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Abstract

Existential rules, i.e. Datalog extended with exis-
tential quantifiers in rule heads, are currently stud-
ied under a variety of names such as Datalog+/–,
∀∃-rules, and tuple-generating dependencies. The
renewed interest in this formalism is fuelled by
a wealth of recently discovered language frag-
ments for which query answering is decidable. This
paper extends and consolidates two of the main
approaches in this field – acyclicity and guard-
edness – by providing (1) complexity-preserving
generalisations of weakly acyclic and weakly
(frontier-)guarded rules, and (2) a novel formal-
ism of glut-(frontier-)guarded rules that subsumes
both. This builds on an insight that acyclicity can
be used to extend any existential rule language
while retaining decidability. Besides decidability,
combined query complexities are established in all
cases.

1 Introduction

Rule-based knowledge representation has a long-standing
history in AI and related areas such as databases and infor-
mation systems. Function-free first-order Horn logic (also re-
ferred to as Datalog) as one of the central paradigms, how-
ever, has been criticised for its inability of stating or inferring
the existence of domain entities not previously introduced
as constants [Patel-Schneider and Horrocks, 2007]. Existen-
tial rules, i.e. Datalog extended by value invention capabil-
ities realised by existential quantifiers in rule heads, over-
come this restriction and are currently studied under a vari-
ety of names such as Datalog+/–, ∀∃-rules, and – primarily
in the database community – tuple-generating dependencies
(TGDs) [Baget et al., 2010; 2009; Calì et al., 2010a; 2010b;
2009; 2008; Fagin et al., 2005; Deutsch and Tannen, 2003].
The recent interest in this formalism marks the convergence
of two paradigms of knowledge representation research that
used to be rather separated: rule-based approaches and ontol-
ogy languages.

This new ground was found to be very fertile, as witnessed
by the above works’ discoveries of many new rule languages
for which query answering is decidable. Widely varying data
and combined complexities underline the richness of the field.

Examples of application areas for this new family of knowl-
edge representation languages range from data exchange and
data integration [Fagin et al., 2005] to ontological data ac-
cess in the spirit of the ontology languages of the DL-Lite
family [Calì et al., 2009; Calvanese et al., 2007]. The wealth
of recent contributions supports the development of such ap-
plications, but also calls for a more unified view on the exist-
ing proposals, their exact relationships, and formal properties.
This is the general incentive for this work.

Concretely, we extend and consolidate two of the main no-
tions commonly employed to ensure decidability: acyclicity
and guardedness. The main contributions are as follows.

1. We extend weak acyclicity and weak (frontier-) guard-
edness to obtain joint acyclicity and joint (frontier-)
guardedness. Both extensions use the observation that
the existing notions over-estimate how far values can be
passed on within a rule set, and that there is a refined
criterion that still can be checked in polynomial time.

2. We present a new method of eliminating existential
quantifiers from jointly acyclic rule sets. The approach
incurs an exponential blow-up but is still worst-case op-
timal. The relevance of the method stems from the in-
sight that a partial application of the procedure can also
simplify rule sets that are not jointly acyclic.

3. We apply this observation to combine guardedness and
acyclicity in the language of glut-(frontier-)guarded
rules, based on identifying glut variables that may rep-
resent an overabundance of “existentially invented” val-
ues. Only glut variables remain affected by existential
quantifiers after applying the elimination method intro-
duced for jointly acyclic rules.

An important insight of this work therefore is that a very gen-
eral notion of acyclicity can be combined “modularly” with
existing rule languages without losing decidability. Jointly
frontier-guarded rules serve us as an example for this con-
struction, and illustrate that further studies are needed to de-
termine the exact complexity of reasoning in each case. We
determine exact combined worst-case complexities for all
rule languages introduced herein.

Section 2 provides the preliminaries and reviews the exist-
ing results in the field. We then motivate and introduce the
notion of joint acyclicity in Section 3, and present a generic
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way of eliminating jointly acyclic variables in Section 4. Sec-
tion 5 introduces jointly frontier-guarded rules, and Section 6
combines all previous ideas to obtain glut-(frontier-)guarded
rules for which the combined complexity of query answering
is shown to be 3ExpTime-complete. Section 7 concludes. An
extended version of this paper that contains detailed proofs is
available as technical report [Krötzsch and Rudolph, 2011].

