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Abstract

We study the existential closures of several
propositional languages L considered recently
as target languages for knowledge compilation
(KC), namely the incomplete fragments KROM-C,
HORN-C, K/H-C, renH-C, AFF, and the cor-
responding disjunction closures KROM-C[V],
HORN-C[V], K/H-C[V], renH-C[V], and
AFF[V]. We analyze the queries, transformations,
expressiveness and succinctness of the resulting
languages £[3] in order to locate them in the KC
map. As a by-product, we also address several
issues concerning disjunction closures that were
left open so far. From our investigation, the
language HORN — C[V, dJ] (where disjunctions and
existential quantifications can be applied to Horn
CNF formulae) appears as an interesting target
language for the KC purpose, challenging the
influential DNNF languages.

1 Introduction

Knowledge compilation (KC) is concerned with pre-
processing for improving the efficiency of computational
tasks (see among others [Darwiche, 2001; Cadoli and Donini,
1998; Selman and Kautz, 1996; Schrag, 1996; del Val,
1994]). An important issue within this research area is the
choice of a target language into which some pieces of data are
to be translated during the off-line, compilation phase [Gogic
et al., 1995; Darwiche and Marquis, 2002]. In [Darwiche and
Marquis, 2002], the authors argue that such a choice must be
based both on the set of queries and transformations which
can be achieved in polynomial time once the pre-processed
pieces of data are represented in the target language, as well
as the succinctness of the language (i.e., its ability to repre-
sent data using few space.) The basic queries considered in
[Darwiche and Marquis, 2002] include tests for consistency,
validity, implicates (clausal entailment), implicants, equiva-
lence, sentential entailment, counting and enumerating the-
ory models (CO, VA, CE, IM, EQ, SE, CT, ME.) The ba-
sic transformations are conditioning (CD), closures under the
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connectives (A C, ABC, VC, VBC, —C), and forgetting
(FO, SFO.) The KC map given in [Darwiche and Marquis,
2002] is an evaluation of a dozen of significant propositional
languages w.r.t. several criteria: the succinctness of the lan-
guage and the set of queries and transformations it supports in
polynomial time. Such a map can be used as a guide for tar-
geting the “right language” given the requirements imposed
by the application under consideration.

The KC map provided in [Darwiche and Marquis, 2002]
has been extended to incorporate further propositional lan-
guages (also referred to as “fragments”), queries and trans-
formations, see among others [Wachter and Haenni, 2006],
[Fargier and Marquis, 2006], [Subbarayan er al., 2007],
[Fargier and Marquis, 2008b], [Fargier and Marquis, 2008al,
[Fargier and Marquis, 2009]. In [Fargier and Marquis, 2008b;
2008a] an approach to define new target languages for KC
has been pointed out. It consists in applying closure prin-
ciples to previous languages. [Fargier and Marquis, 2008a]
consider two disjunctive closure principles: disjunction (V)
and existential closure (3.) Intuitively, the disjunction prin-
ciple when applied to a propositional language £ leads to a
language £[V] which qualifies disjunctions of formulae from
L, while existential closure applied to £ leads to a language
L[3] which qualifies existentially quantified formulae from
L. Whatever £, L[V] satisfies polytime closure under V
and L[] satisfies polytime forgetting. Applying any/both of
those two principles to £ may lead to new fragments, which
can prove strictly more succinct than £. Thus, [Fargier and
Marquis, 2008a] locate on the KC map all languages ob-
tained by applying those closure principles to some com-
plete languages, i.e., languages £ for which every proposi-
tional formula has an equivalent in £. Thus, the disjunctive
closures of the languages OBDD. (ordered binary decision
diagrams), DNF (disjunctive normal forms), DNNF (decom-
posable negation normal forms), CNF (conjunctive normal
forms), PI (prime implicates), IP (prime implicants), MODS
(models), considered in [Darwiche and Marquis, 2002], have
been studied in [Fargier and Marquis, 2008a]. On the other
hand, [Fargier and Marquis, 2008b] consider the disjunction
closures KROM—-C[V], HORN-C[V], K/H-C[V], renH-C[V],
and AFF[V], composed respectively of disjunctions of Krom
CNF formulae, disjunctions of Horn CNF formulae, disjunc-
tions of Krom or Horn CNF formulae, disjunctions of renam-
able Horn CNF formulae, and disjunctions of affine formulae.



