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Abstract
Defeasible inheritance networks are a non-
monotonic framework that deals with hierarchical
knowledge. On the other hand, rational closure is
acknowledged as a landmark of the preferential
approach. We will combine these two approaches
and define a new non-monotonic closure operation
for propositional knowledge bases that combines
the advantages of both. Then we redefine such
a procedure for Description Logics, a family of
logics well-suited to model structured information.
In both cases we will provide a simple reason-
ing method that is build on top of the classical
entailment relation.

1 Introduction
The notion of rational closure [Lehmann and Magidor, 1992]
is acknowledged as a landmark for non-monotonic reasoning
due to its logical properties, but has limited inference capa-
bilities; e.g. an exceptional class will not inherit any of the
typical properties from its superclass: penguins are atypical
non-flying birds, but still have wings, a typical property of the
birds, but under rational closure we may not infer that pen-
guins have wings. On the other hand, Defeasible Inheritance
Networks (INs, for short, see e.g. [Horty, 1994]) are a non-
monotonic framework appropriate for hierarchical knowledge
that does not have this limitation, but exhibit questionable
logical properties (see Section 6).

We combine these two approaches and define a new non-
monotonic closure operation for propositional knowledge
bases that combines the advantages of both and we apply such
a method to Description Logics [Baader et al., 2003] (DLs),
a formalism well-suited to model structured information.
Contributions and Roadmap. (i) We propose a new method
to reason on INs relying on a procedure for rational closure,
and we use it to propose a boolean extension of them, called
Boolean defeasible Inheritance Networks (BINs, Section 3);
(ii) using BINs, we develop a defeasible inheritance-based
propositional logic (Section 4); and (iii) we apply the latter
to the case of defeasible inheritance-based description logics
(Section 5). A major feature is that (iv) for propositional logic
and DLs we still maintain all desired logical properties of ra-
tional closure; and (v) our method does uniquely require the

existence of a decision procedure of classical entailment and,
thus, can be implemented on top of exiting propositional SAT
solvers and DL reasoners.
Related Work. Several non-monotonic DLs exists,
e.g. [Baader and Hollunder, 1993; Bonatti et al., 2009;
Brewka, 1987; Britz et al., 2008; Casini and Straccia, 2010;
Donini et al., 2002; Giordano et al., 2009a; 2009b; Grimm
and Hitzler, 2009; Quantz and Royer, 1992; Straccia, 1993],
which integrate several kind of non-monotonic reasoning
mechanism into DLs. Somewhat related to our proposal
are [Britz et al., 2008; Giordano et al., 2009a; Casini and
Straccia, 2010; Straccia, 1993], as they address the applica-
tion of the preferential methods into the DL framework, but,
they do not refer to rational closure (except [Casini and Strac-
cia, 2010]), and do not modify it in order to increase its infer-
ential power.

2 Preliminaries
For completeness, we start with some basic notions of INs
and propositional rational closure we will rely on.
Defeasible inheritance networks. In INs ([Horty, 1994;
Sandewall, 2010]), there are classes, a strict subsumption re-
lation among classes and a defeasible subsumption relation.
The method used to define the inferences that are permitted
is based on the notion of preemption that allows to identify
paths, i.e. sequences of subsumption relationships, that are
valid in the given inheritance network. Sceptical approaches
define one single extension of valid paths, while credulous
approaches define a set of permitted extensions. We recap
that preemption is a procedure that, given two conflicting
paths, allows to choose the one resting on more specific in-
formation, invalidating the other. Using the notions of path
and preemption, [Horty, 1994] defines an iterative construc-
tion of a sceptical extension of a net, which we do not present
here (see [Horty, 1994], Sections 2 and 3). Instead, we will
introduce the notions strictly required for our purpose only.

An IN is a pair N = 〈S,D〉, where S is a set of strict
links, while D is a set of defeasible links. Every link in N is
said a direct link, and it can be strict or defeasible, positive
or negative: specifically (i) p ⇒ q: class p is subsumed by
class q [positive strict link]; (ii) p �⇔ q: class p and class q are
disjoint [negative strict link]; (iii) p → q: an element of the
class p is usually an element of the class q [positive defeasible
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link]; (iv) p �→ q: an element of the class p is usually not an
element of the class q [negative defeasible link].

The non-monotone entailment relation establishing which
links are entailed by a network N , indicated with p �N q, for
� ∈ {⇒, �⇔,→, �→}, is defined as whether p �N q is in the
sceptical extension of N according to [Horty, 1994, Defini-
tion 3.3.2].

Example 2.1 The ‘penguin’ example can be represented e.g. as 1

N = 〈{p ⇒ b}, {p �→ f, b → f, b → w}〉. Now, following Horty’s
approach, p ⇒N b, p �→N f, p →N w, b →N f, b →N w hold.

