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Abstract

We present a unifying approach to the efficient
evaluation of propositional answer-set programs.
Our approach is based on backdoors which are
small sets of atoms that represent “clever reasoning
shortcuts” through the search space. The concept
of backdoors is widely used in the areas of proposi-
tional satisfiability and constraint satisfaction. We
show how this concept can be adapted to the non-
monotonic setting and how it allows to augment
various known tractable subproblems, such as the
evaluation of Horn and acyclic programs.
In order to use backdoors we need to find them
first. We utilize recent advances in fixed-parameter
algorithmics to detect small backdoors. This im-
plies fixed-parameter tractability of the evaluation
of propositional answer-set programs, parameter-
ized by the size of backdoors. Hence backdoor
size provides a structural parameter similar to the
treewidth parameter previously considered. We
show that backdoor size and treewidth are incom-
parable, hence there are instances that are hard for
one and easy for the other parameter. We comple-
ment our theoretical results with first empirical re-
sults.

1 Introduction

Answer-Set Programming (ASP) is an increasingly pop-
ular framework for declarative programming [Marek and
Truszczyński, 1999; Niemelä, 1999]. ASP allows to describe
a problem by means of rules and constraints that form a dis-
junctive logic program. Solutions to the program are so-
called stable models or answer sets. Many important prob-
lems of AI and reasoning can be represented and successfully
solved within the ASP framework. However, the main com-
putational problems for ASP (such as deciding whether a pro-
gram has a solution, or if a certain atom is contained in at least
one or in all solutions) are of high worst-case complexity and
are located at the second level of the Polynomial Hierarchy
[Eiter and Gottlob, 1995]. The known complexity results do
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not rule out the possibility for exact algorithms that work effi-
ciently for real-world instances by exploiting the presence of
a “hidden structure.”

In this paper we follow a new approach of making the
vague notion of a hidden structure precise. Our approach is
based on the concept of backdoors which is widely used in the
areas of propositional satisfiability and constraint satisfaction
(see, e.g., [Williams et al., 2003a; Gottlob and Szeider, 2006;
Samer and Szeider, 2009]), and also for quantified Boolean
formulas and argumentation [Samer and Szeider, 2009a;
Ordyniak and Szeider, 2011].

A backdoor is a small set of key atoms that represent a
“clever reasoning shortcut” through the search space. By de-
ciding the status of the atoms in the backdoor, we can reduce
a given program to several tractable programs belonging to a
target class of programs. Consequently the evaluation of the
given program is fixed-parameter tractable in the size of the
backdoor, i.e., polynomial for fixed backdoor size k where
the order of the polynomial is independent of k [Downey and
Fellows, 1999]. By allowing backdoors of increasing size
k = 1, 2, 3, . . . we can gradually augment a known tractable
class of programs.

Results:

• We show that the most important computational prob-
lems of propositional answer-set programming, includ-
ing credulous/skeptical reasoning (and even counting all
answer sets) are fixed-parameter tractable in the size of
the backdoor.

• We show that the detection of backdoors is fixed-
parameter tractable for various target classes, including
the class of all Horn programs and classes based on var-
ious notions of acyclicity. This way we make recent re-
sults of fixed-parameter algorithmics accessible to the
field of answer-set programming.

• We show that the concept of backdoors entails fixed-
parameter tractability results for answer-set program-
ming [Ben-Eliyahu, 1996] and so provides a unifying
framework.

• We compare backdoor size with respect to various base
classes with each other and with the recently studied pa-
rameter incidence treewidth [Jakl et al., 2009].

• We present first empirical results where we consider the
backdoor size of structured programs and random pro-
grams of varied density.
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2 Formal Background

We consider a universe U of propositional atoms. A lit-
eral is an atom a ∈ U or its negation ¬a. A disjunctive
logic program (or simply a program) P is a set of rules of
the form x1 ∨ . . . ∨ xl ← y1, . . . , yn,¬z1, . . . ,¬zm where
x1, . . . , xl, y1, . . . , yn, z1, . . . , zm are atoms and l, n,m are
non-negative integers. We write {x1, . . . , xl} = H(r) (the
head of r) and {y1, . . . , yn, z1, . . . , zm} = B(r) (the body
of r), B+(r) = {y1, . . . , yn} and B−(r) = {z1, . . . , zn}.
We denote the sets of atoms occurring in a rule r or in a pro-
gram P by at(r) = H(r) ∪ B(r) and at(P ) =

⋃
r∈P at(r),

respectively.
A rule r is negation-free if B−(r) = ∅, r is normal if

|H(r)| = 1, r is a constraint if |H(r)| = 0, r is disjunction-
free if |H(r)| ≤ 1, r is Horn if it is negation-free and
disjunction-free, and r is tautological if B+(r) ∩ (H(r) ∪
B−(r)) 
= ∅. We say that a program has a certain property if
all its rules have the property. We denote by Horn the classes
of all Horn programs.

