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Abstract

Since the seminal work of Sampath et al. in 1996,
despite the subsequent flourishing of techniques on
diagnosis of discrete-event systems (DESs), the ba-
sic notions of fault and diagnosis have been remain-
ing conceptually unchanged. Faults are defined at
component level and diagnoses incorporate the oc-
currences of component faults within system evo-
lutions: diagnosis is context-free. As this approach
may be unsatisfactory for a complex DES, whose
topology is organized in a hierarchy of abstrac-
tions, we propose to define different diagnosis rules
for different subsystems in the hierarchy. Relevant
fault patterns are specified as regular expressions
on patterns of lower-level subsystems. Separation
of concerns is achieved and the expressive power
of diagnosis is enhanced: each subsystem has its
proper set of diagnosis rules, which may or may not
depend on the rules of other subsystems. Diagnosis
is no longer anchored to components: it becomes
context-sensitive. The approach yields seemingly
contradictory but nonetheless possible scenarios: a
subsystem can be normal despite the faulty behav-
ior of a number of its components (positive para-
dox); also, it can be faulty despite the normal be-
havior of all its components (negative paradox).

1

A wide variety of techniques for diagnosis of discrete-event
systems (DESs) [Cassandras and Lafortune, 1999] have been
proposed in the last years, including [Baroni et al., 1999;
Debouk et al., 2000; Lamperti and Zanella, 2003; Pencolé
and Cordier, 2005; Qiu and Kumar, 2006]. However, after
the seminal work of [Sampath er al., 1996], the basic notions
of fault and diagnosis have been remaining conceptually un-
changed. Typically, a fault is associated with the occurrence
of an event (or transition) at component level within the evo-
Iution of the system. Thus, diagnosing a DES amounts to
uncovering the set of component faults occurring during the
system evolution. The claim of this paper is that anchoring
faults at component level is too restrictive an approach when
complex DESs are involved.

Introduction
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2 Context-Sensitive Diagnosis

The topology of a complex DES is organized in a hierarchy,
where the root corresponds to the whole system, leaves to
components, and intermediate nodes to subsystems. Since
in a DES faults are traditionally defined at component level,
there is no possibility to provide a hierarchy of diagnoses ad-
hering to the hierarchy of the system. Trivially, a sub-DES is
faulty if and only if it includes a faulty component. We call
this commonly-used approach context-free diagnosis. While
context-free diagnosis may be adequate for simple systems,
it is doomed to be unsatisfactory when applied to complex
DESs. The hierarchical structure of a complex DES suggests
to organize the diagnosis rules within a hierarchy that par-
allels the hierarchical structure of the DES: each subsystem
has its proper set of diagnosis rules, which may or may not
depend on the rules of inner subsystems. We call this alterna-
tive approach context-sensitive diagnosis.

The idea of context-sensitivity in diagnosis was inspired
by the problem of (formal) language specification. The clas-
sical hierarchy proposed by [Chomsky, 1956] incorporates
four types of generative grammars of growing expressiveness.
Within the hierarchy, Type-2 and Type-1 grammars are means
to specify the syntax of context-free and context-sensitive lan-
guages, respectively. For practical reasons, Type-2 grammars
(in BNF notation) have become the standard for the speci-
fication of the syntax of programming languages. However,
since, generally speaking, the syntax rules of programming
languages depends on the context, production rules in BNF
notation are unable to force all the syntax constraints of the
language (for example: the list of actual parameters in a func-
tion call must match, in number and types, the list of for-
mal parameters). In compilers, the check of these (context-
sensitive) constraints are generally left to semantic analysis.

Loosely speaking, the idea of context-sensitivity can be
profitably injected into diagnosis of DESs in three ways:

e The transition of a component is not considered either
normal or faulty on its own: it depends on the context in
which such a transition is triggered;

e The fault of a component is not necessarily ascribed to
one transition: it can be the result of several transitions;

e Normal or faulty behavior of a subsystem is not neces-
sarily determined by the normal or faulty behavior of its
components (or inner subsystems).



