enjoy the tree-model prop-
erty [Vardi, 1997]. This property is either directly or indi-
rectly at the basis of a variety of different techniques that
have been proposed for reasoning in expressive DLs, the most
prominent of which are tableaux-based calculi [Baader and
Sattler, 2001; Motik et al., 2009] resolution-based techniques
[Hustadt et al., 2008], and techniques based on automata on
infinite trees [Vardi, 1998; Calvanese et al., 2002]. Although
not computationally optimal, tableau techniques provide the
basis for most of the currently implemented state-of-the-art
DL reasoning systems, such as FACT [Tsarkov and Horrocks,
2006], RACER [Baader et al., 2007], PELLET [Sirin and Par-
sia, 2006], and HERMIT [Shearer et al., 2008].

∗This work was partially supported by the Austrian Science Fund
(FWF) grant P20840, and by the EU under the ICT Collaborative
Project ACSI (Artifact-Centric Service Interoperation), grant agree-
ment n. FP7-257593.

The automata-based approach is based on translating a
knowledge base (KB) whose satisfiability is to be checked
into some variant of automata on infinite trees that accepts
tree-shaped models of the KB, and checking such an automa-
ton for non-emptiness. This approach is powerful and flex-
ible. It is acknowledged that it provides a very robust ba-
sis for showing worst-case optimal complexity upper bounds,
and has been applied for a wide range of expressive DLs
and reasoning services (cf. [De Giacomo and Lenzerini, 1994;
Tobies, 2001; Calvanese et al., 2002; 2007] and their refer-
ences). Interestingly, however, up to now such techniques
have resisted implementation, since they essentially require to
fully construct an exponentially large automaton, and there-
fore exhibit a best-case exponential behaviour. An exception
is the inverse tableaux method reported in [Voronkov, 2001],
which according to [Baader and Tobies, 2001] can be consid-
ered as an implementation of an automata-based algorithm
for satisfiability in modal with global axioms, which essen-
tially correspond to DL inclusion assertions.

We develop here theoretical results that represent a first sig-
nificant step towards the development of practical automata-
based techniques for reasoning in expressive DLs. Our core
contribution is a technique for an incremental construction of
the state space of a non-deterministic looping tree automaton,
which accepts the same trees as an alternating looping tree
automaton that directly encodes the KB. At each step of the
incremental construction, part of the computation can be del-
egated to efficient off-the-shelf SAT solvers. The method is
worst-case exponential in general, but it lends itself to an effi-
cient implementation. In this paper we deal with TBoxes con-
stituted by arbitrary inclusion assertions between concepts
expressed in the propositionally complete DL ALC, extended
with functional roles. We have chosen a relatively simple DL
in order to keep presentation and notation simple, however
our results extend to more expressive DLs, e.g., to those con-
taining inverse roles.

To the feasibility of our approach, we have realized a first
working prototype of a reasoner that is based upon these tech-
niques. Our prototype is not yet in the league of current state-
of-the-art systems for expressive DLs, but shows already en-
couraging results in experimental evaluations.

For space reasons, full proofs are omitted here, but they
can be found in [Carbotta, 2010], together with more detailed
explanations and additional examples.

798

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

2 Preliminaries

We recall the syntax and semantics of the DL ALCf , which
extends ALC with global functionality, and give some pre-
liminaries on automata on infinite trees.

2.1 The Description Logic ALCf

Given two disjoint sets of atomic concepts and atomic roles,
the syntax of ALCf concepts is specified in Table 1, as usual.
We use A, P , and C, to denote atomic concepts, atomic roles,
and concepts, respectively. We use � as an abbreviation for
A�¬A, for some atomic concept A. The semantics is defined
in terms of interpretations I = (ΔI , ·I). The interpretation
function ·I maps each atomic concept to a subset of ΔI and
each atomic role to a binary relation over ΔI , and is extended
to all concepts as shown in Table 1. We use sub(C) to denote
the set of all subconcepts of a concept C. By nnf(C) we de-
note the negation normal form (NNF) of C (i.e., ¬ is applied
only to atomic concepts). In what follows we assume w.l.o.g.
that all concepts are in NNF.

An inclusion assertion is an expression of the form C � D,
where C and D are concepts, and a functionality assertion is
an expression of the form (func P), where P is a role. An
interpretation I is a model of C � D if CI ⊆ DI , and it
is a model of (func P) if every individual in ΔI has at most
one P -successor, that is, for every d ∈ ΔI there is at most
one d′ ∈ ΔI such that (d, d′) ∈ P I . A TBox T is a set
of inclusion and functionality assertions; an interpretation I
is a model of T (denoted I |= T) if it is a model of every
assertion in T .

A concept C is satisfiable in a TBox T if T has a model I
such that CI �= ∅. Other standard reasoning problems, such
as satisfiability of a TBox, satisfiability of a concept, or log-
ical implication of an inclusion assertion, can be reduced to
satisfiability of a concept in a TBox in the usual way [Baader
et al., 2007].

