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Abstract

In this paper we use the Kripke semantics charac-
terization of Dummett logic to introduce a new way
of handling non-forced formulas in tableau proof
systems. We pursue the aim of reducing the search
space by strictly increasing the number of forced
propositional variables after the application of non-
invertible rules. The focus of the paper is on a new
tableau system for Dummett logic, for which we
have an implementation.

1 Introduction

In this paper we present a tableau calculus and theorem
prover for propositional Dummett logic. By exploiting the
linearly ordered Kripke semantics of Dummett logic, we de-
vise a tableau calculus working on two semantical levels: the
present and the next possible world. In this way we can guar-
antee that as the construction of the tableau proceeds, mov-
ing from a world to another, the known (forced) information
strictly increases. Moreover, the calculus can be equipped
with specialized rules to reduce the branching. As a result,
the decision procedure is speeded up.

Dummett logic has been extensively investigated both by
people working in computer science and in logic. The his-
tory of this logic starts with Gödel, who studied the family
of logics semantically characterizable by a sequence of n-
valued (n > 2) matrices [Gödel, 1986]. In paper [Dummett,
1959] Dummett studied the logic semantically characterized
by an infinite valued matrix which is included in the family
of logics studied by Gödel and proved that such a logic is ax-
iomatizable by adding to any Hilbert system for propositional
intuitionistic logic the axiom scheme (p → q) ∨ (q → p).
Moreover, it is well-known that such a logic is semantically
characterizable by linearly ordered Kripke models. Dummett
logic has been extensively studied also in recent years for its
relationships with computer science [Avron, 1991] and fuzzy
logics [Hajek, 1998]. For a survey in proof theory in Gödel-
Dummett logics we quote [Baaz et al., 2003].

To perform automated deduction both tableau and sequent
calculi have been proposed. Paper [Avellone et al., 1999]
provides tableau calculi whose distinguishing feature is a
multiple premise rule for implicative formulas that are not-
forced. The syntactical way to express this semantical mean-

ing is by the sign F. We recall that the sign F comes from
Smullyan [Smullyan, 1968; Fitting, 1969] and labels those
formulas that in a sequent calculus occur in the right-hand
side of ⇒. A tableau calculus derived from those of [Avel-
lone et al., 1999] is provided in paper [Fiorino, 2001]. Its
main feature is that the depth of every deduction is linearly
bounded in the length of the formula to be proved. Hyperse-
quent systems for the implicative fragment of propositional
Dummett logic are provided in [Metcalfe et al., 2003].

The approach of [Avellone et al., 1999], based on char-
acterizing Dummett logic by means of the multiple premise
rule, has been criticized because, from the perspective of
worst case analysis, there are simple examples of sets of for-
mulas giving rise to a factorial number of branches in the
number of formulas in the set. Paper [Avron and Konikowska,
2001] shows how to get rid of the multiple premise rule. New
rules are provided whose correctness is strictly related to the
semantics of Dummett logic. These ideas have been further
developed and in paper [Larchey-Wendling, 2007] a graph-
theoretic decision procedure is described and implemented.
The approach introduced in [Avron and Konikowska, 2001]
has also disadvantages with respect to the multiple premise
rule proposed in [Avellone et al., 1999] and these disadvan-
tages have been considered in [Fiorino, 2010], where also a
new version of the multiple premise rule is proposed. This
version, from a practical point of view, can reduce the branch-
ing when compared with the original one. Paper [Fiorino,
2010] also provides an implementation that outperforms the
one of [Larchey-Wendling, 2007], thus proving that the ap-
proach based on the multiple premise rule of [Avellone et al.,
1999] deserves attention also from the practical point of view.
As a matter of fact, on the one hand the rules of [Avron and
Konikowska, 2001] give rise to two branches at most, on the
other hand there are cases of formulas that multiple premise
calculi decide with a number of steps lower than the calculi
based on [Avron and Konikowska, 2001].

In this paper we continue our investigation around multi-
ple premise calculi for Dummett logic. The tool we use to
prove our results is the characterization of Dummett logic via
linearly ordered Kripke models, whose elements are consid-
ered worlds ordered w.r.t. ≤ and α ≤ β means that, roughly
speaking, β is in a subsequent point of the time w.r.t. α.