Context-sensitive diagnosis is bound to seemingly contradic-
tory but nonetheless possible results, called paradoxes.

2.1 Positive Paradox

The positive paradox states that a (sub)system may be normal
despite the faulty behavior of a number of its components (or
inner subsystems). Example 1 aims to clarify this assertion.

Example 1 Shown in the left of Fig. 1 is a simplified repre-
sentation of a power transmission line. The line is protected
on both sides by a redundant protection hardware, called ‘W
and W', respectively, involving one protection and two break-
ers. For instance, ‘W incorporates protection p, and breakers
b1 and b,. When a lightening strikes the line, a short circuit
may occur on the latter. The protection system is designed to
open the breakers in order to isolate the line, which eventually
causes the extinction of the short. To this end, when detect-
ing a short circuit, a protection is expected to trigger both
breakers to open. A protection is faulty when either it does
not detect the short or, after the short detection, it does not
trigger the breakers. A breaker is faulty when, after receiving
the triggering command from the protection, it does not open.
A minimal (non redundant) protection hardware would incor-
porate a single protection and a single breaker on each side
of the line. Thus, when one of the two devices is faulty, the
line cannot be isolated. By contrast, in the redundant protec-
tion hardware in Fig. 1, it suffices the normal behavior of the
protection and of one breaker (for each side) to guarantee the
isolation of the line. Consider the following two scenarios.

1. In ‘W, by is faulty, while p and b, are normal. In W/,
b} is faulty, while p’ and b} are normal. The diagnosis
is 61 = {b1, b’l}. Owing to redundancy, the behavior of
the protected line is in fact normal, as the line is isolated,
despite the faulty behavior of the two breakers.

/

In ‘W, by is faulty, while p and b, are normal. In W', p
is faulty, while b] and b/ are normal. The diagnosis is
8> = {by1, p’}. However, owing to p’, W’ fails to open,
causing the failure of the whole protected line.

Albeit the two diagnoses §; and 8, differ in one component
only (p’ vs. b}), the behavior of the protected line in the first
scenario is normal, while it is faulty in the second one. The
point is, the given diagnoses do not explicitly account for such
a distinction. More generally, we can consider several sub-
systems of the protected line within an abstraction hierarchy,
and require for each of them a diagnosis. Such a hierarchy is
displayed in the right of Fig. 1, where £ denotes the whole
protected line. According to such a hierarchy, the diagnosis
of the first scenario is {by, b’l}, while in the second scenario
the diagnosis is {1, p’, W, £}. Comparing the two diag-
noses, we conclude that in the first scenario two components
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Figure 1: Protected power transmission line (left) and rele-
vant abstraction hierarchy (right).

970

are faulty but their misbehavior is not propagated to higher
subsystems. By contrast, in the second scenario, besides two
faulty components (b; and p’), W and £ are faulty too. <

2.2 Negative Paradox

The negative paradox states that a (sub)system can be faulty
despite the normal behavior of all its components (or inner
subsystems). This is true also in systems other than DESs:

e A software system can be faulty even if all its software
components are bug-free;

e A marriage may fail even if the behavior of each partner
is unfailing on its own;

e A human society can be bound to dictatorship notwith-
standing all its democratic institutions.

Example 2 instantiates the negative paradox to the referenced
application-domain of power transmission networks.

Example 2 With reference to Fig. 1, the isolation of the line
causes the extinction of the short circuit because the short
is no longer fed by any current. This is why the protection
system is designed to reconnect the line to the network once
the short is extinguished (by closing breakers). Suppose now
that, instead of a lightening, what causes the short is a tree
fallen on the line. In this case, the reconnection of the line
to the network presumably activates the short circuit again, as
the tree is likely to be still on the line, thereby causing the line
to be isolated anew (and, this time, permanently). Clearly,
even assuming that the behavior of protections and breakers
was normal, the behavior of the line is actually faulty. <&

Coping with negative paradoxes is essential when the be-
havior of a complex DES cannot be foreseen at design-time
(which is almost always the case for real DESs). To face
this uncertainty, a set of constraints can be associated with
the nodes of the DES hierarchy, aimed at intercepting rele-
vant faulty-behavior. These constraints parallel the require-
ments of software systems, which need to be validated inde-
pendently of the correct behavior of software components.