2.2 Tree Automata

For 0 ≤ i ≤ k, we use [i : k] to denote {i, . . . , k}. As usual,
a k-ary tree N is a (possibly infinite) prefix-closed subset of
[1 : k]∗. Its root is the empty word ε and the elements of N
are called nodes. A node v · c ∈ N is a child of v, and v is
the parent of v · c. By convention, v · 0 = v. A leaf node
has no children. A path is a sequence of nodes from N where
every node is the parent of the next one in the sequence, and
a branch is a path starting from the root that either ends in
a leaf node or is infinite. An alphabet is a finite set Σ, and
a Σ-labeled k-ary tree is a tuple T = (N, τ), where N is a
k-ary tree and τ : N → Σ is a labeling function.

Syntax Semantics

¬C (¬C)I =ΔI \ CI

C1 � C2 (C1 � C2)
I =C1

I ∩ C2
I

C1 � C2 (C1 � C2)
I =C1

I ∪ C2
I

∀P.C (∀P.C)I = {d ∈ ΔI | ∀d′.(d, d′) ∈ P I→d′ ∈ CI}
∃P.C (∃P.C)I = {d ∈ ΔI | ∃d′.(d, d′) ∈ P I ∧ d′ ∈ CI}

Table 1: ALCf syntax and semantics

We denote by PBF(X) the set of positive boolean formulas
that can be built using ∧ and ∨ from the symbols in X ∪
{f, t}. For ϕ ∈ PBF(X) and Y ⊆ X , we say that Y satisfies
ϕ, written Y |= ϕ, if setting to true the symbols in Y makes
ϕ true in the usual sense.

An alternating looping tree automaton (ATA) is a tuple
A = (Σ, Q, q0, k, δ), where Σ is the input alphabet, Q is
the (finite) set of states, q0 ∈ Q is the initial state, k ∈ N is
the branching degree, and δ : Q × Σ → PBF([0 : k] × Q)
is the transition function. Given a Σ-labeled k-ary tree
T = (N, τ), a run of A over T is a N × Q-labeled tree
R = (NR, ρ) such that: (1) ρ(ε) = (ε, q0); and (2) for every
r ∈ NR, if ρ(r) = (v, q), there exists a set of index-state pairs
{(i1, q1), . . . , (in, qn)}, for n ≥ 0, that satisfies δ(q, τ(v))
and such that r · j ∈ NR and ρ(r · j) = (v · ij , qj), for every
j ∈ [1 : k]. We denote by L(A) the language accepted by
A, i.e., the set of all Σ-labeled k-ary trees over which there
exists a run of A.

If the transition function of an ATA A does not include
atoms whose first component is 0, and additionally for every
pair (q, σ) ∈ Q×Σ, no clause in the disjunctive normal form
of δ(q, σ) contains two atoms with the same first component,
we call A a nondeterministic tree automaton (NTA).

3 Automata for ALCf

We first illustrate the classical approach to reasoning in ex-
pressive DLs based on alternating automata on infinite trees
for concept satisfiability in ALCf [Vardi, 1998; Calvanese et
al., 2002]. We then show how to adapt this approach so as to
make it implementable.

Let Tf = {C1 � D1, . . . , Cn � Dn} be an ALCf TBox,
and let C and R be respectively the sets of atomic concepts
and atomic roles that appear in Tf . Let Rf ⊆ R be the set of
functional roles of Tf , i.e., those roles that appear in Tf in a
functionality assertion, and let T be the ALC TBox obtained
by removing from Tf all functionality assertions. Let C0 be
an ALC concept defined over C and R.

Let CT = nnf(
�

Ci�Di∈T ¬Ci � Di) be the internalized
version of T , let E be the set of all the existential subconcepts
of CT and C0 that do not refer to a role from Rf , and let
k = |E| + |Rf |. Fix an arbitrary bijection idx from E ∪ Rf

to [1 : k]. We make use of the following result, which follows
directly from the standard tree-model property of ALCf .
Theorem 3.1 (Canonical witness). If the concept C0 is sat-
isfiable in Tf , there exists a canonical witness I = (ΔI , ·I)
that satisfies the following properties:

• ΔI is a k-tree.
• For every role P ∈ R and every pair (a, b) ∈ P I , b =
a · c, for some c ∈ [1 : k].

• I is a model of T , and therefore CI
T = ΔI .

• ε ∈ CI
0 .

• For every existential subconcept ∃P.C ∈ E and every
node v ∈ ΔI , let v′ = v · idx(∃P.C):
– if v∈(∃P.C)I , then v′∈ΔI , (v, v′)∈P I and v′∈CI;
– otherwise, v′ /∈ ΔI .

• For every functional role P ∈ Rf and every node v ∈
(∃P.�)I , let v′ = v · idx(∃P.C). Then v′ ∈ ΔI and
(v, v′) ∈ P I .

799

By virtue of the previous theorem, we can decide whether
C0 is satisfiable in Tf by (i) constructing a tree automaton that
recognizes a suitable encoding of the canonical witnesses,
and (ii) checking whether it accepts a non-empty language.