Each of these languages is complete, unlike the underlying
languages KROM-C (also known as the bijunctive fragment)
[Krom, 1970], HORN-C [Horn, 1951], AFF (also known as
the biconditional fragment) [Schaefer, 1978], K/H-C (Krom
or Horn CNF formulae) and renH-C.

In the following, we complete the results reported in
[Fargier and Marquis, 2008b; 2008a] by focusing on
the existential closures of the ten languages KROM-C,
HORN-C,K/H-C, renH-C, AFF, KROM—-C[V], HORN-C[V],
K/H-C[V], renH-C[V], and AFF[V]. We evaluate each of
them along the lines considered in [Darwiche and Marquis,
2002]. The contribution of the paper is mainly as follows:

e For each existential closure of KROM-C, HORN-C,
K/H-C, renH-C, AFF, KROM-C[V], HORN-C[V],
K/H-C[V], renH-C[V], and AFF[V], we identify the
queries and transformations which are feasible in poly-
nomial time, and those which are not (possibly under
some standard assumptions of complexity theory.)

We demonstrate that the existential closure of each lan-
guage £ among the ten languages above is just as ex-
pressive as L. As to succinctness, we prove that £[3] is
strictly more succinct than £, except for £ = KROM-C
and £ = AFF since for those two languages, £[3] and £
are polynomially equivalent.

We complete the results about disjunction closures pro-
vided in [Fargier and Marquis, 2008b]; especially, we
show that FO is not satisfied by any of HORN-C[V],
K/H-C[V], renH-C[V].

We show that neither d-DNNF nor SDNNF is strictly
more succinct than any disjunction closure of KROM-C,
HORN-C, K/H-C, renH-C, AFF; it shows such dis-
junction closures (and the existential closures of them)
as interesting alternatives to DNNF languages.

The rest of the paper is organized as follows: in Sec-
tion 2, the queries and transformations considered in the
KC map, as well as the fundamental notions of expressive-
ness and succinctness, are recalled. The notions of disjunc-
tive, disjunction and existential closure are also presented.
In Section 3, our new results are presented. Section 4 dis-
cusses the results and provides some perspectives. An ex-
tended version of the paper (including proofs) is available at
http://www.cril.fr/~marquis/ijcaill.pdf

2 The KC Map and Disjunctive Closures

In this paper, we consider subsets of the propositional lan-
guage ODAG of quantified propositional DAGs. QDAG is
given by:

Definition 1 (QDAG) Let PS be a denumerable set of propo-

sitional variables. QDAG is the set of all finite, single-rooted
DAGs o where:

e cach leaf node of « is labeled by a literal | over PS,
or by a Boolean constant T (always true) or L (always

false) ;

e cach internal node of « is labeled by a connective ¢ €
{A,V, , ®} and has as many children as required by c,
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or is labeled by 3x (where x € PS) and has a single
child.

All the propositional languages considered so far as target
languages to KC are subsets of QDAG, and typically of DAG,
the subset of ODAG where no node labeled by a quantification
is allowed. Especially, the fragments considered in [Wachter
and Haenni, 2006] are included in the subset of DAG where
¢ is among {A, V, =}, and the fragments considered in [Dar-
wiche and Marquis, 2002] (especially OBDD ., DNF, DNNF,
CNF, PI, IP, MODS) are subsets of DAG-NNF (the subset of
the latter when — is disallowed.)

A literal (over V' C PS) is an element « € V (a positive
literal) or a negated one —x (a negative literal), or a Boolean
constant. [ is the complementary literal of literal [, so that
T=1,1=T,%T = -z and =% = . For a literal [
different from a Boolean constant, var(l) denotes the corre-
sponding variable: for z € PS, we have var(z) = x and
var(—xz) = x. A clause (resp. a term) is a finite disjunc-
tion (resp. conjunction) of literals. An XOR-clause is a finite
XOR-disjunction of literals (the XOR connective is denoted
by ®.)