Propositional Rational Closure. INs do not satisfy some
fundamental logical properties, presented below, such as
(CM) and (CT) [Makinson, 1994], that are desirable struc-
tural properties for nonmonotonic consequence relations, and
that are satisfied by rational closure. We recap here the rea-
soning algorithm of rational closure described in [Casini and
Straccia, 2010], since our method will rely on it.

So, consider a classical propositional language. 2 We repre-
sent consequential information by means of 	 and |∼; Γ 	 C
and Γ|∼C will be called, respectively, strict and defeasible se-
quents (Γ is a finite set of propositions), that have to be read
as ‘If Γ, then necessarily C’ and ‘If Γ, then typically C’. A
conditional knowledge base is a pair 〈T ,B〉, where T is a set
of strict sequents C 	 D, and B is a set of defeasible sequents
C|∼D.

Example 2.2 Example 2.1 can be encoded as: K = 〈T ,B〉 with
T = {p � b} and B = {p|∼¬f, b|∼f, b|∼w}.

Another way to formalize defeasible information may be
based on the default-assumption approach, where a default
knowledge base is a pair 〈Φ,Δ〉, where Φ and Δ are sets of
formulae representing respectively what the agent considers
as necessarily true and as typically true.

Example 2.3 Example 2.1 could be encoded, for example, as:
K = 〈Φ,Δ〉 with Φ = {p ⊃ b} and Δ = {b ⊃ f, p ⊃ ¬f, b ⊃ w}.

A consequence relation |∼ is rational iff it satisfies the
properties below (see e.g. [Makinson, 1994]):

(REF) C|∼C Reflexivity

(CT)
C|∼D C ∧ D|∼F

C|∼F
Cut (Cumulative Trans.)

(CM)
C|∼D C|∼F

C ∧ D|∼F
Cautious Monotony

(LLE)
C|∼F |= C ≡ D

D|∼F
Left Logical Equivalence

(RW)
C|∼D D |= F

C|∼F
Right Weakening

(OR)
C|∼F D|∼F

C ∨ D|∼F
Left Disjunction

(RM)
C|∼F C �|∼¬D

C ∧ D|∼F
Rational Monotony

Now, consider B = {C1|∼E1, . . . , Cn|∼En}. We say that a
sequent C|∼D is in the rational closure R(B) iff it is included
in a particular rational consequence relation containing B and

1Read b as ‘Bird’, p as ‘Penguin’, f as ‘Flying’ and w as ’Wings’
2With connectives ¬,∧,∨,⊃, sentences C,D,E . . ., set of sen-

tences Γ,Δ, . . ., � and ⊥ with usual meaning of “true” and “false”
and classical consequence relation �.

defined as in [Lehmann and Magidor, 1992] (as the rule (RM)
has a non-Horn form, there could be more than one rational
consequence relations containing B). For a set of formulae Γ,
we will write Γ|∼rc

B D iff
∧

Γ|∼D ∈ R(B).
We recap now briefly the procedure in [Casini and Straccia,

2010] that decides defeasible consequence via a mapping of
a conditional knowledge base into a default knowledge base
(we transform a KB of the kind of the one in Example 2.2
into a KB of the kind in Example 2.3).
Step 1. Transform 〈T ,B〉 into 〈∅,B′〉, where B′ = B ∪ {C ∧

¬D|∼⊥ | C � D ∈ T }.

Step 2. Define ΓB′ = {C ⊃ D | C|∼D ∈ B′} and AB′ = {C |
C|∼D ∈ B′}.

Step 3. Define an exceptionality ranking of the formulae and the
sequents with respect to B′ as follows.

Step 3.1. Given a set of sequents D, define a formula C as
exceptional w.r.t.D iff ΓD � ¬C. Consider E(AD) =
{C ∈ AD | ΓD � ¬C} and E(D) = {C|∼D ∈ D |
C ∈ E(AD)}. Obviously, for every D, E(D) ⊆ D.

Step 3.2. Construct iteratively a sequence E0, E1 . . .: E0 =
B′, Ei+1 = E(Ei) (as B′ is a finite set, the construc-
tion always terminates with En = ∅ or a fixed point of
E, a totally exceptional set of sequents, such that all its
antecedents are negated).

Step 3.3. Define now a ranking function r that associates to
every sequent in B′ its level of exceptionality:

r(C|∼D) =

{
i if C|∼D ∈ Ei and C|∼D /∈ Ei+1

∞ if C|∼D ∈ Ei for every i .

Step 4. Now,

Step 4.1. Define B′ inconsistent iff ΓB′ |= ⊥.

Step 4.2. If B′ is consistent, define the background theory T̃
as T̃ = {� � ¬C | C|∼D ∈ B′ and r(C|∼D) = ∞}
(one may verify that, modulo logical equivalence, T ⊆
T̃ ).