With the aim to reduce the size of the proofs, we provide a
calculus whose main feature is the way the non-forced formu-
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las are handled. In tableau calculi proofs start by supposing
that at the present world A is not forced. A proof of our cal-
culus starts by adding a further semantical constraint, namely,
by supposing that the present world is the last where A is not
forced. This further constraint implies that in the present we
have information about a different semantical status of A in
the future: if we conclude that there exists the next world, then
we deduce that in such a future world A is forced (this implies
that starting from such a next world, A is equivalent to �).
Such information can be handled to draw deductions about
the semantical status of the formulas both in the present and
in the next world (hereafter, when is clear from the context,
we omit “world” after “present” and and “future”). As a con-
sequence, our calculus handles two kinds of signed formulas:
the first kind describes the semantical status of a formula at
the present, the second kind describes the semantical status
of a formula at the next world. The introduction of the signs
related to the future allows to introduce specialized rules that
exploit the knowledge about the future to draw deductions
about the present. In particular, we refer to the introduction
of specialized and single conclusion rules to handle the for-
mulas of the kind F(A → B) (to be read “at the present world
the fact A → B is not known”), thus reducing the branching
generated by the multiple premise rule.

The semantical constraint used in calculus has also the ad-
vantage to change the effect of the application of the non-
invertible rules. Roughly speaking, non-invertible rules draw
conclusions about the next world having as premise facts
about the present. The application of these rules has an ef-
fect in the proof-search, usually requiring the introduction
of backtracking to guarantee the completeness of the proof-
search procedure. The semantical effect is that in the con-
struction of the counter model a new state of knowledge
is added, corresponding to the facts derived by the non-
invertible rule. In the known sequent/tableau calculi for in-
termediate logics there is no guarantee that in the conclusion
of the non-invertible rules at least one fact that in the premise
was explicitly unknown becomes explicitly known in the con-
clusion. In the semantical construction this means that there
is no guarantee that between two subsequent worlds, knowl-
edge increases. The two semantical levels used in our calcu-
lus allow us to provide non-invertible rules such that there
is at least one fact that in the premise is explicitly signed
as not known and in the conclusion is explicitly signed as
known. This implies that moving from the present to the next
state of knowledge there is at least one explicitly unknown
fact of the present that becomes explicitly known in the fu-
ture. This has also a correspondence in the construction of
the Kripke counter model, where there are no two elements
exactly forcing the same propositional variables. The knowl-
edge that a formula A is equivalent to � can be exploited to
replace all the occurrences of A with �. Such a replacement
reduces the size of the set to be decided. Further reductions
are possible by applying replacements based on the truth ta-
ble of the connectives. Rules based on the replacement have
been proved effective to dramatically reduce the search space
both in classical and intuitionistic logic [Avellone et al., 2008;
Massacci, 1998]. The idea of reasoning on two states of
knowledge can be used also in other intermediate logics. As

an example it can be used to develop a loop-free analytic cal-
culus for propositional intuitionistic logic.

2 Basic definitions, the calculus and general

considerations

We consider the propositional language based on a denumer-
able set of propositional variables PV , the boolean constants
� and ⊥ and the logical connectives ¬,∧,∨,→. We call
atoms the elements of PV ∪{�,⊥}. In the following, formu-
las (respectively set of formulas and propositional variables)
are denoted by letters A, B, C. . . (respectively S, T , U ,. . . and
p, q, r,. . . ) possibly with subscripts or superscripts.

From the introduction we recall that Dummett Logic
(Dum) can be axiomatized by adding to any axiom sys-
tem for propositional intuitionistic logic the axiom scheme
(p → q) ∨ (q → p) and a well-known semantical character-
ization of Dum is by linearly ordered Kripke models. In the
paper model means a linearly ordered Kripke model, namely
a structure K = 〈P,≤,ρ,�〉, where 〈P,≤, ρ〉 is a linearly or-
dered set with ρ minimum with respect to ≤ and � is the forc-
ing relation, a binary relation on P × (PV ∪ {�,⊥}) such
that: (i) if α � p and α ≤ β, then β � p; (ii) for every α ∈ P ,
α � � holds and α � ⊥ does not hold. Hereafter we denote
the members of P by means of lowercase letters of the Greek
alphabet.