Each element o of QDAG is called a QDAG formula.
Var(a) denotes the set of free variables z of a, i.e., those
variables x for which there exists a leaf node n,, of « labelled
by a literal [ such that var(l) = x and there is a path from the
root of « to m,, such that no node from it is labelled by Jx.
The size |«| of a QDAG formula |a/] is the number of nodes
plus the number of arcs in the DAG.

Figure 1: A QDAG formula.

Figure 1 presents a QDAG formula. Its set of free variables
is {g,r}. The DAG rooted at the A node is a DAG formula
and the DAG rooted at the V node is a DAG-NNF formula.

In the following, we consider the next queries and transfor-
mations:

Definition 2 (queries) Let £ C QDAG.

o [ satisfies CO (resp. VA) iff there exists a polytime al-
gorithm that maps every formula o from L to 1 if « is
consistent (resp. valid), and to 0 otherwise.



L satisfies CE iff there exists a polytime algorithm that
maps every formula o from L and every clause vy to 1 if
a |= 7y holds, and to 0 otherwise.

L satisfies EQ (resp. SE) iff there exists a polytime al-
gorithm that maps every pair of formulae o, S from L to
lifa= B (resp. a = ) holds, and to 0 otherwise.

L satisfies IM iff there exists a polytime algorithm that
maps every formula o from L and every term ~y to 1 if
v & « holds, and to 0 otherwise.

L satisfies CT iff there exists a polytime algorithm that
maps every formula o from L to a nonnegative integer
that represents the number of models of « over Var(«)
(in binary notation.)

L satisfies ME iff there exists a polynomial p(.,.) and
an algorithm that outputs all models of an arbitrary for-
mula o from L in time p(n, m), where n is the size of «
and m is the number of its models (over V ar(c).)

L satisfies MC (model checking) iff there exists a poly-
time algorithm that maps every formula o from L and
every interpretation w over Var(a) (represented as a
term) to 1 if w is a model of a, and to 0 otherwise.

Definition 3 (transformations) Ler £ C QDAG.

o [ satisfies CD iff there exists a polytime algorithm that
maps every formula o from L and every consistent term
v to a formula from L that is logically equivalent to the
conditioning « | 7y of « on 7, i.e., the formula obtained
by replacing each free occurrence of variable x of o by
T (resp. L) if x (resp. —x) is a positive (resp. negative)
literal of .

L satisfies FO iff there exists a polytime algorithm that
maps every formula o from L and every subset X of
variables from PS to a formula from L equivalent to
dX.a. If the property holds for each singleton X, we
say that L satisfies SFO.

L satisfies NC (resp. VC) iff there exists a poly-
time algorithm that maps every finite set of formulae
Q... 0 from L to a formula of L that is logically
equivalentto oy A\ ... A\ ay (resp. a1 V...V ap.)

L satisfies A\BC (resp. VBC) iff there exists a polytime
algorithm that maps every pair of formulae o and 3 from
L to a formula of L that is logically equivalent to o \ B
(resp. aV 3.)

L satisfies -~ C iff there exists a polytime algorithm that
maps every formula o from L to a formula of L logically
equivalent to —a.

We also consider the following notions of expressiveness
and succinctness:

Definition 4 (expressiveness) Let L1 and Lo be two subsets
of QDAG. Ly is at least as expressive as Lo, denoted L1 <.
Lo, iff for every formula oo € Lo, there exists an equivalent

Sformula B € L.

Definition 5 (succinctness) Let L1 and Lo be two subsets of
QDAG. L1 is at least as succinct as Lo, denoted L1 <4 Lo,
iff there exists a polynomial p such that for every formula
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a € Lo, there exists an equivalent formula B € L1 where

18] < p(|al).