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩
M 
= ∅ or B+(r)\M 
= ∅. M is a model of P if it satisfies all
rules of P . The GL reduct of a program P under a set M of
atoms is the program PM obtained from P by first removing
all rules r with B−(r) ∩ M 
= ∅ and second removing all
¬z where z ∈ B−(r) from all remaining rules r [Gelfond
and Lifschitz, 1991]. M is an answer set (or stable set) of a
program P if M it is a minimal model of PM . We denote by
AS(P ) the set of all answer sets of P .

We also need some notions from propositional satisfia-
bility. A clause is a finite set of literals, a CNF formula
is a finite set of clauses. A truth assignment is a mapping
τ : X → {0, 1} defined for a set X ⊆ U of atoms. For
x ∈ X we put τ(¬x) = 1−τ(x). By ta(X) we denote the set
of all truth assignments τ : X → {0, 1}. The truth assign-
ment reduct of a CNF formula F with respect to τ ∈ ta(X)
is the CNF formula Fτ obtained from F by first removing all
clauses c that contain a literal set to 1 by τ , and second re-
moving from the remaining clauses all literals set to 0 by τ . τ
satisfies F if Fτ = ∅, and F is satisfiable (in symbols sat(F ))
if it is satisfied by some τ .
ASP Problems The main computational problems for ASP
are as follows. CONSISTENCY: given a program P , does
P have an answer-set? CREDULOUS/SKEPTICAL REASON-
ING: given a program P and an atom a ∈ at(P ), is a
contained in some/all answer-set(s) of P ? AS COUNTING:
how many answer sets does P have? AS ENUMERATION:
list all answer sets of P . CONSISTENCY and CREDULOUS
REASONING are ΣP

2 -complete, SKEPTICAL REASONING is
ΠP

2 -complete [Eiter and Gottlob, 1995]. The problems re-
main NP (or co-NP) hard for normal programs [Marek and
Truszczyński, 1991], but are polynomial-time solvable for
Horn programs [Gelfond and Lifschitz, 1988]. AS COUNT-
ING is easily seen to be #P -hard even for normal programs
in view of the #P -completeness of #SAT.
Fixed-Parameter Tractability We give some basic back-
ground on parameterized complexity. For more detailed in-
formation we refer to other sources [Downey and Fellows,
1999; Gottlob and Szeider, 2006]. A parameterized problem

L is a subset of Σ∗ × N for some finite alphabet Σ. For an
instance (I, k) ∈ Σ∗×N we call I the main part and k the pa-
rameter. L is fixed-parameter tractable if there exist a com-
putable function f and a constant c such that we can decide
whether (I, k) ∈ L in time O(f(k)‖I‖c) where ‖I‖ denotes
the size of I . FPT is the class of all fixed-parameter tractable
decision problems. The Weft Hierarchy consists of parame-
terized complexity classes W[1] ⊆ W[2] ⊆ · · · which are
defined as the closure of certain parameterized problems un-
der parameterized reductions. There is strong theoretical ev-
idence that parameterized problems that are hard for classes
W[i] are not fixed-parameter tractable.

3 Backdoors

Before we introduce the notion of backdoors to the ASP do-
main we review it in the domain where it originates from.
Satisfiability Backdoors Let F be a CNF formula and X a
set of atoms. The following is obvious from the definitions:

(∗) F is satisfiable if and only if Fτ is satisfiable for at least
one truth assignment τ ∈ ta(X).

This observation leads to the definition of a strong backdoor
relative to a class C of polynomially solvable CNF formulas:
a set X of atoms is a strong C-backdoor of a CNF formula F
if Fτ ∈ C for all truth assignments τ ∈ ta(X). Assume that
the satisfiability of formulas F ∈ C of size ‖F‖ = n can be
decided in time O(nc). Then we can decide the satisfiability
of an arbitrary formula F for which we know a strong C-
backdoor of size k in time O(2knc) which is efficient as long
as k remains small.