3 Active Systems

Active systems [Lamperti and Zanella, 2003] are a special
class of asynchronous DESs. An active system is a network
of components that are connected to one another through
links. Each component is modeled as a communicating au-
tomaton [Brand and Zafiropulo, 1983], that reacts to events
either coming from the external world or from neighboring
components through links, and is endowed with input and
output terminals. A transition from one state to another is
triggered by an event ready at an input terminal: such a transi-
tion may generate other events at some output terminals of the
same component. The mode in which a system can behave is
constrained by its topology and the component models. The
whole (even unbounded) set of evolutions of an active sys-
tem is confined to a finite automaton representing the global
model of the system. However, a strong assumption for di-
agnosis of active systems is the unavailability of the global
model as, in real applications, the generation of the global



model is impractical. The global model is intended for for-
mal reasons only. The global model of a system X', rooted at
the initial state X, is called the behavior space of X, written
Bsp(X, Xy). A history in Bsp(X, X) is the list of component
transitions marking the arcs of a path rooted in Xy.

breaker protection

Figure 2: Behavioral models of components.

Example 3 With reference to Example 1, shown in Fig. 2 are
the behavioral models of breaker and protection. The automa-
ton of the breaker includes two states, 0 (closed) and 1 (open),
and two transitions, which are both triggered by a tripping
event sent by the protection. While 7, moves the breaker
to open (correct behavior), T} leaves the breaker stuck to
closed. The automaton of the protection involves two states,
0 (idle) and 1 (awaken), and four transitions. Transition 75
is triggered by the occurrence of a short circuit on the line
and awakes the protection. The actual tripping command to
breakers is generated by 74. However, the protection may
return to state 0 without sending any command to breakers
(T3). The protection may even not be able to detect the short
circuit (77). Based on Fig. 1, the active system ‘W consists of
protection p and breakers b; and b,. The behavior space of
‘W is outlined in Fig. 3, where arcs are marked by component
transitions (labels in bold will be explained shortly). <

Figure 3: Behavior space Bsp('W, Wy).

4 Diagnosis Problem

When reacting, an active system performs a list of transitions
(history), that moves the system from the initial state to a final
state. Since a number of such transitions are perceived to the
observer as visible labels, such a history generates a list of
labels, the trace of the history. A diagnosis problem g for a
system X' is a 4-tuple

9(X) = (20, V.0, R) 6]

971

where X is the initial state of the system, V the viewer, @ the
observation, and R the ruler. The viewer maps each compo-
nent transition to a label, thereby establishing how transitions
are perceived. If the label is € (null label) the transition is
invisible, otherwise it is visible. The observation is a directed
acyclic graph where nodes are marked by observable labels
and arcs denote (partial) temporal precedence between nodes.

Figure 4: Observation (@ and index space Isp(0O).

Example 4 With reference to system ‘W defined in Exam-
ple 3 and models in Fig. 2, we assume a viewer V with the
following visible transitions and relevant labels: T»(b;): op;,
T>(b2): opy. Ti(p): off. Ta(p): sia, Ts(p): off. Displayed
in the left of Fig. 4 is an observation () relevant to viewer V,
which is composed of three nodes and two arcs. <&

An observation implicitly embodies several candidate
traces, denoted ||@||, each one obtained by picking up one
label from each node of the observation without violating the
temporal constraints imposed by arcs. Among such candi-
dates is the (unknown) trace actually generated by the system
history. For practical reasons, an index space of the obser-
vation @ is generated, denoted Isp((). This is a determin-
istic automaton, where arcs are marked by the visible labels
of O (e aside). The regular language of Isp(O) equals ||O||,
in other words, the set of paths in Isp(©) equals the set of
candidate traces of @.