In the following, let Σ = 2C ∪ {σne}, with σne a fresh
symbol, intuitively labeling dummy nodes of the tree. Given
a canonical witness I = (ΔI , ·I), we define its tree-encoding
treeEnc(I) = ([1 : k]∗, τ) as a Σ-labeled k-tree whose label-
ing τ is defined as follows:
• for every v ∈ ΔI , let τ(v) = {A ∈ C | v ∈ AI};
• for every v ∈ [1 : k]∗ \ΔI , let τ(v) = σne.
Let Aut(Tf , C0) = (Σ, Q, q0, k, δ) be an ATA with

Q = {q0, qtbox, qne} ∪ sub(C0) ∪ sub(CT), where qtbox is a
state used to check that T is satisfied, and qne is a state used to
check that the descendants of dummy nodes are also dummy.
To define δ, consider the function all : R → 2[1:k] defined as

all(P) = {i ∈ [1 : k] | idx−1(i) = ∃P.C, for some C,
or idx−1(i) = P}

Intuitively, all(P) is the set containing the indices of all the
existential subconcepts that mention the role P . Then:

δ(q0, c) = (0, C0) ∧ (0, qtbox)
δ(qtbox, c) = (0, CT) ∧

∧
1≤i≤k((i, qtbox) ∨ (i, qne))

δ(qne, σne) =
∧

1≤i≤k(i, qne)
δ(A, c) = t, if A ∈ c δ(A, c) = f, if A /∈ c

δ(¬A, c) = t, if A /∈ c δ(¬A, c) = f, if A ∈ c
δ(C � C ′, c) = (0, C) ∧ (0, C ′)
δ(C � C ′, c) = (0, C) ∨ (0, C ′)

δ(∃P.C, c) =

{
(idx(∃P.C), C), if P is not functional
(idx(P), C), if P is functional

δ(∀P.C, c) =
∧

i∈all(P)((i, qne) ∨ (i, C))

where c ∈ 2C , A ∈ C, and P ∈ R
Intuitively, a run of this automaton consists of two execu-

tion threads. One, starting from the state C0, checks whether
the root of the tree is a model of the given concept; the second
one, starting from the state qtbox, checks whether the current
node is a model of CT and propagates itself to all the “real”
child nodes (those not denoted by the σne symbol).

The following result is an immediate consequence of the
classical results on the automata-theoretic approach to satisfi-
ability on modal logics and DLs (see, e.g., [Vardi and Wilke,
2007]):
Theorem 3.2. The automaton Aut(Tf , C0) accepts a tree iff
it is the tree-encoding of a canonical witness of C0 in Tf .

Hence we can reduce the problem of concept satisfiability
to an emptiness check of an ATA.

Theorem 3.3. An ALC concept C0 is satisfiable in an ALCf

TBox Tf iff L(Aut(Tf , C0)) �= ∅.

3.1 Emptiness of an Automaton

We now address the problem of efficiently checking empti-
ness of an ATA. To this aim, rather than relying on empti-
ness testing procedures known from the literature, we devise
a simple algorithm that allows for optimizations and that lies
at the core of our practical decision procedure.

Definition 3.4. We say that an ATA A = (Σ, Q, q0, k, δ) is
zero-layered if there exists a total ordering ≺ on the states
such that, for any two states q, q′ and any symbol c, if q ≺ q′

then the atom (0, q) does not appear in δ(q′, c). We say that A
is a zero-free looping tree automaton (ZFA) if the transition
function does not contain atoms whose first component is 0.

Every zero-layered ATA A = (Σ, Q, q0, k, δ) can be trans-
formed into a ZFA accepting the same language. To do so, we
define by mutual recursion a transition function δzf : Q×Σ →
PBF([1 : k] × Q), called the zero-closure of δ, and a substi-
tution σq,c, for every state q and every symbol c:

σq,c = {
(
(0, q′), δzf(q

′, c)
)
| q ≺ q′}

δzf(q, c) = δ(q, c)σq,c

Informally, the substitution σq,c collapses all the zero-
transitions involving states that follow q in the total ordering,
by repeatedly replacing every atom of the form (0, q′) with
the PBF that specifies the transition for q′ and character c.
We use δzf as the transition function of the desired ZFA.

Proposition 3.5. Let A = (Σ, Q, q0, k, δ) be a zero-layered
ATA, and Azf = (Σ, Q, q0, k, δzf). Then Azf is a ZFA and
L(Azf) = L(A).

Example 3.1. Consider the automaton A =
({0, 1}, {q0, q1, qa, qb, qh}, q0, 2, δ), where δ is defined
as follows:

δ(q0, 0) = (1, q1) ∧ (0, qa) ∧ (1, qh) ∧ (2, qh)

δ(q1, 0) = (1, q0) ∧ (0, qb)

δ(q1, 1) = (1, q0) ∧ (0, qb)

δ(qa, 0) = (2, q1)

δ(qb, 1) = (2, q2)

δ(qh, 1) = t

and the missing entries are assumed to be f.
The automaton A is zero-layered: the ordering q0 ≺ q1 ≺

qa ≺ qb is one of the possible relations satisfying the require-
ment.