Before we can use the strong backdoor we need to find it
first. For most reasonable target classes C the detection of a
strong backdoor of size at most k is NP-hard if k is part of the
input. However, as we are interested in finding small back-
doors, it makes sense to parameterized the backdoor search
by k and consider the parameterized complexity of backdoor
detection. Indeed, with respect to the classes of Horn CNF
formulas and 2-CNF formulas, the detection of strong back-
doors of size ≤ k is fixed-parameter tractable [Nishimura et
al., 2004; Samer and Szeider, 2009]. For other target classes
(clustering formulas and renamable Horn formulas) the detec-
tion of deletion backdoors (a subclass of strong backdoors) of
size at most k is fixed-parameter tractable [Nishimura et al.,
2007; Razgon and O’Sullivan, 2008].
ASP Backdoors In order to translate the notion of backdoors
to the domain of ASP, we first need to come up with a suitable
concept of a reduction with respect to a truth assignment. The
following is a natural definition which generalizes a concept
of Gottlob et al. [2002].
Definition 1. Let P be a program, X a set of atoms, and
τ ∈ ta(X). The truth assignment reduct of P under τ is the
logic program Pτ obtained from P by

1. removing all rules r with H(r) ∩ τ−1(1) 
= ∅
or H(r) ⊆ X;

2. removing all rules r with B+(r) ∩ τ−1(0) 
= ∅;
3. removing all rules r with B−(r) ∩ τ−1(1) 
= ∅;
4. removing from the heads and bodies of the remaining

rules all literals v,¬v with v ∈ X .
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Definition 2. Let C be a class of programs. A set X of atoms
is a strong C-backdoor of a program P if Pτ ∈ C for all truth
assignments τ ∈ ta(X).
Example 1. Consider the program P = {s ← w; u ←
s, q; r ← w, s; t ← ¬r; q ← ¬s, u; w ← ¬r, u}. The set
X = {r, s} is a strong Horn-backdoor since all four truth as-
signment reducts Pr=0,s=0 = P00 = {t ←; q ← u; w ← u},
P01 = {u ← q; t ←; w ← u}, P10 = {q ← u}, and
P11 = {u ← q} are Horn programs.

A direct equivalence similar to (∗) does not hold for ASP,
even if we consider the most basic problem CONSISTENCY.
Take for example the program P = {x ← ¬x; y ←} and the
set X = {x}. Both reducts Px=0 = { y } and Px=1 = { y }
have answer sets, but P has no answer set. However, we can
show a somewhat weaker asymmetric variant of (∗), where
we can map each answer set of P to an answer set of Pτ

for some τ ∈ ta(X). This is made precise by the following
definition and lemma.
Definition 3. Let P be a program and X a set of atoms. We
define AS(P,X) =

{M ∪ τ−1(1) : τ ∈ ta(X ∩ at(P )),M ∈ AS(Pτ ) }.
Lemma 1. AS(P ) ⊆ AS(P,X) holds for every program P
and every set X of atoms.
Owing to space restrictions we omit the proof which can be
found in a longer version of this paper at http://arxiv.org/abs/
1104.2788.

In view of Lemma 1, we can compute AS(P ) by (i) com-
puting AS(Pτ ) for all τ ∈ ta(X) and (ii) checking for each
M ∈ AS(Pτ ) whether it gives rise to an answer-set of P .
Observe that in particular any constraint contained in P is
removed in the truth assignment reduct Pτ but is then consid-
ered in step (ii). If we can compute AS(Pτ ) in polynomial
time for each τ ∈ ta(X), we have a fixed-parameter algo-
rithm for computing AS(P ) for parameter k = |X|. This
consideration leads to the following definition and result.
Definition 4. A class C of programs is enumerable if for each
P ∈ C we can compute AS(P ) in polynomial time.

For any class C of programs we denote by C∗ the class con-
taining all programs that belong to C after removal of tauto-
logical rules and constraints. It is easy to see that whenever C
is enumerable, then so is C∗. Note that all classes considered
in this paper are enumerable.
Theorem 1. Let C be an enumerable class of programs.
Problems CONSISTENCY, CREDULOUS and SKEPTICAL
REASONING, AS COUNTING and AS ENUMERATION are
all fixed-parameter tractable when parameterized by the size
of a smallest strong C backdoor, assuming that the backdoor
is given as an input.
Proof. Let X be the given backdoor. Since we have
|AS(P,X)| ≤ 2|X|, we can solve each listed problem by
making at most 2|X| polynomial checks.