2 Existential Rules

We now provide the basic notions of the logical framework
we consider, followed by an overview of a number of impor-
tant approaches in this area.

Definition 1 Consider a signature 〈C,P,V〉 consisting of a
finite set of constant symbols C, a finite set of predicates
P, and an infinite set of variables V, all of which are mu-
tually disjoint. A function ar : P → N associates a natu-
ral number ar(r) with each predicate r ∈ P that defines the
arity of r. The set of positions of a predicate r is the set
Πr = {〈r, 1〉, . . . , 〈r, ar(r)〉}.
• A term is a variable x ∈ V or a constant c ∈ C.

• An atom is a formula of the form r(t1, . . . , tn) if t1, . . . , tn
are terms, and r ∈ P is a predicate with ar(r) = n.

• An existential rule (or simply rule in the context of this
paper) is a formula of the form

∀x.
(
B1 ∧ . . . ∧ Bk → ∃y.H1 ∧ . . . ∧ Hl

)
,

where B1, . . . , Bk,H1, . . . ,Hl are atoms all of whose
variables are in the scope of some quantifier, and where
no variable occurs more than once in x, y.1 We use sets
of atoms as a convenient notation for conjunctions of
atoms. A Datalog rule is a rule with no existential quan-
tifiers. A rule with k = 0 is called a fact (a conclusion
that is unconditionally true), and a rule with l = 0 is
called a constraint (a premise that must never be true).

The premise of a rule is called the body while the conclusion
is called the head. Since all variables in rules are quantified,
we will often omit the explicit preceding universal quantifier.

A rule set Σ is renamed apart if each variable name is
bound in at most one quantifier in Σ.

The rule language hereby introduced is a syntactic frag-
ment of first-order predicate logic, and we consider it under
the according semantics. This also means that every rule set
is semantically equivalent to one that is renamed apart. More-
over, note that we do not exclude non-safe rules, i.e. rules
with universally quantified variables that occur in the head
but not in the body; all of our results apply in any case.

Definition 2 Let Σ be a set of rules. We call Σ satisfiable if it
has a model according to the standard semantics of first-order
logic. Two rule sets Σ and Σ′ are equisatisfiable if either both
or none of them is satisfiable. A boolean conjunctive query
(BCQ) is a formula ∃v.Q where Q is a conjunction of atoms
and v contains all variables in Q. A BCQ ∃v.Q is entailed by
Σ if it is entailed under standard first-order logic semantics.

1We freely use x, t, etc. to denote vectors of the form 〈x1, . . . , xn〉,
〈t1, . . . , tn〉, etc. throughout this paper.

Checking satisfiability and BCQ entailment for unre-
stricted existential rules is undecidable [Chandra et al.,
1981b; Beeri and Vardi, 1981] even with very strong restric-
tions on the vocabulary or the number of rules [Baget et al.,
2010]. Therefore, a large body of work has been devoted to
the identification of restricted rule languages which retain
decidability and still allow for sufficient expressiveness. A
generic tool for establishing decidability results is the chase
introduced by Maier et al. [1979] and extended to query con-
tainment by Johnson and Klug [1982]. Intuitively the chase
procedure starts with a given set of factual data (ground facts)
and “applies” rules in a production rule style by introducing
new domain elements whenever required by an existentially
quantified variable in a rule head. In general, termination of
this procedure cannot be guaranteed, and an infinite set of
new domain elements and facts may be created.

Many of the decidable rule classes come about by estab-
lishing properties about the chase they create. Finiteness of
the chase is a straightforward criterion for ensuring decidabil-
ity, and rule sets with this property are called finite extension
sets [Baget et al., 2010]. This criterion is undecidable in gen-
eral, but several sufficient conditions on rule sets for chase-
finiteness have been identified. Pure Datalog (also known as
full implicational dependencies [Chandra et al., 1981b] or to-
tal TGDs [Beeri and Vardi, 1981]) is an immediate case, as
no new domain elements are created at all. A more elabo-
rate concept is (weak) acyclicity [Deutsch and Tannen, 2003;
Fagin et al., 2005] which we review and extend in Section 3.
Another approach that pursues a similar goal by different
means is to require acyclicity of the graph of rule dependen-
cies introduced by Baget et al. [2009].