Finally, we take advantage of the following restriction of
the succinctness relation:

Definition 6 (polynomial translation) Let £, and Lo be
two subsets of QDAG. L is said to be polynomially trans-
latable into Lo, noted L1 >, Lo, iff there exists a polytime
algorithm f such that for every o € L1, we have f(a) € Lo
and f(a) = a.

Whenever £; is polynomially translatable into Lo, every
query which is supported in polynomial time in L5 also is
supported in polynomial time in £1; and conversely, every
query which is not supported in polynomial time in £; unless
P = NP (resp. unless the polynomial hierarchy PH collapses)
cannot be supported in polynomial time in Lo, unless P = NP
(resp. unless PH collapses.)

~. is the symmetric part of <. defined by £ ~. Lo iff
L1 <¢ Lo and Lo <, Ly. <, is the asymmetric part of <,
defined by £1 <. Lo iff L1 < Lo and Lo L, L. Similarly,
~g (resp. ~p) is the symmetric part of < (resp. <,.) <j
(resp. <p) is the asymmetric part of <, (resp. <,.) When
Ly ~p Lo, £q and L, are said to be polynomially equiva-
lent. Obviously enough, polynomially equivalent fragments
are equally efficient (and succinct) and possess the same set
of tractable queries and transformations.

We are now ready to present disjunctive closures. Intu-
itively, a closure principle applied to a propositional fragment
L defines a new propositional language, called a closure of
L, through the application of “operators” (i.e., connectives or
quantifications.) The resulting closure is said to be disjunc-
tive when the operators are among V and Jz with x € PS.
Formally:

Definition 7 (disjunctive closures) Let £ C QDAG and A\ C
{V,3}. The closure L[A] of L by A is the subset of QDAG
inductively defined as follows:'

1. ifa € L, then a € L[A],

2. ifV e Aand o; € LIA] foreachi€ 1,....n,
then V(ay, ..., an) € L]A],

3. if3e A xe PS and o € L[A], then Fx.ao € L]A)].

Thus, an element of £[A\] can be viewed as a “tree” which
“internal nodes” are labelled by quantifications of the form
Jx or by V and its “leaf nodes” are labelled by elements of
L. Accordingly, the formulae «; considered in item 2. of
Definition 7 do not share any common subgraphs.

The set D(L) (resp. \/(£), (L)) of all disjunctive (resp.
disjunction, existential) closures of a subset £ of QDAG is
defined inductively by:

e L belongs to D(L) (resp. (L), 3(L));

e If £ belongs to D(L) (resp. \/(£), (L)) and A C
{V,3} (tesp. A C {V}, A C {3}), then L]|A] belongs
to D(L) (resp. \/ (L), 3(L).)

'In order to alleviate the notations, when A = {41,...,5,}, we
write £[d1, . ..,d,] instead of L[{d1,...,n}].



[Fargier and Marquis, 2008a] provide several general-
scope characterization results for disjunctive closures. Espe-
cially, they show that for a given £ C DAG, only three dis-
junctive closures are worth to be considered since £[3][3] =
L[3], LIVIIV] = L[V] and LF][V] ~p LIV][E] ~p L[V, F]
(see item 4. of Proposition 1 and item 1. of Proposition 2 in
[Fargier and Marquis, 2008al.) They also study the disjunc-
tive closures of the languages OBDD ., DNF, DNNF, CNF, PT,
1P, MODS considered in [Darwiche and Marquis, 2002].

3 Analyzing New Existential Closures

[Fargier and Marquis, 2008b] focus on the disjunction clo-
sures of the following incomplete fragments:

Definition 8 (some incomplete fragments)

e KROM-C is the subset of CNF consisting of formulae in
which each clause is binary, i.e., it contains at most two
literals.

e HORN-C is the subset of CNF consisting of formulae in
which each clause is Horn, i.e., it contains at most one
positive literal.

e K/H-C is the union of KROM—C and HORN-C.

e renH-C is the subset of CNF consisting of formulae o
for which there exists a subset V of Var(a) (called a
Horn renaming for «) such that the formula V() ob-
tained by substituting in « every literal | over V by its
complementary literal | is a HORN-C formula.”

e AFF is the subset of DAG consisting of conjunctions of
XOR clauses.