If we know that each program in C has at most one answer
set, and P has a strong C-backdoor of size k, then we can
conclude that P has at most 2k answer sets. Thus, we ob-
tain an upper bound on the number of answer sets of P by
computing a small strong C-backdoor of P .

Example 2. We consider program P of Example 1. The an-
swer sets of Pτ are AS(P00) = {{t}}, AS(P01) = {{t}},
AS(P10) = {∅}, and AS(P11) = {∅} for τ ∈ ta({r, s}).
AS(P,X) = {{t}, {t, s}, {r}, {r, s}}, and since only {t} ∈
AS(P,X) is an answer set of P , we obtain AS(P ) = {{t}}.

Deletion Backdoors We will see below that the following
variant of strong backdoors is often useful. For a program P
and a set X of atoms we define P−X as the program obtained
from P by deleting all atoms contained in X from all the rules
(heads and bodies) of P .
Definition 5. Let C be a class of programs. A set X of atoms
is a deletion C-backdoor of a program P if P −X ∈ C.

In general, not every strong C-backdoor is a deletion
C-backdoor, and not every deletion C-backdoor is a strong
C-backdoor. We call C to be rule induced if for each P ∈ C,
P ′ ⊆ P implies P ′ ∈ C. Note that many natural classes of
programs (and all classes considered in this paper) are rule
induced.
Proposition 1. If C is rule induced, then every deletion
C-backdoor is a strong C-backdoor.
Proof. The statement follows from the fact that Pτ ⊆ P −X
for every τ ∈ ta(X) and every program P .

Backdoor Detection In order to use Theorem 1 we need
to find the backdoor first. Each class C of programs gives
rise to the following parameterized problem: STRONG C-
BACKDOOR DETECTION: given a program P and an inte-
ger k, find a strong C-backdoor X of P of size at most k, or
report that such X does not exist. We also consider the prob-
lem DELETION C-BACKDOOR DETECTION, defined simi-
larly (which is in some cases easier to solve).

4 Target Class Horn

We first consider the important case Horn∗ as the target class
for backdoors. It is well known that normal Horn programs
have a unique answer set and this set can be found in linear
time [Dowling and Gallier, 1984], hence Horn and Horn∗

are enumerable. The following lemma shows that Horn∗ is
particularly well suited as a target class.
Lemma 2. A set X is a strong Horn∗-backdoor of a pro-
gram P if and only it is a deletion Horn∗-backdoor of P .
Owing to space restrictions we omit the proof.
Theorem 2. STRONG Horn∗-BACKDOOR DETECTION is
fixed-parameter tractable in k. In fact, given a program P
with n atoms we can find a strong Horn∗-backdoor of size
≤ k in time O(1.2738k + kn) or decide that no such back-
door exists.
Proof. (Sketch) Let G be the undirected graph defined on the
set of atoms of the given program P , where two atoms x, y are
joined by an edge if and only if P contains a non-tautological
rule r with x, y ∈ H(r) or x ∈ H(r) and y ∈ B−(r). Now
it is easy to see that a set X ⊆ at(P ) is a vertex cover of
G if and only if X is a deletion Horn∗-backdoor of P . A
vertex cover of size ≤ k, if it exists, can be found in time
O(1.2738k + kn) [Chen et al., 2006]. The theorem follows
by Lemma 2.
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For instance, the undirected graph G of the program P of
Example 1 consists of the two paths (w, r, t) and (s, q). Then
{r, s} is a vertex cover of G. We observe easily that there
exists no vertex cover of size 1. Thus {r, s} is a smallest
strong Horn∗-backdoor of P .

Ben-Eliyahu [1996] showed that evaluation of normal logic
programs is fixed-parameter tractable in (i) the number of
atoms that appear in negative rule bodies, and (ii) the total
number of non-Horn rules. It is not difficult to see that both
numbers are greater or equal to the size of a smallest strong
Horn∗-backdoor, and so entailed by our approach.