An even more relaxed condition than finiteness of the chase
is that the (possibly infinite) chase enjoys a variant of the
bounded treewidth property, leading to bounded treewidth
sets [Baget et al., 2010]. Decidability of BCQ entailment fol-
lows from known decidability results for first-order logic the-
ories with the bounded treewidth model property [Courcelle,
1990]. Again rules with this property are not recognisable in
general, but a variety of sufficient conditions has been estab-
lished. The most prominent examples are a number of guard-
edness conditions that we review and extend in Section 5.

Independently of the chase, other decidability criteria can
be established by considering rewritings of the query in a
backward-chaining manner. In analogy to the finite chase
condition, one can define finite unification sets where this
rewriting procedure terminates and yields a finite set of
rewritten queries [Baget et al., 2010]. First-order rewritability
also implies a sub-polynomial AC0 data complexity for BCQ
entailment checking. Again, recognising finite unification
sets is undecidable, and various decidable sublanguages are
known. Examples include atomic-hypothesis rules and do-
main restricted rules [Baget et al., 2010], linear Datalog+/–
[Calì et al., 2009], sticky sets of TGDs, and sticky-join sets of
TGDs [Calì et al., 2010a; 2010b].

3 Joint Acyclicity

This section introduces joint acyclicity, which is a proper
generalisation of the following notion of weak acyclicity
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[Deutsch and Tannen, 2003; Fagin et al., 2005].

Definition 3 For a set of rules Σ, the dependency graph is a
directed graph that has the positions of predicates in Σ as its
nodes. For every rule ρ ∈ Σ, and every variable x at position
〈r, p〉 in the head of ρ, the graph contains edges as follows:
• If x is universally quantified, and x occurs in a body

atom at position 〈s, q〉, there is an edge from 〈s, q〉 to
〈r, p〉.
• If x is existentially quantified, and the body of ρ contains

a (necessarily universally quantified) variable y at 〈s, q〉,
then there is a special edge from 〈s, q〉 to 〈r, p〉.2

Σ is weakly acyclic if its dependency graph has no cycle going
through a special edge.

Intuitively, non-special edges encode the possible passing
of values in bottom-up reasoning, whereas special edges
encode the dependency between the premise that a rule was
applied to and the new individuals that the application of this
rule entails. A cycle over special edges may indicate that
newly invented values can recursively be used in premises
which require the invention of further values ad infinitum.
For instance, the rule

r(x, y)→ ∃z.r(y, z) (1)
may lead to the construction of an infinite r-chain of new el-
ements, and indeed the dependency graph has a special edge
from 〈r, 2〉 to itself. But weak acyclicity also excludes cases
where no infinite recursion would occur:

r(x, y) ∧ c(y)→ ∃z.r(y, z) (2)

The dependency graph contains the same cycle as before, yet
the rule cannot be applied recursively since invented values
are not required to belong to c. Note that this remains true
even if there are other rules with existentially quantified vari-
ables at 〈c, 1〉. We capture this by shifting our focus from po-
sitions to variables (which can occur in multiple positions):

Definition 4 Consider a renamed apart set of rules Σ. For a
variable x, let ΠB

x (ΠH
x ) be the set of all positions where x

occurs in the body (head) of a – necessarily unique – rule.
Now for any existentially quantified variable, let Ωx be the
smallest set of positions such that (1) ΠH

x ⊆ Ωx, and (2) ΠH
y ⊆

Ωx for every universally quantified variable y with ΠB
y ⊆ Ωx.

The existential dependency graph of Σ has the existentially
quantified variables of Σ as its nodes. There is an edge from x
to y if the rule where y occurs contains a universally quanti-
fied (body) variable z with ΠB

z ⊆ Ωx. Σ is jointly acyclic if its
existential dependency graph is acyclic.

ThusΩx contains the positions in which values invented for
x may appear. This captures the effect of non-special edges in
Definition 3, whereas special edges correspond to edges in
the existential dependency graph. Definition 3 is obtained by
modifying condition (2) in Definition 4 to requireΠB

y ∩Ωx � ∅
instead ofΠB

y ⊆ Ωx. This states that a value is propagated by a

2The definition of Fagin et al. [2005] is slightly more general by
requiring y to also occur in the head. Here we want to focus on the
main idea of acyclicity. Our glut-frontier-guarded rules in Section 6
then properly generalise the original form of weak acyclicity.

rule if it satisfies some – instead of all – of the rule’s premises.
Joint acyclicity therefore appears to be more natural.