In the following, we complete the results provided in
[Fargier and Marquis, 2008b] by studying the queries, trans-
formations, expressiveness and succinctness of the existen-
tial closures of the propositional fragments considered in
[Fargier and Marquis, 2008b], i.e., we consider the lan-
guages KROM-C[3], HORN-C[3], K/H-C[3], renH-C[3],
AFF[d], KROM-C[V,d], HORN-C[V,d], K/H-C[V,d],
renH-C[V,d], AFF[V,d].

Figure 2 presents a HORN — C[V, 3] formula equivalent to
the CNF formula (—p V =) A (=1 V =8) A (=g V —s).

We know that each of KROM-C and AFF satisfies FO
[Fargier and Marquis, 2008b]. Furthermore, for any £ C
DAG, if L satisfies FO, then L]V] satisfies FO as well. As a
consequence, we immediately get that

e KROM-C[] ~, KROM-C, and AFF[J] ~,, AFF,

e KROM-C[V, 3] ~, KROM—C[V], and
AFF[V, 3] ~, AFF[V].

Since KROM—-C, AFF, KROM-C[V], and AFF[V] have been
studied in [Fargier and Marquis, 2008b], we mainly fo-
cus on HORN—C[3], K/H-C[3], renH-C[3], HORN-C[V, T],
K/H-C[V, 3], renH-C[V, J] in the following.

*Note that there exists linear time algorithms for recognizing
renH-C formulae (see e.g. [del Val, 2000]); furthermore, such
recognition algorithms typically give a Horn renaming when it ex-
ists.
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Figure 2: A HORN — C[V, 3] formula.

[ L [COJVAJCE]IMJEQJSE]CT ][ ME ] MC
renH-C[V, 3| IV o v/ o o o o v/ v
K/H-C[V, 3] v o v/ o o ) ) v/ VA
HORN-C[V, J] V4 o v/ o o o o v/ VA
renH-C[3] v/ v/ v/ v/ o o o v/ v

Al | v vV VIV Io ool vV
HORN-C[J] V4 v v IV o o o IV v/

Table 1: Queries. 4/ means “satisfies” and o means “does not
satisfy unless P = NP.”

As to queries and transformations, we have obtained the
following results:

Proposition 1 The results given in Table 1 and in Table 2
hold.

As to expressiveness, it turns out that for any lan-
guage £ among K/H-C, HORN-C, renH-C, K/H-C[V],
HORN-C[V], renH-C[V], going from L to £L[3] does not lead
to a shift:

Proposition 2 For every L among K/H-C, HORN-C,
renH-C, K/H-C[V], HORN-C[V], renH-C[V], we have
L~ L[3.

As a consequence (see [Fargier and Marquis, 2008b]),
we have HORN-C[V, d] ~, K/H-C[V, d] ~, renH-C[V, d]:
these three languages are just equally expressive since they
are complete for propositional logic (just observe that the
complete language DNF is a subset of each of them.) Con-
trastingly, each of HORN-C[d], K/H-C[d], renH-C[dT] is
strictly less expressive than any complete language.

[ L [ CD [ FO [ SFO [ AC [ ABC | VC [ VBC | -C |
renH-C[V, 3] Vi v v/ o o Vi v o
K/H-C[V, ] v Vi v/ o o v/ v o
Forvcv, Al [ vV [ v 1 v [ o | v I v 1 v 1o

renH-C[d] v Vi v/ ! ! ! ! !
K/H-C[3] v v v/ o o ! ! !
HORN-C[3] v vV v/ v/ v/ ! ! !

Table 2: Transformations. ./ means “satisfies,” while o
means “does not satisfy unless P=NP.” | means that the trans-
formation is not always feasible within the fragment.