Step 4.3. Define B̃ = {C|∼D ∈ B′ | r(C|∼D) < ∞} (one
may verify that B̃ ⊆ B). 3

Step 5. Now build the default-assumption characterization 〈Φ̃, Δ̃〉
of the rational closure of 〈T̃ , B̃〉 as Φ̃ = {C | � � C ∈ T̃ }
and Δ̃ = {δ0, . . . , δn}, with δi =

∧
{C ⊃ D | C|∼D ∈ B̃

and r(C|∼D) ≥ i}. Note that δi |= δi+1, for 0 ≤ i < n.

Step 6. Now, it has been proven (see [Casini and Straccia, 2010])
that using the following knowledge base transformations

〈T ,B〉� 〈∅,B′〉� 〈T̃ , B̃〉� 〈Φ̃, Δ̃〉 , (∗∗)

we can characterize the rational closure of 〈T ,B〉 via 〈Φ̃, Δ̃〉
as Γ|∼rc

〈T ,B〉D iff Γ∪Φ̃∪{δi} � D, with δi being the first (Γ∪
Φ̃)-consistent formula of the ordered sequence 〈δ0, . . . , δn〉.

So, we have a simple method to decide defeasible conse-
quence under rational closure. Given a defeasible knowledge
base 〈T ,B〉, certain facts Γ and a formula D,

3We recap: we have started with 〈T ,B〉 and now we have an
equivalent characterization 〈T̃ , B̃〉, that differs from the former one
because the background theory and the defeasible information are
correctly distinguished. Moreover, we have a rank value for every
sequent in B̃.
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1. Once for all, apply to 〈T ,B〉 the transformations (∗∗) to obtain
the defeasible knowledge base 〈Φ̃, Δ̃〉;

2. Given Γ, determine δi as the first (Γ ∪ Φ̃)-consistent formula
of the sequence 〈δ0, . . . , δn〉.

3. Then decide if D follows under rational closure from Γ
w.r.t. 〈T ,B〉 by determining whether Γ ∪ Φ̃ ∪ {δi} � D.

Example 2.4 Consider Example 2.2. It can be verified that, under
rational closure, penguins are non-flying birds and birds fly and have
wings.

Remark 1 Consider Example 2.4. It would be intuitive also to con-
clude that penguins have wings. But the main problem with every
preferential approach is that a class that is recognized as atypical
(penguins are birds, but they don’t fly), loses the ‘right’ to inherit all
the other typical characteristics of their superclasses and, thus, we
are not allowed to conclude that penguins have wings. On the other
hand, note that INs manage successfully this kind of problems.

3 Boolean defeasible inheritance networks
3.1 Exceptionality levels in inheritance nets
Our first aim is to apply a modified version of our decision
procedure for rational closure to inheritance nets.

For whole Section 3 we will assume that the strict part of a
net N = 〈S,D〉 is closed, that is, if p ⇒N q then p ⇒ q ∈
S. 4 In what follows, paths containing repetitions of links are
disallowed. The omission of repetitions is to have finite paths
even if the net contains “cycles”. Now, p ⇒N q if there is a
valid strict path from p to q, whose definition is as follows:5
(i) every strict positive (negative) link in S is a valid positive
(negative) path; (ii) if π = 〈t, σ, p〉 is a valid positive path,
then for p ⇒ q ∈ S , 〈π, q〉 is a valid strict positive path,
while for p �⇔ q ∈ S , 〈π, q〉 is a valid strict negative path; (iii)
if π = 〈t, σ, p〉 is a valid negative path, then for q ⇒ p ∈ S ,
〈π, q〉 is a valid strict negative path.

Now, we define courses. Roughly, courses are simply
routes on the net following the direction of the arrows, with-
out considering if each of them is a positive or a negative
arrow. Courses are defined as follows (where � ∈ {⇒, �⇔,→
, �→}): (i) every link p � q in N is a course π = 〈p, q〉 in N ;
and (ii) if π = 〈σ, q〉 is a course and q � r is a link in N that
does not already appear in π, then π′ = 〈π, r〉 is a course in
N . Note that there is only a finite set CN of courses, and ev-
ery course is a finite sequence of nodes. We denote with CN

p,q
the set of all the courses in N going from node p to the node
q, i.e. CN

p,q = {σ ∈ CN | σ = 〈p, σ′, q〉 for some σ′}.
We next provide a procedure that defines the validity of a

defeasible link p � q via a mapping to propositional logic.
So, given a net N = 〈S,D〉, we define a correspondent
knowledge base KN = 〈ΦN ,ΔN 〉, where ΦN = {p ⊃
q | p ⇒ q ∈ S} ∪ {p ⊃ ¬q | p �⇔ q ∈ S} and
ΔN = {p ⊃ q | p → q ∈ D} ∪ {p ⊃ ¬q | p �→ q ∈ D}.
In the following, we may omit N if clear from context. We

4The assumption is made only for the simplicity of the exposi-
tion. It becomes unnecessary once we work with the procedure we
are going to define for propositional logic.