5 Acyclicity-Based Target Classes

There are two causes for a program to have a large number
of answer sets: (i) disjunctions in the heads of rules, and
(ii) certain cyclic dependencies between rules. Disallowing
both causes yields so-called stratified programs [Gelfond and
Lifschitz, 1988]. In the following we will study backdoor de-
tection for various classes of stratified programs. We define
the classes by requiring normality and acyclicity (the absence
of certain types cycles). In order to define acyclicity we as-
sociate with each normal program P its directed dependency
graph DP [Apt et al., 1988], and its undirected dependency
graph UP [Gottlob et al., 2002]. DP has as vertices the atoms
of P and a directed edge (x, y) between any two atoms x, y
for which there is a rule r ∈ P with x ∈ H(r) and y ∈ B(r);
if there is a rule r ∈ P with x ∈ H(r) and y ∈ B−(r), then
the edge (x, y) is called a negative edge. UP is obtained from
Dp by replacing each negative edge e = (x, y) with two undi-
rected edges {x, ve}, {ve, y} where ve is a new negative ver-
tex, and by replacing each remaining directed edge (u, v) with
an undirected edge {u, v}. By a directed cycle of P we mean
a directed cycle in DP , by an undirected cycle of P we mean
an undirected cycle in UP . Figure 1 visualizes DP and Up of
the program P of Example 1. A directed (undirected) cycle
is bad if it contains a negative edge (a negative vertex), other-
wise it is good. Various classes of programs arise by requiring
the programs to have no directed bad cycles (DBC-Acyc), no
undirected bad cycles (BC-Acyc), no directed cycles (DC-
Acyc), and no undirected cycles (C-Acyc). DBC-Acyc, the
largest class among the considered classes, is exactly the class
Strat of stratified programs [Apt et al., 1988].

For instance in the program P of Example 1, (r,v(w,r),w,
r) is an undirected cycle, (u, q, u) is a directed cycle, (s,vq,s,
q, u, s) is an undirected bad cycle, and (w, r, w) is a directed
bad cycle (see Figure 1).

t r s

quw

¬

¬ ¬
t

v(t,r)

r s

v(q,s)

q

v(w,r)

w u

Figure 1: Directed dependency graph DP (left) and undirected de-
pendency graph UP (right) of the program P of Example 1.

In order to compare the size of backdoors for the vari-
ous classes, we need to compare the classes themselves (ev-

idently, if C � C′, then every strong (deletion) C′-backdoor
is also a strong (deletion) C′-backdoor, but not necessarily
the other way around). By definition we have DC-Acyc �
DBC-Acyc and C-Acyc � BC-Acyc � DBC-Acyc; it is
easy to see that the inclusions are proper. However, contrary
to what one expects, C-Acyc 
⊆ DC-Acyc, which can be seen
by considering the program P0 = {x ← y, y ← x}, hence
C-Acyc and DC-Acyc are incomparable. Requiring that a
program has no directed cycles but may have directed good
cycles of length 2 (as in P0) gives rise to the class DC2-Acyc,
which generalizes both classes C-Acyc and DC-Acyc. The
diagram in Figure 2 shows the relationship between the vari-
ous program classes.

DBC-Acyc = Strat
BC-Acyc

DC2-Acyc

C-Acyc

DC-Acyc

Horn

Figure 2: Relationship between classes of programs. An arrow from
C to C′ indicates that C is a proper subset of C′. If there is no arrow
between two classes (or the arrow does not follow by transitivity of
set inclusion), then the two classes are incomparable.

Theorem 3. For each class C ∈ {C-Acyc, BC-Acyc, DC-
Acyc, DC2-Acyc, Strat} the problem STRONG C-BACK-
DOOR DETECTION is W[2]-hard and therefore unlikely to be
fixed-parameter tractable.
Proof. (Sketch) We give a reduction from the W[2]-complete
problem HITTING SET [Downey and Fellows, 1999]. An
instance of this problem is a pair (S, k) where S =
{S1, . . . , Sm} is a family of sets and k is an integer (the
parameter). The question is whether there exists a set H
of size at most k which intersects with all the Si; such H
is a hitting set. We construct a program P as follows. As
atoms we take the elements of X =

⋃m
i=1 Si and new atoms

aji and bji for 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1. For each
1 ≤ i ≤ m and 1 ≤ j ≤ k + 1 we take two rules rji , sji
where H(rji ) = {aji}, B−(rji ) = Si, B+(rji ) = Si ∪ {bji};
H(sji ) = {bji}, B−(sji ) = {aji}, B+(sji ) = ∅. The result
now follows by showing that S has a hitting set of size ≤ k if
and only if P has a strong C-backdoor of size ≤ k where C is
any of the classes mentioned.