Example 5 Shown in the right of Fig. 4 is the index space of

observation (9, where J3 and J4 are the final states. O
The ruler R is a 5-tuple
R=(D,HN,F,8) )

where D is the diagnosis domain, J the abstraction hierar-
chy, N the name space, ¥ the fault space, and § the pattern
specification. More specifically, the diagnosis domain D =
{01,...,0p} is the set of subsystems of X' that are stated as
relevant to the output of the diagnosis task. The abstraction
hierarchy # defines a partition of each 0; € D, i € [1..n],
in terms of relevant subsystems, namely (o3, {0j, . ... Ty, b.
The name space N is the set of identifiers used in §, while
F C N isthe set of faults. Finally, the pattern specification &
is a set of pairs (o, ), where 0 € D and P = [Py, ..., Pr]
is the pattern list, with each pattern P; € P, P; = (N;, E;),
being the association between a name N; € N and a regu-
lar expression E;. The alphabet of E; is defined as follows.
Let (0,{01,...,0m}) € J. The alphabet A of o, where
(o, P) € &, is the union of the names relevant to patterns in
&. The alphabet of a component C is the set of transitions
relevant to the model of C. The alphabet #4 of E; is defined



as the union of the alphabets of the subsystems of o and the
pattern names defined up to P;_;:

A(E;) = Alo) U+ U A(oy) U{N1,...,Ni-1}.  (3)

In other words, the regular expression E; is defined on the
pattern names relevant to the subsystems of o and those de-
fined before P; in the same pattern list J involving E;. The
plain form of E; is the macro-substitution of each name in N
by the corresponding regular expression. As such, the plain
E; is defined on the transitions of the components incorpo-
rated in 0. The syntax of the regular expression on alphabet
A is defined inductively as follows (assuming x and y to be
regular expressions denoting languages L(x) and L(y)):

e ¢ denotes the language {¢} (where € is the null symbol);
If a € A then a denotes {a};
(x) denotes L(x) (parentheses are allowed as usual) ;

x” denotes L(x) U {e} (optionality);

x* denotes |72 (L (x))’ (iteration zero or more times);
xT denotes |2, (L(x))’ (iteration one or more times);
xy denotes L(x)L(y) (concatenation);

x | y denotes L(x) U L(y) (alternative);

x & y stands for (xy | yx) (free concatenation).

Table 1: Pattern specification for system W.

Subsystem o | Pattern list

by ste(by) = T1(b1)

ba ste(ba) = T1(b2)
deaf(p) = T1(p)

P lazy(p) = T2(p)T3(p)
fail(p) = deaf (p) | lazy(p)

w ste(b1z) = ste(by) & ste(bz)
nop(W) = fail(p) | stc(b12)

Example 6 A ruler R for system W defined in Example 3 is
specified as follows. Diagnosis domain: D = {W,p, b;, b,}.
The abstraction hierarchy # adheres to the tree outlined in
the right of Fig. 1. &N = {stc(by), stc(by), deaf (p), lazy(p),
fail(p), stc(biz),nop(W)}. F = {stc(by), sic(b2). deaf (p),
lazy(p),nop(W)}. & is defined as shown in Table 1. For
breakers b; and b,, only one pattern is defined (stc, stuck to
closed), involving transition 7. For protection p, three pat-
terns are listed: deaf (p does not perceive the short circuit),
lazy (although perceiving the short, p does not trip break-
ers), and fail (p is either deaf or lazy). For the protection
hardware ‘W, pattern stc(b;5) indicates both breakers stuck to
closed. Finally, pattern nop (no operation) specifies when the
protection hardware is faulty as a whole (when either p fails
or both breakers are stuck to closed). &

5 Preprocessing

Once fault patterns are specified in terms of regular expres-
sions, some (off-line) preprocessing on them is worthwhile to
speed up the (on-line) diagnosis engine (which is in charge of
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solving the diagnosis problem). As known, [Aho et al., 2006],
any regular expression can be automatically transformed into
an equivalent deterministic finite automaton. Specifically,
two steps are performed:

1. For each pattern (F;, E;) such that F; € ¥, E; is un-
folded into its plain form (to include component tran-
sitions only) and an equivalent deterministic automaton
Aj; is generated, where final states are marked by F;.