5We use Greek letters to denote paths, which are denoted as a
tuple of nodes: e.g., π = 〈p, σ, q〉 indicates that the path π starts
from the node p, passes through the path σ, and ends with node q.

define an ‘exceptionality ranking’ of the nodes, that depends
on the decision problem of the validity of p�q only.6 So, let 7

Δp,q = {r ⊃ t | r → t ∈ σ, σ ∈ Cp,q}∪
{r ⊃ ¬t | r �→ t ∈ σ, σ ∈ Cp,q} ,

and consider the set of relative antecedents (l literal)

Ap,q = {a | a ⊃ l ∈ Φ ∪Δp,q} .

�Φ will denote the classical entailment relation obtained
adding to � the set of propositional formulae Φ as extra ax-
ioms, while |∼N will indicate the consequence relation for the
defeasible part, that is, ‘p|∼N q’ has to be read as ‘a member
of the class p is typically also a member of the class q’ in N .
Analogously for ‘p|∼N¬q’ in the negative case.
Now, we define the notions of strict (	N ) and defeasible
(|∼N ) consequence in N . At first, consider case Δp,q = ∅:
if p �Φ q (p �Φ ¬q), then we say p 	N q (p 	N ¬q), i.e. q
(¬q) follows strictly from p in N . Now, consider the case
Δp,q �= ∅. We use now Φ and Δp,q to determine the ‘excep-
tionality level’ (compare with Step 3.2. of previous section):

E(Ap,q) = {a ∈ Ap,q | Δp,q �Φ ¬a}
E(Δp,q) = {a ⊃ b ∈ Δp,q | a ∈ E(Ap,q)} .

Therefore, like Step 3.3. of Section 2, we build a sequence
α0 = Ap,q , αi = E(αi−1), and the corresponding sequence
E0 = Δp,q , Ei = E(Ei−1). 8 Define now a ranking function
r (like Step 3.3) that associates to every node and implication
in Δp,q a number, representing its level of exceptionality:

rp,q(a) = i if a ∈ αi and a /∈ αi+1

rp,q(a ⊃ b) = i if a ⊃ b ∈ Ei and a ⊃ b /∈ Ei+1

rp,q(a) = ∞ if a ∈ αi for all i .

We now consider the set Δ̂p,q of the implications a ⊃ b ∈
Δp,q that are at least as exceptional as p,

Δ̂p,q = {a ⊃ b ∈ Δp,q | r(a ⊃ b) ≥ r(p)} ,

and eventually define

p|∼N q iff Δ̂p,q �Φ p ⊃ q

p|∼N¬q iff Δ̂p,q �Φ p ⊃ ¬q .

So, given N = 〈S,D〉 and a pair of nodes 〈p, q〉, our infer-
ence procedure for INs can be summarised as follows:

1. Determine the set Cp,q of the courses in N connecting p to q,
map the links in S and Cp,q into the sets of implications Φ and
Δp,q , define the set Ap,q of the antecedents of the implications
in Φ ∪Δp,q .

2. Determine the ranking value of every proposition in Ap,q and
every implication in Δp,q . Define the set Δ̂p,q of the implica-
tions that are at least as exceptional as p.

6A main difference w.r.t. the procedure for rational closure.
While there we rank all the information in the KB at once, here we
rank only the information related to the connection we are interested
in, between p and q.

7Here, e.g.r → t ∈ σ means that r → t occurs in the course.
8Since Ap,q , Δp,q are finite, and αi+1 ⊆ αi and Ei+1 ⊆ Ei for

every i, the sequences can terminate either with an empty set or with
a stable set (a fixed point of the function E), as in Section 2.
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3. Then decide p|∼N q (p|∼N¬q) by determining whether
Δ̂p,q �Φ p ⊃ q (Δ̂p,q �Φ p ⊃ ¬q).

Note that we rely on a decision procedure for � only.
The example below illustrates the behaviour of our method.