The value of δzf can be derived as follows:

δzf(qh, 1) = t

δzf(qb, 1) = δ(qb, 1) = (2, q0)

δzf(qa, 0) = δ(qa, 0) = (2, q1)

δzf(q1, 0) = δ(q1, 1)[(0, qb)/(2, q0)] =

= (1, q0) ∧ (2, q0)

δzf(q1, 1) = δ(q1, 1)[(0, qb)/(2, q0)] =

= (1, q0) ∧ (2, q0)

δzf(q0, 0) = δ(q0, 0)[(0, qa)/(2, q1)] =

= (1, q1) ∧ (2, q1) ∧ (1, qh) ∧ (2, qh)

It is easy to check that the ZFA A′ =
({0, 1}, {q0, q1, qa, qb}, q0, 2, δzf) accepts the same lan-
guage as A.

The next step in our decision procedure transforms a ZFA
into an NTA by applying a variant of the subset construction.

800

We let δn : 2Q × Σ → PBF([1 : k]× 2Q) be defined as:

δn(ω, c)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t, if ω= ∅∨
Γj such that

Γj |=
∧

q∈ω δzf(q,c)

∧
(i,ωj

i)∈group(Γj)
(i, ωj

i), if ω �= ∅

where collect(Γ, i) = {q ∈ Q | (i, q) ∈ Γ},
group(Γ) = {(i, collect(Γ, i)) | i ∈ [1 : k]}.

Proposition 3.6. Let Azf = (Σ, Q, q0, k, δzf) be a ZFA, and
An = (Σ, 2Q, {q0}, k, δn). Then An is an NTA and L(An) =
L(Azf).

Intuitively, a run of An “collapses” a run of Azf : if Azf

visits a node w of the input two times, in states q and q′, An

will visit it once in the state {q, q′}. The transition function
ensures that the labeling of the successors satisfies the transi-
tion condition for both q and q′.
Example 3.2. Consider the automaton A′ obtained in Ex-
ample 3.1. We will calculate the value of δn({q1, qh}, 1) as
follows.

The models of δzf(q1, 1) ∧ δzf(qh, 1) are all the supersets
of the set {(1, q0), (2, q0)}. As a consequence, δn({q1, qh}, 1)
has the following form:

δn({q1, qh}, 1) =
∨

ω,ω′∈2Q

(1, {q0} ∪ ω) ∧ (2, {q0} ∪ ω′).

On the other hand, δzf(qh, 0) is unsatisfiable. As a conse-
quence, δzf({q1, qh}, 0) = f.

By Theorem 3.3, satisfiability of a concept C0 in an ALCf

TBox Tf can be reduced to checking non-emptiness of the
ATA Aut(Tf , C0). We observe that such an ATA is zero-
layered. To see this, we can consider the following order-
ing of its states: (i) q0 precedes every other state; (ii) qtbox
precedes every other state, except for q0; (iii) qne is pre-
ceded by every other state; (iv) for any two states C,C ′ ∈
sub(CT) ∪ sub(C0), if C ′ is a subconcept of C then C ′ ≺ C.

By virtue of this observation, and Propositions 3.5 and 3.6,
we can concentrate on the emptiness problem for NTAs.
Given an NTA An = (Σ,Ω, ω0, k, δn), let step : 2Ω → 2Ω be
the function defined as:

step(Ω′) = {ω ∈ Ω′ | ∃ω′
1, . . . , ω

′
k ∈ Ω′, c ∈ Σ.

{(i, w′
i)}1≤i≤k |= δn(ω, c)}.

Intuitively, step(Ω′) contains all the states in Ω′ that can be
satisfied by a model containing only atoms from [1 : k]×Ω′.

Let Ωfix be the greatest fixed point of step, i.e., the biggest
subset of Ω such that step(Ωfix) = Ωfix. The function step is
monotone decreasing, and by the Knaster-Tarski fixed point
theorem, the greatest fixed point Ωfix exists and can be calcu-
lated as Ωfix = step|Ω|(Ω).

The emptiness test for An then reduced to computing Ωfix

and testing whether it contains ω0. Indeed, it is possible to
show that, for every state ω′ ∈ Ωfix, one can build a tree such
that An accepts the tree when started in state ω′. By applying
this to the initial state of An we get the following result.
Theorem 3.7. Let An = (Σ,Ω, ω0, k, δn) be an NTA, and let
Ωfix be constructed as above. Then L(An) �= ∅ iff ω0 ∈ Ωfix.