Furthermore, we have:
renH-C[d]<. K/H-C[d]<. HORN-C[T]
K/H-C[d]<. KROM-C[d]
while HORN-C[J] and KROM—-C[d] are incomparable w.r.t.
<, (and AFF[3], which is polynomially equivalent to AFF,
is incomparable w.r.t. <. with any of the three incomplete
fragments above.)

As to succinctness, the picture is rather different. Typically
going from £ to £[3] leads to a a succinctness increase:

Proposition 3

1. None of CNF or DNF is at least at succinct as any of
HORN-C[3], K/H-C[3] or renH-C[T].

2. AC3, the language containing all disjunctions of CNF
formulae and all conjunctions of DNF formulae, is not at
least as succinct as any of HORN-C[V, 3], K/H-C[V, 3
and renH-C[V, 3.

Since HORN-C (resp. K/H—-C, renH-C) is a subset of both
CNF and HORN-C[J] (resp. K/H-C[3], renH-C[d]), item 1.
of Proposition 3 shows that going from £ to £[3] for any of
these three languages leads to a strictly more succinct lan-
guage. Furthermore, since HORN-C[V] (resp. K/H-C[V],
renH-C[V]) is a subset of both AC® and HORN-C[V, 3]
(resp. K/H-C[V,d], renH-C[V,d]), item 2. of Propo-
sition 3 shows that a similar conclusion can be drawn for
those three languages, namely HORN-C[V] (resp. K/H-C[V],
renH-C[V]) is strictly less succinct than HORN-C[V, 3]
(resp. K/H-C[V,d], renH-C[V,d].) As a by-product,
this shows that for sure, none of HORN-C[V], K/H-C[V],
renH-C[V] satisfies FO, an issue left open in [Fargier and
Marquis, 2008b].

Finally, we have also compared the disjunction closures of
KROM-C, HORN-C, K/H~-C, renH-C, AFF, PI with the two
main subsets of DNNF, namely the set d-DNNF of determin-
istic DNNFs and the set SDNNF of structured DNNFs (the
union for all vtrees T of all DNNF languages DNNF'T respect-
ing T)) (see [Pipatsrisawat and Darwiche, 2008] for details.)
What makes those subsets so significant is that every available
compilation algorithm which outputs a DNNF formula actu-
ally computes a d-DNNF formula [Darwiche, 2001; 2004]
or a SDNNF formula [Pipatsrisawat and Darwiche, 2008;
2010]. First of all, as an easy consequence of the fact that
DNNF is not at least as succinct as DNF', unless PH collapses,
we have that:

Proposition 4 d-DNNF is not at least as succinct as any
language among the existential closures of KROM-C[V],
HORN-C[V], K/H-C[V], renH-C[V], AFF[V], PI[V], and
OBDD<[V], unless PH collapses.

This shows those existential closures as interesting alter-
natives to d—-DNNF for applications where FO, VC (and for
some of them ABC) are required since such closures offer
them while d-DNNF does not (the price to be paid is that VA,
IM and CT are lost while they are offered by d-DNNF'.)

As to SDNNF, we have got that:

Proposition 5 SDNNF is not at least as succinct as any lan-
guage among the disjunctive closures of KROM—-C, HORN-C,
K/H-C, renH-C, AFF, PI, and CNF.
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Thus, every language that is at most as succinct as
SDNNF is not at least as succinct as any disjunctive clo-
sure of KROM-C, HORN-C, K/H-C, renH-C, AFF, PI,
CNF. This includes in particular OBDD., OBDD.[V], the
language O-DDG of Ordered Decomposable Decision Dia-
grams [Fargier and Marquis, 2006], and the language AOMDD
of AND/OR Multi-Valued Decision Diagrams (restricted to
propositional variables) [Mateescu et al., 2008] (or equiva-
lently the language SO—DDG of Strongly Ordered Decompos-
able Decision Diagrams [Fargier and Marquis, 2006].)