Example 3.1 Consider Example 2.1 with additional links t ⇒ b
and t ⇒ p (read t as ’tweety’). We translate the net into the follow-
ing knowledge base K = 〈Φ,Δ〉, where Φ = {t ⊃ b, t ⊃ p, p ⊃ b}
and Δ = {p ⊃ ¬f, b ⊃ f, b ⊃ w}. Suppose now, we want to
decide if t is connected to f (i.e., Tweety flies). We have Δt,f =
{p ⊃ ¬f, b ⊃ f}, At,f = {t, b, p}, Δt,f �Φ ¬p and Δt,f �Φ ¬t;
thus, r(b ⊃ f) = 0 and r(p ⊃ ¬f) = 1 = r(t) follow. So,
Δ̂t,f = {p ⊃ ¬f} and, as Δ̂t,f �Φ t ⊃ ¬f , we have t|∼N¬f ,
as expected. As next, we ask if t is connected to w (i.e., Tweety
has wings). Now, we have to consider Δt,w = {b ⊃ w}, with
At,w = {t, b, p}. As Δt,w does not imply the negation of any of the
members of At,w, we have r(b ⊃ w) = 0 = r(t) and Δ̂t,w = Δt,w.
As Δ̂t,w �Φ t ⊃ w, we have t|∼Nw, as expected.

3.2 Boolean inheritance nets
We next extend INs by allowing any classical propositional
connective in them. Despite such an extension has been felt
as desirable, we are aware of just an attempt in this direc-
tion [Horty and Thomason, 1990].

So far, p �⇔ q has logical meaning p ⊃ ¬q. We change the
notation and indicate with p ⇔¬ q that ‘class p and class q
are complementary’. With p we indicate the complementary
class of a class p, and assume that for any node p, we have
p ⇔¬ p̄ in the net as well. Hence, we can substitute p �⇔ q
with the four links p ⇔¬ p, q ⇔¬ q, p ⇒ q, and q ⇒ p,
and analogously, we can substitute p �→ q with p → q. So,
we can transform an IN into an equivalent net using only the
arrows →, ⇒, and ⇔¬. We shall continue to use �⇔ as a
macro indicating negative strict valid connections obtained
from the composition of ⇔¬ and ⇒ (and, since we assume
that the strict part S of a net to be closed, we shall have in it
also �⇔-links).

Next, we extend inheritance nets to support conjunction
and disjunction as well, by allowing links a, b ⇔∧ c (con-
junction of a and b is equivalent to c) and a, b ⇔∨ c (disjunc-
tion of a and b is equivalent to c). We will assume that inheri-
tance nets containing such kind of links are closed according
to the following rule: if there is a, b ⇔∧ c (resp. a, b ⇔∨ c)
in a net, then there are also c ⇒ a and c ⇒ b (resp. a ⇒ c
and b ⇒ c) in the net. We call these nets Boolean Defeasible
Inheritance Networks (BINs). We denote with a⊗ b (a⊕ b) a
node representing the conjunction (disjunction) of a and b.

We extend now our reasoning method to BINs. To do so,
we introduce the notion of duct, that is a generalization of the
notion of course. Roughly, π = 〈s, σ

σ′ , t〉 will indicate a duct
π that starts at node s and develops through the ducts σ and
σ′, both reaching the node t. Formally, ducts are defined as
follows (where � ∈ {⇒,⇔¬, �⇔,→}): (i) every link p � q in
N is a duct π = 〈p, q〉 in N ; (ii) if π = 〈σ, q〉 is a duct and
q � r is a link in N that does not already appear in π, then
π′ = 〈π, r〉 is a duct in N ; (iii) if 〈t, σ, p〉 and 〈r, σ′, p〉 are
ducts, then for s ⇔∨ t, r ∈ S , 〈s, t,σ

r,σ′ , p〉 is a duct; and (iv)
if 〈p, σ, t〉 and 〈p, σ′, r〉 are ducts, then for t, r ⇔∧ s ∈ S ,
〈p, σ,t

σ′,r , s〉 is a duct.

Now our reasoning method for BINs is as follows. Con-
sider N = 〈S,D〉, define a correspondent knowledge base
K = 〈Φ,Δ〉, where Φ = {p ⊃ q | p ⇒ q ∈ S} ∪ {p ≡
¬q | p ⇔¬ q ∈ S} ∪ {p ≡ q ∧ r | q, r ⇔∧ p ∈ S} ∪ {p ≡
q ∨ r | p ⇔∨ q, r ∈ S} and Δ = {p ⊃ q | p → q ∈ D} and
proceed for the definition of |∼N as for Section 3.1 in which
CN is now defined as the set of the ducts, and CN

p,q (or simply
Cp,q) is defined as the set of the ducts from p to q.