The following rule is jointly acyclic (as a singleton set) but
not weakly acyclic: its existential dependency graph has no
edges while its dependency graph is a clique of special edges.

r(x, y)∧ s(x, y)→∃v,w.r(x,v)∧ r(w, y)∧ s(x,w)∧ s(v, y) (3)
In spite of this generalisation, joint acyclicity is easy to

recognise. Detecting cycles in a directed graph and checking
inclusion of a position in Ωx is possible in polynomial time.
The latter problem is also hard for P since propositional Horn
logic entailment can be expressed using unary predicates with
a single variable to encode propositions.

Another generalisation of weak acyclicity, called Super-
weak acyclicity (SwA), has been proposed in [Marnette,
2009]. SwA is more general than joint acyclicity as it uses
function symbols and unification to exclude some additional
cases of value propagation. It remains open how our results
can be extended to SwA.

4 Reducing Jointly Acyclic Variables

We now present a method for eliminating existential quanti-
fiers from rule sets. Applied iteratively to jointly acyclic rules,
this procedure yields a Datalog program that faithfully rep-
resents all consequences of the original rule set. This estab-
lishes decidability and optimal complexity bounds for jointly
acyclic rules. For the general case, the procedure still allows
semantically faithful simplifications of rules that can be used
to extend other decidable rule languages as in Section 6.

Our transformation simulates Skolemisation, the replace-
ment of existentially quantified variables with Skolem terms,
where we “flatten” function terms to represent them in Dat-
alog. For example, Skolemising the rule r(x, y) → ∃v.s(x, v)
yields r(x, y)→ s(x, f (x, y)) where f is a fresh function sym-
bol. We express this without functions by considering f as
a constant and replacing s by a predicate s′ of higher arity:
r(x, y) → s′(x, f , x, y). Other predicates may need to be ex-
tended analogously in positions where the Skolem term might
be relevant; those are exactly the positions in Ωv. Conversely,
some uses of s may not require all the new positions, and we
use a special symbol � as a filler. For example, a fact s(a, b)
is represented as s′(a, b,�,�).
Definition 5 Consider a renamed apart rule set Σ, such that
there is an existentially quantified variable x that does not
have incoming edges in the existential dependency graph.

Let k be the number of universally quantified variables in
the rule containing x. For a predicate r define nr to be the
cardinality of the set {〈r, p〉 ∈ Ωx | 1 ≤ p ≤ ar(r)}. If nr > 0
let r̂ denote a fresh predicate of arity ar(r̂) = ar(r) + nrk; if
nr = 0 let r̂ denote r. Let f and � be fresh constant symbols.
Σx is the set of rules that contains, for each rule ρ ∈ Σ, the

rule ρx that is obtained by replacing each atom r(t1, . . . , tar(r))
in ρ by the atom r̂(s1, . . . , sar(r)) where the term vectors si are
defined as follows:
• If 〈r, i〉 � Ωx then si � ti.

For the remaining cases, assume that 〈r, i〉 ∈ Ωx.
• If ti = x then si � 〈 f , y1, . . . , yk〉 where y1, . . . , yk are all

universally quantified variables in the rule.
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• If ti = y is universally quantified and occurs only in po-
sitions in Ωx, then si � 〈y0, y1, . . . , yk〉 where the same
fresh universally quantified variable names y j are used
in all replacements of y but nowhere else.
• In all other cases, si � 〈ti,�, . . . ,�〉 where this is a vec-

tor of length k + 1.
Quantifiers for ρ are updated accordingly: new universal
quantifiers are introduced for all variables of the form y j, and
the existential quantifier for x is deleted.

For a boolean conjunctive query ∃v.Q over the signature of
Σ, the BCQ ∃v.Qx is defined as the body of the rule Qx → ob-
tained by applying the above transformation to the rule Q→.