4 Conclusion and Perspectives

In this paper, we have studied the existential closures of
both incomplete languages (KROM-C, HORN-C, K/H-C,
renH-C, and AFF) and complete languages (the corre-
sponding disjunction closures KROM-C[V], HORN-C[V],
K/H-C[V], renH-C[V], and AFF[V].) The results given
above show that for each complete language £ under consid-
eration, the corresponding existential closure £[3] is at least
as good as L as a target language for KC. Indeed, £ and £[3]
satisfy the same queries and when £ does not satisfy FO,
L[3] offers it for free and is equally expressive but strictly
more succinct than £. For the incomplete languages con-
sidered here, namely KROM-C, HORN-C, K/H-C, renH-C,
AFF, the same conclusions can be drawn as to transforma-
tions, expressiveness and succinctness; the price to be paid for
getting FO for free and obtaining a strictly more succinct lan-
guage is paid by the loss of the EQ and SE queries when the
existential closures of HORN-C, K/H—-C, renH-C are con-
sidered.

Our study also shows HORN — C[V,3] as a valuable
complete target language for the KC purpose. Indeed,
HORN — C|V, J] satisfies the same queries and transformations
as DNNFt or AFF[V] (which is polynomially equivalent to
AFF[V,3].) Especially, HORN — C[V, J] satisfies ABC and
this paves the way for bottom-up compilation algorithms tar-
geting HORN — C[V, J]. As noted in [Pipatsrisawat and Dar-
wiche, 2008], this is important for applications from formal
verification based on unbounded model checking which re-
quire bottom-up, incremental compilation of formulae, where
pieces of the knowledge base are compiled independently
and then conjoined together.> Furthermore, HORN — C[V, J]
guarantees some polynomial-sized representations for fam-
ilies of propositional formulae, like the CNF representa-
tions of circular bit shift functions (resp. the CNF formulae
an = N\i_;(—z; V —;)), which have only exponential-sized
SDNNF representations (resp. exponential-sized AFF[V] rep-
resentations, see [Fargier and Marquis, 2008b].) Compared
to d-DNNF, while it does not satisfy the queries VA, IM
and CT, HORN — C[V, 3] offers the transformations FO, VC
and ABC. Finally, d-DNNF is not at least as succinct as
HORN — C[V, 3] unless PH collapses.

From the practical side, it is important to note that some
empirical evidence in favour of HORN — C[V,d] compila-

3Since HORN — C[V, J] satisfies CO and CL (i.e., every proposi-
tional clause has a polynomial-sized representation in the language),
getting ABC is optimal in the sense that no propositional language
can satisfy both AC, CO, and CL, unless P = NP.



tions and renH — C[V, 3] already exists. On the one hand,
[Nishimura ef al., 2004] (resp. [Samer and Szeider, 2008])
have shown that the problem of determining whether a given
CNF formula « has a strong HORN—-C-backdoor set (resp. a
HORN-C-backdoor tree) containing at most & variables (resp.
leaves) is fixed-parameter tractable with parameter k. Inter-
estingly, the algorithm given in [Samer and Szeider, 2008]
can be used to determine “efficiently”(i.e., for sufficiently
”small” k) whether a HORN — C[V] compilation of reasonable
size (i.e., linear in k and the size of «) exists. As men-
tioned in [Samer and Szeider, 2008]: “There is some em-
pirical evidence that real-world instances actually have small
backdoor sets”. On the other hand, [Boufkhad et al., 1997]
present some compilation algorithms targeting respectively
HORN — C[V] and renH — C[V], and evaluate them on a num-
ber of benchmarks. While such results show the feasibility of
HORN — C[V, 3] compilation and renH — C[V, 3] compilation,
we can hardly use those results to compare the two target frag-
ments HORN — C[V, 3] and renH — C[V, 3] with OBDD. and
DNNF for which some experimental results are also available.
Indeed, the compilation algorithms given in [Boufkhad e al.,
1997] are based on an old-style DPLL SAT solver, and the
performances of such solvers are dramatically overtaken by
those of modern SAT solvers, based on a CDCL architecture.
Accordingly, the main perspective of this work is to develop
and evaluate compilation algorithms based on a CDCL SAT
solver, and which target HORN — C[V, 3] and renH — C[V, J].
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