2. The so-generated deterministic automata Aj,..., A,
within the same pattern list  (and, therefore, relevant to
the same subsystem o) are merged to yield a new deter-
ministic automaton called the pattern space of o, Pts(o),
where each final state S is marked by the set of faults as-
sociated with states identifying S.!

The merging of automata in step 2 is performed as follows:

e Each automaton A; is extended by inserting an empty
transition from each non-initial state to the initial state.

e An empty transition is inserted from each initial state of
each A; to the initial state of each 4;, j # i.

e The so-obtained nondeterministic automaton is trans-
formed into an equivalent deterministic automaton, in
fact Pts(0), having as initial state the e-closure of the
set of initial states of Aq,..., A,. Each final state S of
Pts(o0) is marked by the union of faults associated with
the states in S that are final in the corresponding A; .

The rationale of the procedure above is that, during the re-
construction of the system behavior, the diagnosis engine is
supposed to uncover several (possibly overlapping) fault pat-
terns. This means that after the matching of any transition,
the same fault pattern, or even a different one, may start.

+
g
e |T, ‘ T,
nO
stc

stc

Figure 5: Generation of pattern spaces Pts(b) and Pts(p).

Example 7 Shown in Fig. 5 is the generation of the pattern
space of a generic breaker b (left) and of protection p (right).
Considering b, based on Table 1, fault pattern stc is defined
as the single transition 77. The corresponding deterministic
automaton generated by step 1 is represented by the two states
and the arc marked by 77. Step 2 is performed by inserting the
empty transition (gray arc). Pts(b) is outlined next (second
automaton in the figure).> The final node is marked by fault
stc. Likewise, the generation of Pts(p) is outlined in the right
of Fig. 5. For space reasons, we have omitted the generation
of Pts('W) (whose final nodes are marked by fault nop). <

LA state of the determinized automaton is identified by a subset
of the states of the corresponding nondeterministic automaton.

2States are identified by numbers, having however different
meaning with respect to the homonym states of the models in Fig. 2.



6 Problem Solution

The solution of a diagnosis problem p(X) = (Xy, V, O, R),
written A(gp(X)), is a set of candidate diagnoses, where each
candidate is a (possibly empty) set of faults. To define pre-
cisely A(p(X)), we need to introduce a few notations. The
trace of a history /1 of X' (based on viewer V) is written A[y).
The projection of h on a subsystem o, written h[g], is the
sublist of transitions of / relevant to components in o. The
language of a regular expression E is denoted by || E|.

Now, assume ruler R = (D, #H, N, F,8). The diagnosis
of a history 4 based on R is:

hg={F|Fe¥, (F.E)e?,
(0.P) eS8, ec|E|, eChp}

“

That is, the diagnosis /g is the set of faults F involved in a
pattern list J° of subsystem o, such that there exists a string e,
in the language of the regular expression E relevant to F, that
is a sublist of the projection on ¢ of a history /. The solution
of the diagnosis problem (X)) is:

A(p(X)) = { hizy | h € Bsp(X. o), hyyy € |O] §. (5)

That is, the solution of p(X) is the set of diagnoses of
histories 4 whose trace, /[y, is a candidate trace in @.

Example 8 Let (W) = (Wy,V,0,R) be the diagnosis
problem for the protection hardware ‘W defined in Example 3,
where viewer V and observation ¢ are defined in Example 4,
while ruler R is specified in Example 6. The behavior space
Bsp('W, W) is outlined in Fig. 3, where Wy = B is the ini-
tial state and visible transitions are marked by relevant labels
(in bold). The solution of »(X') can be determined based on
eqn. (5). First, we have to select the histories in Bsp('W, W)
whose trace is in ||@]], in other words, whose trace is a path
in the index space of @ (Fig. 4). Of the six paths in Isp(O)
(from the initial state Jg to a final state (either 33 or J4),
only [sta, off] is consistent with Bsp('W, Wy), that is gener-
ated by history & = [T>(p), T3(p)]- Then, we have to deter-
mine the set § of faults, where each fault F is associated with
a regular expression E for subsystem o such that a path in
| E|l is contained in the projection of 2 on o. Based on the
pattern specification in Table 1, of the five pattern names in
F, namely stc(by), stc(bz), deaf (p), lazy(p), and nop('W),
only lazy(p) and nop('W) meet such a condition. In fact,
the only string in the regular expression of lazy(p) equals
hip) = h. Besides, unfolding the regular expression asso-
ciated with nop('W) yields the plain expression:

Ti(p) | To(p)T3(p) | T1(b)T1(b2) | T1(b2)T1(b1)

which includes i[w; = h. Thus, based on eqn. (5), the solu-
tion of (W) is: A(p('W)) = {lazy(p), nop('W) }. &

7 Diagnosis Engine

The diagnosis engine is required to take as input a diagnosis
problem p(X) = (Xy,V, O, R) and to output the solution
A(p(2)), as defined in eqn. (5). In doing so, it needs to re-
construct the behavior of X' that conforms to the observation,
namely Bhv(p(X)). We assume that the pattern spaces gen-
erated off-line by preprocessing (see Section 5) are available
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to the engine. Since a sort of pattern recognition is to be per-
formed, states of Bhv(gp(X')) will incorporate information not
only on the observation but also on the pattern spaces in order
to maintain the state of the matching.

Let B denote the set of states of Bsp(X, Xy), I the
set of states of Isp(Q), and P = Py X Py X -+- X Py,
where Pyp,..., P, are the set of states of pattern spaces
Pts(04), ..., Pts(oy), respectively. The behavior

Bhw(p(X)) = (S, T, So, Sr) (6)

is a deterministic automaton such that:
e S C B x [ x P is the set of states;

e So = (Xo, Jo, Pp) is the initial state, where J is the

initial state of Isp(©), while Py = (Pio, ..., Pyo) is the
record of the initial states of Pts(o7), ..., Pts(0y);

o St ={(B, 3¢, P) | J¢is final in Isp(O)} is the set of final
states;

T
T is the transition function: (8,3,P) — (8,J,P') €
T,P = (Py,....P,), P = (P]..... P}, iff the fol-
lowing conditions hold:

T . e
1. B — P’ is a transition in Bsp(X, X);>
2. if T is invisible then I’ = J else ' is the target

state of transition J 4 3 in Isp(O), where £ is the
label associated with T in V;

3. P = (P{,..., P;)issuch that Vi € [1..n], P/ is
defined by the following rule:

if 7 is relevant to a component in o; then

T - _
if P, — P; € Pts(o0;) then P/ = P; else P/ = P;
else P/ = P;.

As such, each state of Bhv(gp(X)) is a triple involving a state
of the behavior space, a state of the index space of (@, and a
record of pattern-space states. A transition marked by T is
defined in Bhv(p (X)) iff a transition marked by 7 is defined
between the corresponding states of the behavior space. The
index 3’ of the new state differs from the index J in the old
state only if T is visible (according to viewer V). Finally,
considering P’ in the new state, three cases are possible:

(a) T is relevant to a component within o and there exists a
transition in Pts(o;) exiting P;, marked by 7', and enter-
ing P;: P/ equals P;;

(b) T is relevant to a component within o and there not ex-
ists a transition in Pts(0;) exiting P; and marked by T
P/ equals the initial state P;o of Pts(0;);

(c) T is not relevant to a component within o: P/ equals P;.

The rationale of case (b) is that the current pattern recognition
fails to match any fault in o;, thereby causing the recognition
process to start anew, at the initial state P;y. As to case (c),
state P; does not change because transition 7 is relevant to
a component outside system o;, thereby being irrelevant to
pattern recognition within Pts(o;).

3In practice, since Bsp(X, o) is assumed to be unavailable, it
means that 7 is triggerable from state f.



Figure 6: Behavior Bhv(gp('W)).