Note that this definition is well. In particular, for each r we
find that nr of the vectors si are of length k + 1, and all others
are of length 1, yielding the required ar(r)+ nrk arguments of
r̂. Applying this transformation to v in rule (3), we have k = 2
and Ωv = {〈r, 2〉, 〈s, 1〉}, and so obtain:

r̂(x, y,�,�) ∧ ŝ(x,�,�, y)→ ∃w.r̂(x, f , x, y) ∧ r̂(w, y,�,�) ∧
ŝ(x,�,�,w) ∧ ŝ( f , x, y, y) (4)

Next, we state the main correctness result for this transforma-
tion. The respective proof in [Krötzsch and Rudolph, 2011]
directly shows equisatisfiability using suitable model trans-
formations. This is not hard to formalise after observing the
correspondence of domain elements in models of Σ on the one
hand, and vectors of such elements – corresponding to term
vectors si in Definition 5 – in models of Σx on the other.

Theorem 1 Given a set of rules Σ and a variable x as in Def-
inition 5, Σ is satisfiable if and only if Σx is satisfiable. More-
over, a BCQ ∃v.Q over the signature of Σ is entailed by Σ if
and only if ∃v.Qx is entailed by Σx.

We can thus apply Definition 5 iteratively, where Theo-
rem 1 ensures that correctness is preserved. It is important
that the iterative reduction also preserves joint acyclicity:

Theorem 2 Consider a rule set Σ, and a variable x as in
Definition 5. The variables y � x without incoming edges in
the existential dependency graph of Σ do not have incoming
edges in the existential dependency graph of Σx either. More-
over, Σ is jointly acyclic if and only if Σx is jointly acyclic.

The previous theorem ensures that the set of variables that
can be eliminated by applying Definition 5 iteratively is not
affected by the order in which variables are reduced in case
there is more than one variable without incoming edges. Yet,
iterative reductions may yield syntactically different results
depending on the order of application. This non-determinism
is inessential for our considerations, so we use ja(Σ) to denote
an arbitrary but fixed rule set obtained by iteratively applying
Definition 5 until it is no longer applicable.

Theorem 3 If Σ is a jointly acyclic, renamed apart set of
rules Σ then ja(Σ) is a Datalog program.

Before stating the main complexity result of this section,
we provide a more precise estimate of the increase in size that
is caused by the transformation. Importantly, the exponential
blow-up is caused by chains of dependencies in the existential
dependency graph, not by the size of the rule set in general.

Theorem 4 Given a renamed apart rule set Σ, the set ja(Σ)
contains the same number of rules as Σ, and the same number
of head and body atoms in each rule. The number of variables
per rule in ja(Σ) is bounded by a function that is exponential
in the maximum directed path length in the existential depen-
dency graph of Σ, and polynomial in the size of Σ.

Theorem 5 Deciding whether a BCQ is entailed by a jointly
acyclic set of rules is 2ExpTime-complete for combined com-
plexity, ExpTime-complete if the maximal length of a path in
the existential dependency graph is bounded, and P-complete
in data complexity.

5 Jointly Frontier-Guarded Rules

A large class of existential rules for which query answering
is decidable are based on the idea of guardedness [Andréka
et al., 1998], the requirement that all or some of the univer-
sally quantified variables of a rule appear together in a single
“guard” atom. Requiring guards only for variables that also
appear in the head (the “frontier”) yields frontier-guarded
rules [Baget et al., 2010]. Both notions can be generalised by
not requiring guards for variables that cannot possibly rep-
resent existentially introduced elements. This idea has been
used to arrive at weakly guarded rules [Calì et al., 2008] and
weakly frontier-guarded rules [Baget et al., 2010]. In this sec-
tion, we generalise the latter to fit more naturally to our defini-
tions in Section 3, and we establish basic complexity results.

Definition 6 Consider a set of rules Σ. A position 〈r, i〉 is af-
fected if (1) Σ contains an existentially quantified variable on
position 〈r, i〉, or (2) Σ contains a universally quantified vari-
able x on position 〈r, i〉 in the head of a rule where x occurs
on an affected position in its body. A position 〈r, i〉 is jointly
affected if 〈r, i〉 ∈ Ωx for a variable x in Σ (see Definition 4).

A variable x in a rule ρ = ∀x.ϕ → ∃y.ψ ∈ Σ is universal if
it occurs in x, affected if it occurs on some affected position
in ϕ, jointly affected if it occurs only on jointly affected posi-
tions in ϕ, frontier if it occurs ϕ and in ψ. The sets of all such
variables are denoted Xu

ρ , Xa
ρ , Xja

ρ , Xf
ρ.