Example 3.3. Consider an NTA An =
({a, b}, {ω0, ω1, ω2, ω3, ω4}, ω0, 2, δn), where the func-
tion δn is defined as follows:

δn(ω0, a) = (1, ω1) ∧ (2, ω2) ,

δn(ω1, a) = (1, ω1) ∧ (2, ω1) ,

δn(ω1, b) = (1, ω3) ,

δn(ω2, b) = (1, ω2) ∧ (2, ω2) ,

δn(ω3, a) = (1, ω4) .

and all the missing entries are equal to f.
The algorithm can proceed as follows:

Ω0 = {ω0, ω1, ω2, ω3, ω4} ,

Ω1 = step(Ω0) = {ω0, ω1, ω2, ω3} ,

Ω2 = step(Ω1) = {ω0, ω1, ω2} ,

Ω3 = step(Ω2) = {ω0, ω1, ω2} .

We have therefore reached the greatest fixpoint. The state ω0

belongs to Ωfix: according to our procedure, the language
recognized by the automaton is not empty.

Indeed, it is easy to check that An accepts the tree T =
({1, 2}∗, τ), where τ is defined as follows:

τ(ε) = a ,

τ(1 · w′) = a for every w′ ∈ {1, 2}∗ ,

τ(2 · w′) = b for every w′ ∈ {1, 2}∗ .

3.2 Complexity Considerations

Given a ALCf TBox Tf and a concept C0, the ATA
Aut(Tf , C0) is zero-layered and has a number of states that
is linear in the combined size K of Tf and C0. The zero-
elimination procedure can be performed in polynomial time,
and results in a ZFA having the same number of states as the
original ATA. The transformation of this ZFA into an NTA
results in exponential blowup of the state space.

Computing the value of step(Ω′) for a set Ω′ ⊆ Ω is
polynomial in the size of Ω′. As a consequence, computing
step|Ω|(Ω) takes time polynomial in the size of Ω, and hence
single exponential in K. We obtain therefore a procedure
for deciding the non-emptiness of an ATA whose complex-
ity is exponential in the number of states of the original ATA
Aut(Tf , C0), and hence in K.

As a consequence, by using this automata-based procedure
we can decide the satisfiability of C0 in Tf in exponential
time. This result matches the well known EXPTIME com-
plexity of the reasoning problem [Baader et al., 2007].

4 A Practical Decision Procedure

The algorithm described in the previous section has a major
drawback: it requires the NTA to be fully constructed before-
hand. This would lead to a quick exhaustion of the available
memory: e.g., in order to decide any property of a small TBox
containing 30 axioms, we would need to construct, store, and
inspect an NTA that potentially has 260 states. Since TBox
reasoning in ALC is EXPTIME-hard [Baader et al., 2007],
this exponential blowup is unavoidable. However, we can try

801

to reduce the portion of the state space that we actually in-
spect in order to obtain an answer.

Given a zero-layered ATA A = (Σ, Q, q0, k, δ), let δn be
the transition function and 2Q the state space of the NTA ob-
tained according to the procedure shown in Section 3.1. We
formulate an iterative procedure that operates on subsets of
2Q containing so-called active and dead sets of states. The
main idea can be described as follows:

• The set Dead contains sets of states that are provably not
in step2

|Q|
(2Q);

• At each step, we will move from Act to Dead those sets
of states that could be satisfied only by using sets of
states that are already in Dead;

• Next, we will add enough sets of states to Act such that
every state in (the previous value of) Act is satisfied by
sets that only contain states in Act.

More precisely, our algorithm proceeds as follows.
1. Let i = 0, Act0 = {{q0}}, and Dead0 = ∅.
2. Let Succi : Acti → (2Q)k be a function that associates

to each set of states ω ∈ Acti an (arbitrarily chosen)
k-tuple of sets of states that satisfied the following con-
ditions:
• If i > 0 and Succi−1(ω) does not contain elements

from Deadi, the k-tuple Succi−1(ω);
• otherwise, a k-tuple 	y ∈ (2Q \ Deadi)

k

such that makeSet(y) |=
∨

c∈Σ δn(ω, c), where
makeSet((ω1, . . . , ωk)) = {(1, ω1), . . . , (k, ωk)};

• If no such k-tuple exists, the special symbol ⊥.
3. Let D̃i = {ω ∈ Acti | Succi(ω) = ⊥}.
4. If q0 ∈ D̃i, return f.
5. Let Ãi = {ω′ | ω′ appears in Succi(ω), ω ∈ Acti\D̃i}.
6. Let Deadi+1 = Deadi ∪ D̃i.
7. Let Acti+1 = (Acti \ D̃i) ∪ Ãi.
8. If Acti+1 = Acti, return t.
9. Increase i and go to Step 2.
There are 2|Q| sets of states. In the worst case, they get

added to the active set one at a time, and successively moved
to the dead set one at a time. We can therefore claim:

Proposition 4.1 (Termination). The above algorithm termi-
nates after at most 2|Q|+1 iterations.

At every step i of the decision procedure, the interme-
diate results Acti and Deadi obey the following invariants:
(i) Acti ∩ Acti+1 ⊆ step(Acti+1); (ii) Deadi ∩ Ωfix = ∅.
Invariant (ii) makes it possible to terminate the algorithm as
soon as {q0} is declared dead, since we know that the answer
will be negative without the need to reach the fixpoint. Hence,
we only reach the fixpoint if {q0} is not declared dead.