Example 9 Consider problem p(W) = (Wy,V, O, R) de-
fined in Example 8. Depicted in Fig. 6 is the relevant behav-
ior Bhv(g('W)) (node decoration will be explained shortly).
According to the definition, the initial state is (Bo, 3o, Po),
where J is the initial state of Isp(OQ) (Fig. 4), while Py
(0, 0,0, 0) is the record of the initial states of Pts(by), Pts(by),
Pts(p), and Pts('W), respectively. Since the following condi-
tions hold:

T
e Bsp(p(X)) (Fig. 3) includes a transition Bg =3 B1
which is visible via label sta of viewer V,

c o~ st .. .
e A transition Jg = J1 is included in Isp(09),
e Transition 7, (p) is relevant neither to by nor to by,

T
o Py ﬂ) P; is included in both Pts(p) and Pts('W),

a transition (8o, g, 0000) M (B1,31,0022) is generated
in Bhv(p('W)). The construction of the behavior continues
until no new node is generated by the application of the transi-
tion function. In Fig. 6, state (B¢, I3, 0031) is final (in bold),
as J3 is final in Isp(@). The dashed part of the graph is in-
consistent because it is not encompassed by any path from the
initial state to a final state. Hence, it is eventually removed,
leaving Bhv(gp('W)) with three states only. &

Once reconstructed the behavior Bhv(gp(X)), the diagnosis
engine is required to generate the problem solution A(gp(X'))
defined in eqn. (5) by means of a sound and complete (possi-
bly efficient) technique. This is carried out by decorating the
nodes of the behavior with sets of faults as follows.

The fault set of P, written dp, is the union of the faults asso-
ciated with each state of P in the corresponding pattern space.
We denote with A(S) the set of sets of faults decorating state
S in Bhw(p(X)). Each state in Bhv(p(X)) is decorated with
a set of sets of faults based on the following two rules:

e The initial state So = (X, Jo, Po) is first decorated by
the singleton A(So) = {dp, }.

T
e For each transition S — S’ in Bhv(p(X)), where S =
(B.3.P), S’ = (B'.3,P), the decoration of S’ is de-
fined by the following set-containment relationship:

A(S) 218 |8 AS).8=8Usp} (7
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The decoration algorithm starts by marking the initial state
with a single diagnosis dp, including the set of faults associ-
ated with the initial state Py. Then, starting from the deco-
ration of the initial state, it continuously applies the second
rule for each transition exiting a state S whose decoration has
changed. The rationale of (7) is as follows: if the current dec-
oration of a state S of Bhv(gp(X')) includes the set of faults
8 and the reached state S’ involves the record P’ of pattern-
space states with associated faults §p/, then the set of faults
8’ associated with S’ will be the extension of § by &', as the
latter is the set of faults relevant to the set of patterns recog-
nized in state P’. The algorithm stops when the decoration
becomes stable (the application of (7) will no longer produce
any changes). Theorem 1 states how the actual solution of
©(X) can be distilled from the decorated behavior.

Theorem 1 Let Bhw(p(X)) be the behavior of a diagnosis
problem p(X). The union of the set of sets of faults decorat-
ing the final states of Bh(p (X)) is the solution of p(X).

Proof. (Sketch) The proof is grounded on Lemma 1.1.

Lemma 1.1 Let & be a path in Bhv(p(X)), from the initial
state to a final state. Let h be the list of component transitions
marking the arcs of w. Let § be the union of the fault sets
relevant to states of w. Then, h is a history in Bsp(X, Xg)
such that hyy) € ||O|| and hig) = 6.

Proof. The fact that / is a history in Bsp(X, Xy) such
that ipy) € ||@] derives from the mode in which fields
and J are generated, specifically, from conditions 1 and 2 of
transition-function of Bhv(p(X)).

To prove hg] = &, on the one hand, assume F* € §, that is,
F € ép, where (B8, 3, P) is a state in . As such, F is a fault
associated with a (final) state of a pattern space Pts(o). Since
Pts(o0) is constructed by merging the deterministic automata
relevant to the unfolded regular expressions involved in fault
patterns, based on rule 3 of transition-function definition for
Bhv(p(2)), it means that a string e € || E£|| has been recog-
nized, where (F, E) is a fault pattern relevant to subsystem
o, and e C h[,). Hence, based on eqn. (4), F € h[g).