The forcing relation is extended in a standard way to arbi-
trary formulas of our language as follows:

1. α � A ∧B iff α � A and α � B;

2. α � A ∨B iff α � A or α � B;

3. α � A → B iff, for every β ∈ P such that α ≤ β,
β � A implies β � B;

4. α � ¬A iff for every β ∈ P such that α ≤ β, β � A
does not hold.

We write α � A when α � A does not hold. It is easy to
prove that for every formula A the persistence property holds:
If α � A and α ≤ β, then β � A. We say that β is immediate
successor of α iff α < β and there is no γ ∈ P such that
α < γ < β. A formula A is valid in a model K = 〈P,≤,ρ,�〉
if and only if ρ � A. It is well-known that Dum coincides
with the set of formulas valid in all models.

The rules of our calculus D are in Figure 1 and 2. The cal-
culus D works on signed formulas, that is well-formed formu-
las prefixed with one of the signs T (with TA to be read “the
fact A is known at the present world”), F (with FA to be read
“the fact A is not known at the present”), Fl (with FlA to be
read “this is the last world where A is not known”) and Fn

(with FnA to be read “A is not known at the next world”),
and on sets of signed formulas (hereafter we omit the word
“signed” in front of “formula” in all the contexts where no
confusion arises). Formally, the meaning of the signs is pro-
vided by the relation realizability (�) defined as follows: Let
K = 〈P,≤,ρ,�〉 be a model, let α ∈ P , let H be a signed
formula and let S be a set of signed formulas. We say that
α realizes H (respectively α realizes S and K realizes S),
and we write α �H (respectively α � S and K � S), if the
following conditions hold:
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1. α�TA iff α � A;

2. α� FA iff α � A;

3. α� FnA iff there exists β > α such that β � FA;

4. α� FlA iff α� FA and for every β > α, β �TA;

5. α� S iff α realizes every formula in S;

Before to enter into technical details, let us justify the in-
troduction of the signs Fl and Fn in the object language by
means of a motivating case. Let us suppose that a world α of
a model K realizes SF→ = {F(A1 → B1), . . . ,F(An →
Bn)}. Then there exists the last element β ≥ α such that
β�TAj ,FBj , SF→ \{F(Aj → Bj)}. Without loss of gen-
erality we let j = 1. Analogously, there exists an element
γ ≥ β such that γ � TAi,FBi,TA1, SF→ \ {F(A1 →
B1),F(Ai → Bi)}. Without loss of generality we let i = 2.
Now, β < γ or β = γ. If β < γ, then, since β is last el-
ement where FB1 holds, it follows that γ � TB1 holds. If
β = γ, then β is the last element where both B1 and B2 are
not forced. The example shows that we can give a rule (F →)
taking into account that if α�F(Ai → Bi), for i = 1, . . . , n,
then the set {TAi,FBi} is realized in θ ∈ {α, β} and for ev-
ery world γ > θ, γ �TBi holds. The sign Fl aims to codify
such a semantical property of Bi.

Generalizing the case given above, let SF→ = {F(A1 →
B1), . . . ,F(An → Bn)} and let S be a set of formulas. Let
us suppose that α � S, SF→. Then, for i = 1, . . . , n, let us
consider the element βi such that βi�TAi,FBi and for every
γ > βi, γ�TAi,TBi. Thus βi is the maximum element such
that βi�TAi,FBi. Since α�F(Ai → Bi), such an element
βi exists. Let βj = min{β1, . . . , βn}, with j ∈ {1, . . . , n}.
There are two cases: (i) βj = α, then we conclude that β real-
izes the set S,TAj ,FlBj , SF→ \ {F(Aj → Bj)}; (ii) βj >
α, then βj realizes the set Sc,TAj ,FlBj , SF→ \ {F(Aj →
Bj)}, where, by the meaning of the signs, Sc consists of: (i)
the formulas of S signed with T; (ii) the formulas TA such
that FlA ∈ S.