The rule ρ is X-guarded for a set X of variables, if all
x ∈ X occur together in one atom in ϕ. Relevant notions
are: guarded (X = Xu

ρ), frontier-guarded (X = Xf
ρ), weakly

guarded (X = Xa
ρ), weakly frontier-guarded (X = Xa

ρ ∩ Xf
ρ),

jointly guarded (X = Xja
ρ ), jointly frontier-guarded (X =

Xja
ρ ∩ Xf

ρ). The set Σ is X-guarded if all rules ρ ∈ Σ are.

The relation of these notions follows from the observation
that Xu

ρ ⊇ Xf
ρ and Xu

ρ ⊇ Xa
ρ ⊇ Xja

ρ , e.g. every weakly guarded
rule is also jointly frontier-guarded. The combined complex-
ity of BCQ answering for guarded and weakly guarded rules
is known to be 2ExpTime-complete [Calì et al., 2008]. Hard-
ness carries over to the frontier-guarded cases, but upper com-
plexity bounds for these languages have been open until very
recently. We cite the following result from Baget et al. [2011].

Proposition 1 Deciding whether a BCQ is entailed by a
frontier-guarded set of rules is 2ExpTime-complete for com-
bined complexity.
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Baget et al. [2011] further show that BCQ answering for
weakly frontier-guarded rules is in 2ExpTime. Here, we ex-
tend this result to our new notion of jointly guarded and
jointly frontier-guarded rules. We observe that variables that
are not jointly affected may never represent elements that are
introduced existentially. Hence, their assignments correspond
to constant symbols that could be substituted instead. A naive
use of this idea yields exponentially many partially grounded
rules with constants used in all possible combinations.

A polynomial reduction is possible by extending the argu-
ments of all predicates to contain parameters for all variables
that are not jointly affected. These parameters then guard all
such variables in rules. Bindings for the added parameters can
only be inferred by auxiliary rules that allow arbitrary con-
stants to be substituted for variables. These ideas are com-
bined to the following definition.

Definition 7 For a renamed apart rule set Σ, let z =
〈z1, . . . , zn〉 be a list of all variables in Σ that are not jointly
affected, and let r̃ be a fresh predicate of arity ar(r) + n for
each predicate r of Σ. The rule set guard(Σ) consists of:

(1) for each rule ρ ∈ Σ with non-empty body, a rule ρ′ ∈
guard(Σ) obtained by replacing each atom r(t1, . . . , tar(r))
(with terms ti) by r̃(t1, . . . , tar(r), z1, . . . , zn), where all vari-
ables zi are universally quantified,

(2) for each rule ρ ∈ Σ with empty body (i.e. gener-
alised fact), a rule ρ′ ∈ guard(Σ) obtained by re-
placing each atom r(t1, . . . , tar(r)) (with terms ti) by
r̃(t1, . . . , tar(r), c, . . . , c) where c is an arbitrary constant,

(3) for each predicate r of Σ, each i ∈ {1, . . . , n}, and each
constant symbol c, a rule

r̃(x1, . . . , xar(r), z1, . . . , zi, . . . , zn)
→ r̃(x1, . . . , xar(r), z1, . . . , c, . . . , zn),

(4) for each predicate r of Σ, a rule

r̃(x1, . . . , xar(r), z1, . . . , zn)→ r(x1, . . . , xar(r)),

where all variable names xi are fresh.

The next theorem shows the correctness of this transfor-
mation. The proof in [Krötzsch and Rudolph, 2011] directly
transforms models of Σ into models of guard(Σ), and vice
versa, restricting to minimal models in the latter case.

Theorem 6 A BCQ ∃v.Q is entailed by a renamed apart rule
set Σ iff ∃v.Q is entailed by guard(Σ).

The following theorem is easily obtained by summing up
the above results.

Theorem 7 Deciding whether a BCQ is entailed by a jointly
guarded or jointly frontier-guarded set of rules is 2ExpTime-
complete for combined complexity.

6 Joining Acyclicity and Guardedness

The iterative reduction in Section 4 hints at a much wider ap-
plicability of the idea of joint acyclicity, since it allows for
the elimination of some existential quantifiers even in rule
sets that are not jointly acyclic. This is useful if the reduced
rule set belongs to a rule language for which decidability of

reasoning has been established on other grounds. In this sec-
tion, we illustrate this idea by combining acyclicity with joint
(frontier-)guardedness, and establish tight complexity bounds
for related reasoning tasks.