Example 3.2 Consider a net N that has been mapped into the KB
K = 〈Φ,Δ〉, where Φ = {c ∧ d ≡ g, f ≡ ¬g} 9 and Δ = {a ⊃
b, b ⊃ c, b ⊃ d, a ⊃ f}. Is a connected to c? It can be verified that
Δa,c = {a ⊃ b, b ⊃ c, b ⊃ d, a ⊃ f}. Note that b ⊃ d ∈ Δa,c,
as there is a duct from a to c that passes through c and d in order to
reach g, and then back towards c. Now, the only negated antecedent
is a (Δa,c � ¬a) and, thus, Δ̂a,c = {a ⊃ b, a ⊃ f}. Since
Δ̂a,c ��Φ a ⊃ c and Δ̂a,c ��Φ a ⊃ ¬c, we have a�|∼N c and a�|∼N¬c.
In a similar way, we may show that a�|∼Nd and a�|∼N¬d. This is the
desirable result: since a → f is a direct link, we have that a|∼N f
(a|∼N¬(c ∧ d)), from which we can concluded neither a|∼N c nor
a|∼Nd. The result of our ‘sceptical’ approach is then that a�|∼N c,
a�|∼N¬c, a�|∼Nd, and a�|∼N¬d.

4 Defeasible inheritance in propositional logic
Now, we depart from BINs and apply a similar reasoning pro-
cedure using the full expressivity of propositional logic and
show how to obtain a form of closure of a knowledge base that
corresponds to a rational consequence relation that refines the
classical rational closure, as defined in [Lehmann and Magi-
dor, 1992]. So, consider a conditional KB K = 〈T ,B〉 (see
Section 2). We proceed as follows:

Step 1. construct a BIN from K, i.e. we define a net NK =
〈SK,DK〉, modeling the information in K: (i) for every for-
mula C that appears as antecedent or as succedent in the se-
quents in K we create a correspondent node C representing
the class of the formulas that are logically equivalent to C.
For every such node we add also, if not already present, the
complementary node, linking them by ⇔¬. We add the other
links: if C � D ∈ T we add the strict link C ⇒ D to the
net, and we also add to SK all the strict links that correspond
to the logical dependencies between the formulae represented
by the nodes (considering also the information contained in T ,
that is, the arrow ⇒ will represent in the net the monotonic
consequence relation obtained adding to � the sequents in T
as extra-axioms); and (ii) for C|∼D ∈ B, we add a defeasible
link → from node C to node D.10

Step 2. apply the reasoning procedure for BINs to NK (Section 3.2)
to identify all valid defeasible connections C|∼ND and add
them as C|∼D to the conditional base K to obtain a new con-
ditional base K′ = 〈T ,B〉 11.

9To easy the reading, we have omitted the redundant implications
such as g ⊃ c, obtained from c, d ⇔∧ g, g ⇒ c ∈ N .

10For � we add to the net a correspondent node �, and, for every
other node n in the net, we add a strict node n ⇒ �. Analogously,
for ⊥ we add ⊥ ⇒ n for every node n in the net.

11We do not modify T , since all the strict connections valid in the
net are classically derivable from T . Also, nodes that are compound
boolean formulae are represented as formulae in the obvious way,
e.g. c⊕ (d̄⊗ ē) becomes c ∨ (¬d ∧ ¬e)
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Step 3. Finally, apply to K′ its rational closure (see Section 2): we
consider that C|∼D is derivable from K, denoted C|∼KD, iff
C|∼D ∈ R(K′).

We can show that
Proposition 4.1 |∼K is a rational consequence relation.

Example 4.1 Consider Example 2.4. We have seen that p|∼w �∈
R(K) (see Remark 1). According to our procedure, it can be verified
that B = {b|∼f, b|∼w, p|∼w, p|∼¬f}. Now, we have p|∼Kw, and,
using the rational closure, we can derive also sequents as b∧f |∼Kw,
that could not be considered using only the BIN.

Example 4.2 Consider a red fish (r). It is both a fish (f ) and a
pet (p). Typically, a fish has gills (g) and scales (s), while pets are
docile (d) and play with kids (k). Red fishes are not typical pets,
since they do not play with kids. So, consider K = 〈T ,B〉 with
T = {r � f, r � p} and B = {r|∼¬k, p|∼k, p|∼d, f |∼g, f |∼s}. In
a standard preferential approach red fishes, since they are atypical
pets (they do not play with kids), result atypical in general, and they
cannot inherit any of the typical properties of all their superclasses.
Instead, we infer that red fishes do inherit, besides the properties of
pets that are compatible with them (d), also all the typical properties
of fishes (g and s), since we consider them as typical fishes.

Hence, we have defined a new rational consequence relation
for K that extends K, as K ⊂ R(K′), and that contains intu-
itive sequents not derivable in the rational closure of K.

5 Defeasible inheritance in DLs
We next apply our method to ALC, a significant DL represen-
tative (see e.g. [Baader et al., 2003]). ALC has monadic pred-
icates, called concepts, and dyadic ones, called roles: from
the set C of concept names A, the set R of roles R, the set L
of concepts is inductively defined as follows: (i) C ⊂ L; (ii)
�,⊥ ∈ L; (iii) C,D ∈ L ⇒ C � D,C � D,¬C ∈ L;
and (iii) C ∈ L, R ∈ R ⇒ ∃R.C, ∀R.C ∈ L. Concept
C ⊃ D is used as a shortcut of ¬C �D. A General Concept
Inclusion (GCI) axiom is of the form C � D (C,D ∈ L) and
indicates that any instance of C is also an instance of D. We
use C = D as a shortcut of the pair of C � D and D � C.