With the aim of reducing the size of the proofs, we add fur-
ther considerations justifying the introduction of the sign Fn.
Let us suppose that beside α � S, SF→ we also know that
for every model β1, . . . , βj−1 > βj holds. This rules out that
βj �TAi,FlBi, for i = 1, . . . , j − 1, and implies that there
exists an element γ such that βj < γ and γ � F(Ai → Bi).
The sign Fn aims to codify that the formulas F(Ai → Bi)
have the following semantical property: there exists an ele-
ment γ such that βj < γ and γ � F(Ai → Bi), thus the ele-
ment βj is not the maximum element realizing F(Ai → Bi).
By the meaning of Fn it follows that βj � Sc,Fn(A1 →
B1), . . . ,Fn(Aj−1 → Bj−1),TAj ,FBj , SF→ \ {F(A1 →
B1), . . . ,F(Aj−1 → Bj−1)}. These are the intuitions justi-
fying the rules Fn and F →. In particular the aim of F →
is to distinguish if the last element realizing F(A → B) is
the same element α realizing the premise or an element β
such that α < β. The rule Fn handles the formulas of the
kind FnA. For every formula there exists a world β such that
α < β and β is the last element such that β � A. The mini-
mum of such β does not force any formula in evidence in the
premise.

The intuition behind the rule Fn can be explained as fol-
lows. Let us suppose that α�S,FnA1, . . . ,FnAu. Thus there
exists βi such that α < βi and βi � FlAi, for i = 1, . . . , u.
We notice that βi realizes all the T formulas in S and βi�TC
if FlC ∈ S. Moreover, if β1 = min{β1, . . . , βu}, then β1 �

FlA1,FA2, . . . ,FAu. If β2 is the minimum and we know
that there is no model realizing α�S,FnA1, . . . ,FnAu hav-
ing β1 as the minimum, then, since β2 < β1 holds, we con-
clude that β2 � FnA1,FlA2,FA3, . . . ,FAu. Analogously,
if βi is the minimum and we know that there is no model re-
alizing α� S,FnA1, . . . ,FnAu having β1,. . . or βi−1 as the
minimum, then, since βi < β1, . . . , βi−1 holds, we conclude
that βi � FnA1,. . . ,FnAi−1,FlAi,FAi+1,. . . ,FAu.

From the meaning of the signs we get the conditions that
make a set of formulas inconsistent. A set S is inconsistent if
one of the following conditions holds:
-{TA,FA} ⊆ S; -{TA,FlA} ⊆ S; -{TA,FnA} ⊆ S;
-{FlA,FnA} ⊆ S; -{FnA,Fl¬B} ⊆ S;
-{FnA,Fl⊥} ⊆ S.
We emphasize that inconsistency conditions involving Fn are
related to the existence of a future world α and in such a α
the other formula of the pair is not realizable. Moreover the
case {FnA,FlA} ⊆ S is redundant since it is subsumed by
{TA,FA} ⊆ S. It is easy to prove the following

Proposition 1. If a set of formulas S is inconsistent, then for
every Kripke model K = 〈P,≤,ρ,�〉 and for every α ∈ P ,
α � S.

Proof. We only consider the case {FnA,Fl¬B} ⊆ S. By
absurd, let us suppose that α�S, then α�Fl¬B and α�FnA.
Since α � FnA, there exists β ∈ P such that α < β. By
definition of Fl, it follows that α � ¬B and for every β ∈ P ,
if α < β, then β � ¬B. Note that such a β exists. Since K
is a linearly ordered Kripke model, by definition of negation
it follows that α � ¬B. Thus we have that α � ¬B and
α � ¬B, absurd. The other cases are easy to prove.

A proof table (or proof tree) for S is a tree, rooted in S
and obtained by the subsequent instantiation of the rules of
the calculus. The premise of the rules are instantiated in a
duplication-free style: in the application of the rules we al-
ways consider that the formulas in evidence in the premise
are not in S. We say that a rule R applies to a set U when it is
possible to instantiate the premise of R with the set U and we
say that a rule R applies to a formula H ∈ U (respectively
the set {H1, . . . , Hn} ⊆ U ) to mean that it is possible to in-
stantiate the premise of R taking S as U \ {H} (respectively
U \ {H1, . . . , Hn}).