Using the terminology of Section 5, we can say that Defi-
nition 5 eliminates jointly affected variables. To be more pre-
cise, we say that a variable in a renamed apart rule set Σ is a
glut variable if it occurs in a set Ωx as in Definition 5 for a
variable x that is part of a cycle in the existential dependency
graph. Intuitively, glut variables may represent an overabun-
dance of values, as opposed to the remaining, non-glut vari-
ables that can only represent finitely many values. Clearly, the
iterative application of Definition 5 then turns non-glut vari-
ables into variables that are not jointly affected. This leads to
a further generalisation of guardedness:

Definition 8 A renamed apart rule set Σ is glut-guarded
(glut-frontier-guarded) if each rule of Σ has a body atom that
contains all glut variables (that also occur in the head).

This definition is illustrated in the following example of a
glut-frontier-guarded rule set, where c, intuitively speaking,
marks persons that are “specifically important” for us:

c(x) ∧ ancestor(x, ẏ) ∧ ancestor(ẏ, ż)→ ancestor(x, ż) (5)
parent(ẋ, ẏ)→ ancestor(ẋ, ẏ) (6)

c(x)→ person(x) (7)
person(ẋ)→ ∃ẇ.parent(ẋ, ẇ) ∧ person(ẇ) (8)

sibling(x, y)→ ∃v.parent(x,v) ∧ parent(y,v) ∧ c(v) (9)
parent(ẋ, y) ∧ sibling(y, z)→ uncle(ẋ, z) (10)

Information about c, parent, and sibling would be given in
facts, while the remaining predicates are derived only. The ex-
istential dependency graph has two edges v→ w and w→ w,
where the latter cycle follows from (8). Glut variables thus
are those occurring only on positions of Ωw; they are marked
by a dot in the example. It is easy to verify that the exam-
ple is glut-frontier-guarded. Note how c is used to make x in
rule (5) non-glut, thus allowing a form of transitivity – a typ-
ical counter-example for all common types of guardedness.
Furthermore, transitivity is not first-order rewritable, thus ex-
cluding the example from all types of finite unification sets
reviewed in Section 2. Rule (10) is another illustration of the
increased expressive power, since it is neither jointly frontier-
guarded nor glut-guarded. Indeed, since all positions other
than those of sibling are in Ωv, almost all variables in the ex-
ample are jointly affected.

Theorem 8 Deciding whether a BCQ is entailed by a glut-
guarded or glut-frontier-guarded set of rules Σ is 3ExpTime-
complete for combined complexity.

Inclusion is shown by applying Theorems 1 and 4 to obtain
that ja(Σ) is an exponentially large rule set that can be used for
BCQ entailment checking. Clearly, ja(Σ) is jointly frontier-
guarded, so the result follows from Theorem 7.

For hardness, one simulates an Alternating Turing Machine
(ATM) with doubly exponential space. Such ATMs can ac-
cept all languages that a Turing Machine can accept given
triply exponential time [Chandra et al., 1981a]. The ATM ac-
ceptance conditions as such can be formulated using frontier-
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guarded rules, but the efficient encoding of a doubly expo-
nential storage tape requires additional existential quantifiers.
This leads to further variables being jointly affected, but not
glut. The tape construction adapts a method for constructing
doubly exponential chains proposed by Calì et al. [2010b].
Details are given in [Krötzsch and Rudolph, 2011].

7 Conclusion

We have extended the notions of weak acyclicity and weak
(frontier-)guardedness, introduced a versatile new method for
eliminating existential quantifiers, and applied these insights
to define glut-frontier-guarded rules as one of the most ex-
pressive known existential rule languages for which query
answering is decidable. Yet, a wide range of open issues still
needs to be tackled for developing both the foundations of the
field and applications to use these novel approaches.

Some immediate questions raised by this work concern
the query complexity for fixed non-ground rules (data com-
plexity) or for fixed signatures (bounded arity). A concurrent
anonymous submission to this conference addresses these is-
sues for previously defined rule languages, and it will be in-
teresting to lift the respective methods to our cases.

More generally, further efforts are needed to continue the
consolidation of rule languages that was started herein. To
this end, modular reduction techniques for simplifying rule
sets can be of great utility for advancing towards a unified
theory of decidable existential rules.
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