For DC-Acyc, DC2-Acyc, and Strat we can avoid the use
of tautological rules in the reduction and so strengthen Theo-
rem 3 (it would be interesting to know if this is also possible
for the remaining two classes mentioned in Theorem 3).

The W[2]-hardness results suggest to relax the consid-
ered problems and to look for deletion backdoors: Which of
the classes mentioned in Theorem 3 admit fixed-parameter
tractable detection of deletion backdoors? Using very recent
results from fixed-parameter algorithmics we can answer this
question positively for all considered classes except for Strat
whose complexity remains open.
Theorem 4. For each class C ∈ {C-Acyc, BC-Acyc, DC-
Acyc, DC2-Acyc} the problem DELETION C∗-BACKDOOR
DETECTION is fixed-parameter tractable.
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Proof. (1) DELETION C-Acyc-BACKDOOR DETECTION can
be solved by solving the FEEDBACK VERTEX SET (FVS)
problem for Up, which is well-known to be FPT [Downey
and Fellows, 1999], this was already observed by Gottlob et
al. [2002]. (2) DELETION DC-Acyc-BACKDOOR DETEC-
TION is equivalent to the DIRECTED FVS problem on Dp.
The parameterized complexity of DIRECTED FVS remained
open for many years and was recently shown FPT by Chen
et al. [2008] with a break-through result. (3) DELETION
BC-Acyc-BACKDOOR DETECTION can be solved by solv-
ing the EDGE SUBSET FVS problem, where only cycles need
to be covered that contain an edge from a given set S. This
problem was recently shown FPT by Cygan et al. [2010] and
Kawarabayashi and Kobayashi [2010]. (4) Finally, the prob-
lem DELETION DC2-Acyc-BACKDOOR DETECTION can be
solved by finding a feedback vertex set in a mixed graph (a
graph containing directed and undirected edges), as we can
replace a good cycle on two edges by one undirected edge.
FVS FOR MIXED GRAPHS was recently shown FPT by Bon-
sma and Lokshtanov [2010].

The classes mentioned in Theorem 3 are rule-induced.
Hence we can use this theorem to strengthen the fixed-
parameter tractability result of Theorem 1 by dropping the
assumption that the backdoor is given.

The considered classes can be generalized by taking the
parity of the number of negative edges on bad cycles into
account. In recent research Fichte [2011] generalized the
tractability results of Lin and Zhao [2004] by considering
backdoors with respect to such parity classes.

6 Theoretical Comparison of Parameters

In this section we compare ASP parameters in terms of their
generality.

Jakl et al. [2009] applied the graph parameter treewidth to
ASP and showed that the main reasoning problems for ASP
are fixed-parameter tractable by the treewidth of the incidence
graph of the program. The incidence graph of a program P
is the bipartite graph on the rules and atoms of P , where a
rule and an atom are joined by an edge if and only if the atom
occurs in the rule. It turns out that incidence treewidth is
incomparable with backdoor size for various target classes
considered.
Theorem 5. Let C ∈ {Horn, C-Acyc, DC-Acyc, DC2-
Acyc, BC-Acyc, Strat}. There are programs whose inci-
dence graphs have constant treewidth but require arbitrar-
ily large strong and deletion C-backdoors, and there are pro-
grams where the converse prevails.
Proof. (Sketch) Clearly each of the considered classes con-
tains programs of arbitrary high treewidth of the incidence
graph. Conversely, we consider a program P /∈ C. We denote
by nP the program consisting of the union of n atom-disjoint
copies of P . By basic properties of treewidth it follows that
the treewidth of the incidence graph of P equals to that of
nP , however, smallest C-backdoors are of size ≥ n.