On the other hand, assume F € h[g], where / is a history
in Bhv(p(X')). Based on eqn. (4), F is the fault associated
with an expression E, relevant to a subsystem o, such that
there exists a string e in || E|| that is a sublist of the projection
of i on ¢. In other words, the projection of /& on ¢ contains a
list of transitions that is a string relevant to the regular expres-
sion associated with F'. Consider condition 3 in the definition
of the transition function for Bhv(p(X')), and the correspond-
ing rule for the specification of P'. If T is relevant to a compo-
nent in ¢ then the state of the prefix space Pts(o) in P changes
either to the target state of the transition marked by 7 in
Pts(o) or to the initial state of Pts(o), depending on whether
or not such a transition exists in Pts(c). Since the language
of Pts(0) contains the language of expression E (relevant to
fault F), the string e will be matched within Pzs(o), where
the state reached upon such recognition is marked (at least)
by F. Hence, F € §. Since F € § & F € hig], we con-
clude hj®) = §. This terminates the proof of Lemma 1.1.

To prove Theorem 1, denoting with Sy a final state of
Bhv(p(X)), we have to show § € A(Sy) < § € A(p(X)).



Assume § € A(Sy). Based on the (two) decoration rules
for Bhv(gp(X')), 6 is obtained by (at least) one history % by
extending the initial set of faults p, by the set dp associated
with each state S = (8’,J’, P’) encompassed by /. In other
words, § is the union of the fault sets relevant to states of
h. Hence, by virtue of Lemma 1.1, § = A[g) and, based on
eqn. (5), § € A(p(X)).

Assume § € A(p(X)). Based on eqn. (5), 8 = hjg). By
virtue of Lemma 1.1, § equals the union of the faults sets rele-
vant to the states encompassed by 4 in Bhv(gp(X')). Following
the same reasoning on the decoration rules above, this union
is in fact an element of the decoration of the (final) state St of
Bhv((X)) reached by A, hence, § € A(Sy). a

Example 10 With reference to the behavior Bav(gp(W)) de-
picted in Fig. 6, the processing performed by the decoration
algorithm is very simple, as the behavior is linear.* According
to the first decoration rule, the initial state is marked by the
singleton {@}, as dpo00 = @. Applying the second rule, state
(B1,31,0022) is decorated by {0}, as 8gp22 = 9. For the fi-
nal state S¢ = (B, J3,0031), the decoration is the singleton
{{lazy(p), nop('W)}}, which, based on Theorem 1, equals the
solution A(gp('W)), as confirmed by Example 8. &

8 Related Work

This paper is built upon [Lamperti and Zanella, 2010]. A re-
lated approach is proposed in [Jéron et al., 2006], where the
notion of supervision pattern is introduced, which allows for
a flexible specification of the diagnosis problem, and for an
uniform solution of different classes of problems. However,
three points are to be highlighted. First, supervision patterns
are specified by automata. In this paper, instead, fault patterns
are specified by regular expressions. Second, a supervision
pattern specifies which system evolutions are to be consid-
ered as faulty (or, more generally, significant to the supervi-
sion process), based on specific occurrences of fault (and re-
pair) events. In this paper, instead, a fault pattern specifies a
(complex) fault within a system evolution. Finally, and more
importantly, [Jéron er al., 2006] does not provide any hierar-
chical abstraction to diagnosis: since a diagnosis is an evolu-
tion identified by a supervision pattern, the notion of diagno-
sis invariably refers to the system as a whole. In this paper,
instead, the interpretation of the system behavior is based on
the abstraction hierarchy, where diagnosis rules are defined
for each subsystem in the hierarchy.

9 Conclusion

Context-sensitive diagnosis is bound to enhance the expres-
sive power of diagnosis of complex DESs. However, we do
not consider the proposed notation for pattern specification
as final: different formalisms can be envisaged to fit different
classes of DESs. Maybe, the general approach is of benefit
to diagnosis of complex systems other than DESs, from static
systems to more general dynamic systems [Struss, 1997].

4Generally speaking, based on eqn. (7), the decoration algorithm
is required to visit the nodes of the behavior several times.
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