Suppose the procedure terminates after j steps, i.e., Actj =
Actj+1. Invariant (i) can therefore be rewritten as Actj ⊆
step(Actj). By definition, step(Actj) ⊆ Actj ; as a conse-
quence, Actj = step(Actj) = step2

|Q|
(Actj). Since step is a

monotone increasing function and Actj ⊆ 2Q, it follows that
step2

|Q|
(Actj) ⊆ Ωfix and, therefore, Actj ⊆ Ωfix. Hence:

Theorem 4.2 (Correctness). Let A = (Σ, Q, q0, k, δ) be a
zero-layered ATA. Then L(A) �= ∅ iff the above algorithm
returns t.

4.1 Tuning the Transition Function

At each iteration of the previous algorithm, computing Succi
might require a huge number of operations on formulas of the
form

∨
c∈Σ δn(ω, c). We introduce now a different formula-

tion of the transition function that makes it easier to compute
Succi by delegating most of the work to a SAT solver.

Consider the ATA Aut(Tf , C0) = (Σ, Q, q0, k, δ), as de-
fined in Section 3. We start by noticing that, for non-atomic
concepts (existentials, universals, unions and disjunctions),
the value of the transition function does not depend on the
current symbol. For atomic and negated atomic concepts,
the value of the transition function depends on the presence
(resp., absence) of an atomic concept in the current symbol,
rather than on the “whole” symbol.

Let SPBF([1 : k] × Q, C) be the language of the (semi-
positive) boolean formulas built over the symbols from [1 :
k] × Q ∪ C, with the additional constraints that only atoms
from C are allowed to appear under the scope of a negation
operator. We use these formulas to model the transition func-
tion in a more succinct form, by removing the redundancies
described above. Let Δ : Q → SPBF([1 : k] × Q, C) be a
function defined as follows:

Δ(q0) = Δ(qtbox) ∧Δ(C0) Δ(qne) = f
Δ(qtbox) = Δ(CT) ∧

∧
i∈[1:k]((i, qtbox) ∨ (i, qne))

Δ(C � C ′) = Δ(C) ∧Δ(C ′) Δ(A) = A
Δ(C � C ′) = Δ(C) ∨Δ(C ′) Δ(¬A) = ¬A

Δ(∃P.C) =

{
(idx(∃P.C), C), if P is not functional
(idx(P), C), if P is functional

Δ(∀P.C) =
∧

i∈all(P)((i, qne) ∨ (i, C))

Let Δ̂ : 2Q → SPBF([1 : k] × Q, C) be the function such
that Δ̂({qne}) = t, and Δ̂(ω) =

∧
q∈ω Δ(q) for ω �= {qne}.

Let An = (Σ, 2Q, {q0}, k, δn) be the NTA derived from
Aut(T , C0) by applying the zero-elimination procedure and
the subset construction, as described in Section 3.1. For every
symbol c ∈ 2C , let ξ(c) be the substitution that maps every
symbol A ∈ c to t and every other symbol in C \ c to f.
Theorem 4.3. Let δzf be the zero-closure of δ. For every state
q ∈ Q and every symbol c ∈ 2C , δzf(q, c) = Δ(q)ξ(c).

We can observe that, for any set of states ω ∈ 2Q and any
symbol c ∈ 2C , a set Γ′ ⊆ [1 : k]× 2Q models δn(ω, c) iff
the set Γ = group−1(Γ′) models the formula Δ(ω)ξ(c). A
simple argument shows that, for any set of states ω ∈ 2Q,
a set Γ′ ⊆ [1 : k]× 2Q models the formula

∨
c∈Σ δn(ω, c) iff

there exists a symbol c′ such that the set {c′} ∪ group−1(Γ′)

models the formula Δ̂(ω).
This property of Δ̂ makes it possible to skip the ex-

plicit computation of the function δn. In order to calculate
Succi(ω), the reasoner can therefore proceed as follows:

1. Let E = ∅;
2. Find a set Y /∈ E such that Y |= Δ̂(ω);
3. If no such set exists, then Succi(ω) = ⊥;
4. Let ΩY = {

⋃
{ω | (j, ω) ∈ Y } | j ∈ [1 : k]};

5. If ΩY ∩ Deadi = ∅, then Succi(ω) = Y ;
6. Otherwise, let E = E ∪ {Y } and return to step 2.

The second step can be delegated to a SAT solver — a soft-
ware tool that, given a propositional formula, sequentially

802

produces all its models. While being worst-case exponential
(they have to solve a NP-complete problem on a deterministic
machine), SAT solvers are able to efficiently handle formulas
containing thousands of variables.

Our formulas include a number of variables that is at most
linear in the size of the inputs (T , C0), often much smaller.
Hence, by using a SAT solver to handle this part of the prob-
lem, we can take advantage of decades of research and opti-
mization and obtain a good level of performance.