From a FOL point of view, concepts, roles and GCIs, may
be seen as formulae obtained by the following transformation
τ(C � D) = ∀x.τ(x,C) ⊃ τ(x,D), τ(x,�) = �(x), τ(x,⊥) = ⊥(x)
τ(x,A) = A(x), τ(x,¬C) = ¬τ(x,C)
τ(x,C 
 D) = τ(x,C) ∧ τ(x,D), τ(x,C � D) = τ(x,C) ∨ τ(x,D)
τ(x, ∃R.C) = ∃y.R(x, y) ∧ τ(y, C), τ(x, ∀R.C) = ∀y.R(x, y) ⊃ τ(y, C)

A defeasible knowledge base is K = 〈T ,B〉, where T is a
finite set of GCIs (a TBox) and B is a finite set of conditionals
C �∼ D (‘an instance of a concept C is typically an instance
of a concept D’ ), with C,D ∈ L. 12 Next we show that by
using our method, we overcome to the limits of classical ra-
tional closure, in a similar way as for the propositional case:
concepts will play the same role as propositions, while inclu-
sion axioms C � D and C �∼ D play the same role of, re-
spectively, C 	 D and C|∼D. Our procedure is as in [Casini
and Straccia, 2010], except that now we inject the DL ana-
logue of Steps 1-3 from Section 4 into it. Specifically, Steps

12We do not deal here with individuals and so-called Aboxes,
which will be addressed in an extend work, as the development is
essentially the same as in [Casini and Straccia, 2010].

1-2 are the DL analogue as from Section 4, while Steps 3-
8, are the same as the rational closure construction for DLs
in [Casini and Straccia, 2010].
Step 1. Construct a BIN NK from K. The process is similar to the

one in Section 4: nodes in NK represent the concepts present
as antecedents or consequents of the inclusion axioms in T
and B (modulo logical equivalence); for every node we add its
complementary node, if not already present, and we connect
them by ⇔¬; every GCI C � D ∈ T becomes a strict link
C ⇒ D; and every defeasible inclusion axiom C �∼ D ∈ B
becomes a defeasible link C → D. Moreover, consider the
consequence relation �T as the monotonic consequence rela-
tion obtained adding the GCIs in T to �, and add to the net the
strict links representing all the logical dependencies between
nodes with respect to �T .

Step 2. Apply the reasoning procedure for BINs to NK (Sec-
tion 3.2) to identify all valid defeasible connections C|∼ND,
and add them as C �∼ D to the conditional base K to obtain a
new conditional base K′ = 〈T ,B〉.

Step 3. Define B′ = B ∪ {C � ¬D �∼ ⊥ | C � D ∈ T }.

Step 4. Define ΓB′ = {� � C ⊃ D | C �∼ D ∈ B′} and let
AB′ = {C | C �∼ D ∈ B′}.

Step 5. Determine the exceptionality ranking of the sequents in B′

using the sets AB′ and ΓB′ , where a concept C is exceptional
w.r.t. a set of sequents D iff ΓD |= � � ¬C. The steps are
the same of the propositional case (Steps 3.1 – 3.4, Section 2)
by replacing the expression ΓD |= ¬C with the expression
ΓD |= � � ¬C. In this way define a ranking function r.

Step 6. As in Step 4.1 in Section 2 verify if the KB is consistent,
by checking the consistency of ΓB′ . Then (Steps 4.2-4.3,
Section 2), define the sets T̃ = {� � ¬C | C �∼ D ∈
B′ and r(C �∼ D) = ∞} and B̃ = {C �∼ D | C �∼ D ∈
B′ and r(C �∼ D) < ∞}.

Step 7. Define (similarly to Step 5, Section 2) Δ̃ = {δ0, . . . , δn},
where

δi =
�

{C ⊃ D | C �∼ D ∈ B̃ and r(C �∼ D) ≥ i} .

As for Section 2, for every δi, 0 ≤ i < n, |= δi � δi+1.

Step 8. Consider T̃ = {� � C1, . . . ,� � Cm}, Δ̃ =

{δ0, . . . , δn}, and define Φ̃ = {C1, . . . , Cm}. Now, decide
whether C �∼ D holds in K, denoted C|∼KD, by checking
whether |= C�

�
Φ̃�δi � D, where δi is the first ({C}∪Φ̃)-

consistent formula 13 of the sequence 〈δ0, . . . , δn〉. This is the
DL analogue as Step 6, Section 2.