A closed proof table is a proof table whose leaves are all in-
consistent sets. A closed proof table is a proof of the calculus
and a formula A is provable iff there exists a closed proof ta-
ble for {FlA}. Note that deductions in our proof system start
with a formula signed with Fl. This corresponds to suppose
that there exists the last element of a Kripke model where A
is not forced. In the tableau systems the deduction starts with
FA, that corresponds to suppose that there exists an element,
not necessarily the last, of a Kripke model such that A is not
forced. We refer to [Hähnle, 2001] for full details on tableaux
systems.
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S,T(A ∧ B)

S,TA,TB
T∧

S,F(A ∧ B)

S,FA|S,FB
F∧

S,T¬(A ∧ B)

S,T¬A|S,T¬B
T¬∧

S,T¬¬(A ∧ B)

S,T¬¬A,T¬¬B T¬¬∧

S,T(A ∨ B)

S,TA|S,TB
T∨

S,F(A ∨ B)

S,FA,FB
F∨

S,T¬(A ∨ B)

S,T¬A,T¬B T¬∨
S,T¬¬(A ∨ B)

S,T¬¬A|S,T¬¬B
T¬¬∨

S,F¬A
S,T¬¬A F¬

S,T¬¬¬A
S,T¬A T¬¬¬

S,T¬(A→ B)

S,T¬¬A,T¬B T¬→
S,T¬¬(A→ B)

S,T¬A|S,T¬¬B
T¬¬→

S,TA,T(A→ B)

S,TA,TB
MP

S,T((A ∧ B)→ C)

S,T(A→ (B → C))
T→∧

S,T(¬A→ B)

S,T¬¬A|S,TB
T→¬

S,T((A ∨ B)→ C)

S,T(A→ p),T(B → p),T(p→ C)
T→∨, with p a new atom

S,T((A→ B)→ C)

S,F(A→ p),T(p→ C),T(B → p)|S,TC
T→→, with p a new atom

S,Fl(A ∨ B)

S,FA,FlB|S,FB,FlA
Fl∨

S,F(A→ B)

S,TA,FlB|S,Fn(A→ B)
F→

S,Fl(A→ B)

S,TA,FlB
Fl→

S,Fl(¬A)

Scl,TA
Fl¬

S,Fl(A ∧ B)

S,FlA,FlB|S,FlA,TB|S,TA,FlB
Fl∧

S,T(A→ B)

Scl,T¬A|S,TB
T→-cl

S,T¬¬A
S,TA

T¬¬-cl

provided S only contains T-formulas

where Scl = {TA|TA ∈ S} ∪ {T¬A|FA ∈ S} ∪ {T¬A|FlA ∈ S}

Figure 1: The invertible rules of D.

S,T¬¬A
Scl,TA|Sφ,TA

T¬¬-Atom, provided S does not contain Fn-formulas.

where
Sφ = {TA|TA ∈ S} ∪ {TA|FlA ∈ S} and
Scl = {TA|TA ∈ S} ∪ {T¬A|FA ∈ S} ∪ {T¬A|FlA ∈ S};

S,FnA1, . . . ,FnAu

V1| . . . |Vj | . . . |Vu

Fn

where:
for j = 1, . . . , u, Vj = Sc ∪ {FnA1, . . . ,FnAj−1,FlAj ,FAj+1, . . . ,FAu};
Sc = {TA|TA ∈ S} ∪ {TA|FlA ∈ S};

Figure 2: The non-invertible rules of D.

S,F(A → B),FlB

S,TA,FlB
F→1

S,TA

S[A/�],TA
ReplaceT

S,Fl⊥
Scl

Fl⊥,
S,FnA,FlB

S,FnA[B/�],FlB
ReplaceFl

Figure 3: Optmization rules

3 Correctness, completeness and termination

To obtain the correctness of D with respect to Dummett logic,
we proceed by showing that the existence of a proof table
for {FlA}, implies the validity of A in Dummett logic. The

main step consists in establishing that the rules of the calculus
preserve realizability:

Proposition 2. For every rule of D, if a model realizes the
premise, then there exists a model realizing at least one of the
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conclusions.