5 Experimental Evaluation

The TREEHUG reasoner implements the decision procedure
described in Section 4, with some simple optimizations.

The core of the reasoner is written in Scala, a language
that integrates features of object-oriented and functional pro-
gramming, and that interfaces seamlessly with Java. The
work of calculating models for Δ̂ is delegated to the MiniSAT
SAT solver [Eén and Sörensson, 2003]. MiniSAT is based
on the DPLL algorithm [Davis et al., 1962], with many en-
hancements to the handling of several commonly occurring
patterns. The interface between these two components is a
custom-built JNI library written in C++, that creates, man-
ages and wraps MiniSAT instances. The resulting decoupling
between the reasoner and the SAT solver makes it possible to
switch to a different SAT library, and enables us to take ad-
vantage of low-level operations to speed up some tasks (e.g.,
feeding a large formula to the solver).

The system accepts TBoxes and concept expressions writ-
ten in the Manchester syntax, the OWL 2 Functional Syn-
tax and the KRSS syntax 1. The values of Δ̂ are computed
lazily (only when necessary), and directly in CNF. New in-
stances of MiniSAT are spawned as necessary, fed with the
clauses and polled for satisfying assignments, which get pro-
cessed (as shown in the previous section) to calculate the suc-
cessor sets Succi. The set of active states is monitored by a
reference-counting garbage collection system, which gets rid
of failed computation branches and decreases the amount of
work done for each iteration.

5.1 Benchmarks

The reasoning algorithm proposed in this work has an un-
avoidably high worst-case complexity. The hope is, however,
that the system performs well in realistic applications, in line
with what holds for other DL reasoners [Baader et al., 2007].
To verify this claim, however, we would have to test the per-
formance of the system with a wide range of ‘real-world’
ontologies, similarly to the approach taken in [Gardiner et
al., 2006]. Within the limitations of the current prototype,
though, this approach is not yet feasible. As a consequence
we have opted for a set of synthetic benchmarks taken from
the DL’98 System Comparison session, which were formu-
lated to test systems which were in a similar stage of devel-
opment as our prototype. We ran our tests on a 2.4 GHz Intel
Core 2 Duo with 4 GB of RAM, running Mac OS X 10.6.
As it is much faster than the one on which FaCT was tested
in 1998, we have reduced the maximum running time for our
prototype to 10 seconds instead of the original 100 seconds.

1http://www.w3.org/TR/owl2-overview/

Problem TREEHUG FaCT 1.5
class Unsat Sat Unsat Sat
branch 11 11 6 4
d4 21 8 21 8
dum 21 21 21 21
grz 21 16 21 21
lin 6 21 21 21
path 21 21 8 6
ph 5 6 6 7
poly 21 21 21 21
t4p 21 21 21 21
Total 148 146 146 130

Table 2: Benchmark results from the T98-SAT track of the
DL’98 System Comparison session. Each class comprises 21
satisfiable and 21 unsatisfiable problem instances. The num-
bers show how many problem instances were solved by our
prototype and by FaCT 1.5, the version tested for DL’98.

0

10000

20000

30000

40000

0 150 300 450 600 750 900

Ti
me

 (m
s)

TBox size (# of axioms)

Figure 1: Synthetic benchmark results. The dashed line
shows the unsatisfiable version.

The results show that the performance of our prototype is
comparable to, and often better than, that of FaCT, whose
development was arguably at a more advanced stage.

In addition to the DL’98 benchmarks, we have also devel-
oped a battery of synthetic benchmarks aimed at checking the
scalability of TREEHUG. In these tests we used small “mod-
ules” of three axioms to build a TBox of an arbitrary size,
and asked TREEHUG to check the satisfiability of a concept
within a given TBox. Specifically, let T be a TBox containing
assertions of the following form:

Ci � (Di � Ei) � ∃S.Ci+1

Di � ∃R.Ci+1 Ei � ∀R.¬Ci+1

for every i ∈ [1 : k]. Let T ′ = T ∪ {Cn+1 � ⊥}. We ask
TREEHUG to check whether the concept C1 is satisfiable in
T (which is true) and in T ′ (which is false). The results we
have obtained are shown in Figure 1.

6 Conclusions

In this work we have described a new automata-based tech-
nique for reasoning in expressive DLs. The resulting algo-
rithm can decide the consistence of a concept in a TBox in
exponential time, and is thus worst-case optimal. More re-
markably, unlike previous automata based approaches, our
algorithm seems well suited for implementation: we have

803

indeed developed a prototype reasoner, and its experimental
evaluation reveals promising results.

Our approach can be extended to cover a wider range of
DLs, beyond ALCf . In particular, it is possible to use this
approach to handle any DL for which reasoning can be re-
duced to testing emptiness of looping tree automata: this in-
cludes languages up to SHIQ, but excludes constructs such
as regular roles. It does not seem feasible to adapt this algo-
rithm for DLs with nominals, since they break the tree model
property on which automata-theoretic approaches rely. On
the other hand, we could extend our technique also to reason
in the presence of ABoxes, e.g., by using an encoding of the
ABox similar to the one presented in [Calvanese et al., 2007].
The actual efficiency of the algorithm in this scenario remains
to be evaluated.