The treewidth approach is based on dynamic programming
which is of high space complexity and therefore only practi-
cal for instances of treewidth below 10 [Jakl et al., 2009]. The

instance set vars bd (%) stdev
Daimler-Chrysler-MT 1785.14 21.46 1.56
Daimler-Chrysler-NC 1793.0 22.94 2.92
Daimler-Chrysler-RZ 1562.5 11.53 2.21
Daimler-Chrysler-SZ 1567.53 13.97 3.47
Daimler-Chrysler-UC 1781.74 21.4 2.01
Daimler-Chrysler-UT 1781.23 23.53 3.95
Mutex 6449.0 49.94 0.09
RLP-3 150.0 58.28 1.37
RLP-4 150.0 64.53 0.92
RLP-5 150.0 68.4 0.97
RLP-6 150.0 70.9 0.82
RLP-7 150.0 73.68 0.87
RLP-8 150.0 75.54 0.74
RG-40 40.0 93.5 1.24
RG-50 50.0 94.05 0.96
RG-60 60.0 94.38 0.82

Table 1: Size of smallest strong Horn-backdoors (bd) for vari-
ous benchmark sets, given as % of the total number of variables
(vars) by the mean over the instances. Daimler-Chrysler-〈test〉: 554
Real-world instances encoding logistics problems from car config-
urations. The disjunctive programs have been compiled from SAT
instances provided by Sinz et al. [2003] grouped by the kind of con-
sistency test. The instances are produced using the simple encoding
where a clause {a, b,¬c,¬d} becomes the rule a, b ← c, d. Mutex:
Disjunctive programs that encode the equivalence test of partial im-
plementations of circuits, provided by Maratea et al. [2008] based
on QBF instances of Ayari and Basin [2000] RLP-〈ρ〉: Randomly
generated normal programs provided by Zhao and Lin [2003] of var-
ious density ρ (number of rules divided by the number of variables)
with 10 instances per step. RG-〈n〉: Randomly generated instances
provided by Gebser [Asp, 2009] with n = 40, 50, and 60 variables,
respectively with 40 instances per step.

backdoor approach is more space efficient since for each par-
tial truth assignment τ ∈ ta(X) of a backdoor X , the compu-
tations of AS(Pτ ) and the corresponding elements of AS(Pτ )
can be carried out independently.

One might ask whether it makes sense to consider restric-
tions on the treewidth of the undirected dependency graph,
defined above. However, this restriction does not yield
tractability, as the reduction of [Eiter and Gottlob, 1995]
produces programs with undirected dependency graphs of
treewidth 2.

7 Empirical Comparison of Parameters

We have determined the size of smallest backdoors for vari-
ous programs, including structured real-world instances and
random instances. The results are summarized in Table 1. It
is known that so-called tight programs are closely related to
SAT [Lin and Zhao, 2003]. The QueensEqTest instances and
two of the Daimler-Chrysler instances are tight, all other in-
stances considered are not tight. For pragmatic reasons we
have used Horn∗ as the target class as smallest backdoors
are easy to compute, even for large inputs. Our experimental
results indicate that structured instances have smaller back-
doors than random instances. It also seems that random in-
stances with higher density have larger backdoors.

We have conducted a second series of experiments on
random instances where we have analyzed how much we
gain by considering the more general acyclicity-based tar-
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get classes instead of Horn. It appears that smallest deletion
Horn∗-backdoors are indeed significantly larger than dele-
tion backdoors for acyclicity-based target classes. The dis-
tinction between directed and undirected cycles seems to have
a significant effect on the backdoor size, whereas the distinc-
tion between good and bad cycles seems to be less significant.
However these results are not fully conclusive as the consid-
ered programs were rather small.

8 Conclusion

We have introduced the backdoor approach to the domain
of propositional answer-set programming. The backdoor ap-
proach allows to augment a known tractable class and makes
the efficient solving methods for the tractable class gener-
ally applicable. Our approach makes recent results in fixed-
parameter algorithmics applicable to nonmonotonic reason-
ing. The comparison results show that the parameters based
on backdoor size are incomparable with treewidth and there-
fore provide fixed-parameter tractability for programs that are
hard for the treewidth approach.

The results and concepts of this paper give rise to several
interesting research questions. For instance, it would be in-
teresting to consider backdoors for target classes that con-
tain programs with an exponential number of answer-sets, but
where the set of all answer-sets can be succinctly represented.
A simple example is the class of programs that consist of in-
dependent components of bounded size. Other questions are
concerned with alternative ways of using backdoors. For in-
stance, by means of “backdoor trees” [Samer and Szeider,
2008] one can avoid the consideration of all 2k partial assign-
ments of the backdoor and thus make the backdoor approach
feasible for programs with larger backdoors. A further use of
backdoors that seems worth exploring is the control of heuris-
tics of ASP solvers.
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