The correctness of rule Fn proceeds following the consid-
erations given in previous section to justify the introduction of
Fn and is similar to the proof given in [Avellone et al., 1999].
Some other cases are given in [Fiorino, ]. We emphasize that
rule T¬¬-Atom is correct also when A is not an atom.

Theorem 1. If there exists a closed proof table for A, then A
is valid in Dum.

Proof. By hypothesis there exists a proof table starting from
{FlA} whose leaves are all inconsistent sets. An inconsistent
set is not realizable and the rules of D preserve the realizabil-
ity, thus FlA is not realizable. By absurd, let us suppose that
there exist a model K = 〈P,≤,ρ,�〉 and a world α ∈ P such
that α � A. Then, there exists β ∈ P s.t. α ≤ β, β � A
and for every γ ∈ P s.t β < γ, γ � A holds. Thus β � FlA
and, since the rules of D preserve the realizability, the leaves
of the proof table are realized, which is impossible. We con-
clude that that for every model K = 〈P,≤,ρ,�〉 and every
α ∈ P , α � A, that is A is valid in Dum.

As regard the completeness, the calculus contains two non-
invertible rules. It is possible to devise a complete strategy
that relies on respecting a particular sequence in the appli-
cation of the rules: T¬¬-Atom is applied if no other rule is
applicable and Fn is applied if no other rule but T¬¬-Atom
is applicable. We remark that Fn-formulas are introduced by
rule F →, thus their main connective is the implication. Rules
Fn and T¬¬-Atom apart, the other rules of D are invertible,
thus they are applicable at any point of the deduction without
affecting the completeness. We conclude that it is possible to
devise a decision procedure based on D where no backtrack-
ing step is necessary (see [Fiorino, ] for the details).

By inspecting the rules of the calculus it follows that the
procedure terminates. In particular the rightmost conclusion
of the rule F → only change the sign of the formula in evi-
dence in the premise, but we remark that the rule Fn handles
these kind of formulas, thus the combined action of F →,
Fn and Fl → allows us to prove that there is no an infinite
loop due to the handling F →-formulas. Moreover, by the
structure of the rules T¬¬∧, T¬¬∨, T¬¬ → and T¬¬¬,
it follows that rules F¬ and T¬ → do not cause an infinite
loop. Finally, if we split the rules F¬ and T¬ → in different
cases according to A, by following [Fiorino, 2001] we can
prove that the depth of every proof table of D is linear in the
size of the formula to be proved.

4 Optimization rules and implementation

Additional rules can be introduced to D. Although unnec-
essary for completeness, in practice, they can be useful to
reduce the search space. We discuss them in the follow-
ing. The aim of the sign Fl is to label those formulas that
after an application of Fn become equivalent to �. As a
matter of fact, after an application of the rule Fn, the for-
mulas signed with Fl become signed with T, thus they
are equivalent to �. Hence the rule ReplaceT of Fig. 3
is applicable. The occurrences of � are removed by us-
ing the well-known boolean simplification rules [Fiorino, ;

Massacci, 1998]. The rule ReplaceT and the boolean simpli-
fication rules are examples of optimization rules allowing in
many circumstances the reduction of search space. Another
example is the rule ReplaceFl, that exploits the meaning of
Fl and Fn to perform a replacement: if α�FnA,FlB holds,
then we conclude β � FA,TB, with β immediate successor
of α. Thus β � FA[B/�] and α � FA[B/�] hold. Com-
pared with the calculus in paper [Fiorino, 2010], introducing
the sign Fl has a price: proof tables can be wider, because of
the combined action of F → and Fn. To reduce this problem
there is the rule F →1, which is not necessary to the com-
pleteness and represents another example of optimization rule
that exploits the information conveyed by the Fl-formulas. To
better exploit Fl-formulas, D can be extended with the sign
Tn: Let K = 〈P,≤,ρ,�〉 be a model and let α ∈ P , α�TnA
holds iff for every β > α, β � TA. Given a set S, a fur-
ther inconsistent condition is {FnA,Tn⊥} ⊆ S. The sign
Tn makes explicit the semantical status of Fl-formulas in the
next worlds. It is a derived sign and to get the completeness it
is not necessary to provide rules to handle Tn-formulas. The
sign Tn allows to draw conclusions about the next world, as
an example:

S,T¬A,TnB

S,T¬A[B/�],TnB
ReplaceTn−special

provided a Fn-formula is in S
S,TA,FlB

S,TA,TnA[B/�],FlB
ReplaceFl−dup

S,TA,TnB

S,TA,TnA[B/�],TnB
ReplaceTn−dup

Note that ReplaceTn-dup and ReplaceFl-dup copy the
premise TA, thus loop-free mechanisms need to be imple-
mented.

We have developed a prolog prototype based on the exten-
sion of D as described above, where to avoid infinite loops in
the application of ReplaceFl-dup and ReplaceTn-dup a spe-
cial labelling on the copied formulas is implemented. In Fig. 4
the implementations LC-cmodels [Larchey-Wendling, 2007],
EPDL [Fiorino, 2010] and our prototype, called Dum-prover,
are compared on the formulas of ILTP library [Raths et al.,
2007]. We see that on many formulas Dum-prover outper-
forms EPDL. As regard family formulas SYJ202, the pigeon
principle, the two provers produce the same proof.

5 Conclusions and future work

We have presented a calulus based on the idea that to prove a
given formula A, the refutation starts by supposing that there
exists the last world where A is not forced. The consequence
of this semantical assumption is a calculus having rules that
draw deductions about the (immediate) future and rules ex-
ploiting the information about facts known in the future to
deduce information about the present. We have also devel-
oped the prolog prototype Dum-prover whose timings out-
performs EPDL and LC-cmodels and show that the calculus
is suitable to perform practical automated deduction in propo-
sitional Dummett logic. As regard to possible extensions, we
plan to modify D to be able to decide n-valued Gödel log-
ics by bounding the number of applications of non-invertible
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Formula LC-cmodels EPDL Dum-prover
SYJ201+1.002 43.16 0.21 0.02
SYJ201+1.003 362 2.73 0.06
SYJ201+1.004 2183 33.63 0.11
SYJ201+1.005 12186 358.07 0.19

SYJ202+1.004 4.16 0.12 0.16
SYJ202+1.005 43.79 1.02 1.34
SYJ202+1.006 N.A. 9.32 12.60
SYJ202+1.007 N.A. 100 131.15

SYJ205+1.009 N.A. 12.04 0.57
SYJ205+1.010 N.A. 30.44 0.75
SYJ205+1.011 N.A. 75.57 1.04
SYJ205+1.012 N.A. 187.17 1.28

SYJ207+1.003 46 0.27 0.03
SYJ207+1.004 200 3.33 0.07
SYJ207+1.005 805 37.78 0.11
SYJ207+1.006 3280 419.80 0.29

Formula LC-cmodels EPDL Dum-prover
SYJ208+1.009 N.A. 6.55 1.40
SYJ208+1.010 N.A. 14.75 2.51
SYJ208+1.011 N.A. 30.06 4.09
SYJ208+1.012 N.A. 71.28 6.84

SYJ211+1.017 381 0.17 0.45
SYJ211+1.018 458 0.20 0.51
SYJ211+1.019 522 0.22 0.59
SYJ211+1.020 589 0.26 0.68

SYJ212+1.011 N.A. 0.25 0.05
SYJ212+1.012 N.A. 0.49 0.05
SYJ212+1.013 N.A. 1.18 0.05
SYJ212+1.014 N.A. 2.22 0.06

Figure 4: LC-cmodels, EPDL and Dum-prover on ILTP formulas.

rules inside proof-search branches. Finally, by exploiting the
semantics of the sign Fl, we are working to develop a loop-
free tableau calculus for propositional Dummett logic having
the subformula property.
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