Again, all steps require a decision procedure for the classical
entailment relation |= of DLs. As in [Casini and Straccia,
2010], we can show that

Proposition 5.1 |∼K is a rational consequence relation.

Example 5.1 Consider Example 2.2. Consider propositional let-
ters as concept names, add a role Prey (Prey(a, b) is read as ‘a
preys on b’) and a role Born (Born(a, b) is read as ‘a is born
from b’), and add concepts I (Insect), Fi (Fish) and E (Egg).
Consider K = 〈T ,B〉 with T = {P � B, I � ¬Fi}, B =
{P �∼ ∀Prey.F i � ∃Prey.�, B �∼ ∀Prey.I � ∃Prey.�, B �∼
∃Born.E}. Now, it can be shown that B = {P �∼ ∀Prey.F i �
∃Prey.�, B �∼ ∀Prey.I � ∃Prey.�, B �∼ ∃Born.E, P �∼

13That is, �|= C �
�

Φ̃ � ¬δi.

817



∃Born.E}. Then we move to the rational closure. The pair
〈T ,B〉 is changed into B′ = {P � ¬B �∼ ⊥, I � Fi �∼ ⊥,
P �∼ ∀Prey.F i � ∃Prey.�, B �∼ ∀Prey.I � ∃Prey.�, B �∼
∃Born.E, P �∼ ∃Born.E}. We obtain ΓB′ = {� � P ∧ ¬B ⊃
⊥,� � I � Fi ⊃ ⊥,� � P ⊃ ∀Prey.F i � ∃Prey.�,� � B ⊃
∀Prey.I�∃Prey.�,� � B ⊃ ∃Born.E,� � P ⊃ ∃Born.E},
and AB′ = {P � ¬B, I � Fi, P,B}. The exceptionality ranking of
the sequents is: E0 = {P�¬B �∼ ⊥, I�Fi �∼ ⊥, P �∼ ∀Prey.F i�
∃Prey.�, B �∼ ∀Prey.I � ∃Prey.�, B �∼ ∃Born.E, P �
∼ ∃Born.E}; E1 = {P � ¬B �∼ ⊥, I � Fi �∼ ⊥, P �∼
∀Prey.F i � ∃Prey.�, P �∼ ∃Born.E}; E2 = {P � ¬B �∼ ⊥,
I � Fi �∼ ⊥} and E3 = {P � ¬B �∼ ⊥, I � Fi �∼ ⊥}. Au-
tomatically, we have the ranking values of every sequent in B′:
namely, r(B �∼ ∀Prey.I � ∃Prey.�) = r(B �∼ ∃Born.E) = 0;
r(P �∼ ∀Prey.F i � ∃Prey.�) = r(P �∼ ∃Born.E) = 1 and
r(P �¬B|∼⊥) = r(I�Fi|∼⊥) = ∞. From such a ranking, we ob-
tain a background theory T̃ = {� � ¬(P ∧¬B),� � ¬(I�Fi)},
and a default-assumption set Δ̃ = {δ0, δ1}, with

δ0 = (B ⊃ ∀Prey.I 
 ∃Prey.�) 
 (B ⊃ ∃Born.E) 

(P ⊃ ∀Prey.F i 
 ∃Prey.�) 
 (P ⊃ ∃Born.E)

δ1 = (P ⊃ ∀Prey.F i 
 ∃Prey.�) 
 (P ⊃ ∃Born.E) .

to be used in Step 8. for our decision problem at hand. For in-
stance, unlike [Casini and Straccia, 2010], we can conclude now
that penguins are born from eggs.

6 Conclusion
By combining the classical rational closure with the ideas
from defeasible inheritance networks, we have proposed a
new rational consequence relation that overcomes the limits
of both formalisms. By doing so, we have extended the de-
feasible inference capabilities of rational closure by allowing
an atypical class still to inherit some properties from its su-
perclass while maintaining the desired logical properties, as
summarized in the table below 14:

Horty IN BIN PL DL
REF • • • • •
CT • • • •
CM • • • •
LE • • • • •
RW • • • • •
OR • • •
RM • •

As we can see, our proposal for defeasible inheritance-based
propositional logic and Description Logics still satisfy all ax-
ioms of classical rational closure. Another feature is that our
method requires uniquely the existence of a decision proce-
dure of classical entailment and, thus, can be implemented on
top of exiting propositional SAT solvers and DL reasoners.

As a further exercise, we have applied also our method
to all examples exhibited in [Sandewall, 2010, Appendix B],
and verified that our method behaves as desired.

A point we want to address is the computational complex-
ity of our method, especially for low complexity DL lan-
guages such as OWL QL, EL and RL, for which we conjec-
ture to have the same reasoning complexity.
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