Our prototype is still in the initial development phase, and
its performance lags behind that of other established and
highly optimized DL reasoners. Still, it gives a first positive
answer to the long-standing open question of the practical ap-
plicability of techniques based on automata on infinite trees
to reasoning in expressive DLs.

References

[Baader and Sattler, 2001] Franz Baader and Ulrike Sattler.
An overview of tableau algorithms for description logics.
Studia Logica, 69(1):5–40, 2001.

[Baader and Tobies, 2001] Franz Baader and Stephan To-
bies. The inverse method implements the automata ap-
proach for modal satisfiability. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), pages 92–
106, 2001.

[Baader et al., 2007] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2nd edition, 2007.

[Calvanese et al., 2002] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. 2ATAs make DLs easy.
In Proc. of the 15th Int. Workshop on Description Logic
(DL 2002), volume 53 of CEUR, http://ceur-ws.
org/, pages 107–118, 2002.

[Calvanese et al., 2007] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Answering regular path queries in ex-
pressive description logics: An automata-theoretic ap-
proach. In Proc. of the 22nd AAAI Conf. on Artificial In-
telligence (AAAI 2007), pages 391–396, 2007.

[Carbotta, 2010] Domenico Carbotta. A practical automata-
based technique for reasoning in expressive description
logics. Master’s thesis, Fakultät für Informatik, Technis-
che Universität Wien, October 2010. Available at http:
//www.emcl-study.eu/graduates.html.

[Davis et al., 1962] M. Davis, G. Logemann, and D. Love-
land. A machine program for theorem proving. Commu-
nications of the ACM, 5:394–397, 1962.

[De Giacomo and Lenzerini, 1994] Giuseppe De Giacomo
and Maurizio Lenzerini. Boosting the correspondence be-

tween description logics and propositional dynamic logics.
In Proc. of the 12th Nat. Conf. on Artificial Intelligence
(AAAI’94), pages 205–212, 1994.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. An extensible SAT-solver. In Proc. of
the 6th Int. Conf. on Theory and Applications of Satisfia-
bility Testing (SAT 2003), volume 2919 of LNCS, pages
502–518. Springer, 2003.

[Gardiner et al., 2006] Tom Gardiner, Ian Horrocks, and
Dmitry Tsarkov. Automated benchmarking of descrip-
tion logic reasoners. In Proc. of the 19th Int. Workshop
on Description Logic (DL 2006), volume 189 of CEUR,
http://ceur-ws.org/, 2006.

[Hustadt et al., 2008] Ullrich Hustadt, Boris Motik, and Ul-
rike Sattler. Deciding expressive description logics in the
framework of resolution. Information and Computation,
206(5):579–601, 2008.

[Motik et al., 2009] Boris Motik, Rob Shearer, and Ian Hor-
rocks. Hypertableau reasoning for description logics. J. of
Artificial Intelligence Research, 36:165–228, 2009.

[Shearer et al., 2008] Rob Shearer, Boris Motik, and Ian
Horrocks. HermiT: A highly-efficient OWL reasoner. In
Proc. of the 5th Int. Workshop on OWL: Experiences and
Directions (OWLED 2008), volume 432 of CEUR, http:
//ceur-ws.org/, 2008.

[Sirin and Parsia, 2006] Evren Sirin and Bijan Parsia. Pel-
let system description. In Proc. of the 19th Int. Workshop
on Description Logic (DL 2006), volume 189 of CEUR,
http://ceur-ws.org/, 2006.

[Tobies, 2001] Stephan Tobies. Complexity Results and
Practical Algorithms for Logics in Knowledge Represen-
tation. PhD thesis, LuFG Theoretical Computer Science,
RWTH-Aachen, Germany, 2001.

[Tsarkov and Horrocks, 2006] Dmitry Tsarkov and Ian Hor-
rocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the 3rd Int. Joint Conf. on Automated
Reasoning (IJCAR 2006), pages 292–297, 2006.

[Vardi and Wilke, 2007] Moshe Vardi and Thomas Wilke.
Automata: From logics to algorithms. In Proc. of the Au-
tomata and Logic Workshop (WAL 2007), pages 645–753,
December 2007.

[Vardi, 1997] Moshe Y. Vardi. Why is modal logic so ro-
bustly decidable. In DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, volume 31,
pages 149–184. American Mathematical Society, 1997.

[Vardi, 1998] Moshe Y. Vardi. Reasoning about the past with
two-way automata. In Proc. of the 25th Int. Coll. on Au-
tomata, Languages and Programming (ICALP’98), vol-
ume 1443 of LNCS, pages 628–641. Springer, 1998.

[Voronkov, 2001] Andrei Voronkov. How to optimize proof-
search in modal logics: New methods of proving redun-
dancy criteria for sequent calculi. ACM Trans. on Compu-
tational Logic, 2(2):182–215, 2001.

804

