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Abstract

We present a new and compelling approach to the
efficient solution of important computational prob-
lems that arise in the context of abstract argumen-
tation. Our approach makes known algorithms de-
fined for restricted fragments generally applicable,
at a computational cost that scales with the dis-
tance from the fragment. Thus, in a certain sense,
we gradually augment tractable fragments. Surpris-
ingly, it turns out that some tractable fragments ad-
mit such an augmentation and that others do not.
More specifically, we show that the problems
of credulous and skeptical acceptance are fixed-
parameter tractable when parameterized by the dis-
tance from the fragment of acyclic argumentation
frameworks. Other tractable fragments such as the
fragments of symmetrical and bipartite frameworks
seem to prohibit an augmentation: the acceptance
problems are already intractable for frameworks at
distance 1 from the fragments.
For our study we use a broad setting and consider
several different semantics. For the algorithmic re-
sults we utilize recent advances in fixed-parameter
tractability.

1 Introduction
The study of arguments as abstract entities and their inter-
action in form of attacks as introduced by Dung [1995] has
become one of the most active research branches within Ar-
tificial Intelligence, Logic and Reasoning [Bench-Capon and
Dunne, 2007; Besnard and Hunter, 2008; Rahwan and Simari,
2009]. Abstract argumentation provides suitable concepts
and formalisms to study, represent, and process various rea-
soning problems most prominently in defeasible reasoning
(see, e.g., [Pollock, 1992; Bondarenko et al., 1997]) and agent
interaction (see, e.g., [Parsons et al., 2003]).

A main issue for any argumentation system is the selec-
tion of acceptable sets of arguments, called extensions. How-
ever, important computational problems such as determining
whether an argument belongs to some extension (Credulous
Acceptance) or all extensions (Skeptical Acceptance), are in-
tractable (see, e.g., [Dimopoulos and Torres, 1996; Dunne
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and Bench-Capon, 2002]). The significance of efficient algo-
rithms for these problems is evident. However, a few tractable
fragments are known where the acceptance problems can be
efficiently solved: the fragments of acyclic [Dung, 1995],
symmetric [Coste-Marquis et al., 2005], bipartite [Dunne,
2007], and noeven [Dunne and Bench-Capon, 2002] argu-
mentation frameworks.

It seems unlikely that an argumentation framework orig-
inating from a real-world application belongs to one of the
known tractable fragments, but it might be “close” to a
tractable fragment. In this paper we study the natural and
significant question of whether we can solve the relevant
problems efficiently for argumentation frameworks that are of
small distance to a tractable fragment. One would certainly
have to pay some extra computational cost that increases with
the distance from the tractable fragment, but ideally this extra
cost should scale gradually with the distance.

Results We show that the fragments of acyclic and noeven
argumentation frameworks admit an augmentation. In partic-
ular, we show that we can solve Credulous and Skeptical Ac-
ceptance in polynomial time for argumentation frameworks
that are of bounded distance from either of the two fragments.
We further show that with respect to the acyclic fragment, the
order of the polynomial time bound is independent of the dis-
tance, which means that both acceptance problems are fixed-
parameter tractable (see [Downey and Fellows, 1999]) when
parameterized by the distance from the acyclic fragment.

In way of contrast, we show that the fragments of bipar-
tite and symmetric argumentation frameworks do not admit an
augmentation. In particular, we show that the problems Cred-
ulous and Skeptical Acceptance are already intractable (i.e.,
(co)NP-hard) for argumentation frameworks at distance 1
from either of the two fragments.

We further show that the parameter “distance to the frag-
ment of acyclic frameworks” is incomparable with previ-
ously considered parameters that also admit fixed-parameter
tractable argumentation [Dunne, 2007; Dvořák et al., 2010].
Hence our approach provides an efficient solution for in-
stances that are hard for known methods.

To get a broad picture of the complexity landscape we take
several popular semantics into consideration, namely admis-
sible, preferred, complete, semi-stable and stable semantics
(see [Baroni and Giacomin, 2009]).
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Our approach is inspired by the notion of “backdoors”
which are frequently used in the area of propositional sat-
isfiability (see, e.g., [Williams et al., 2003; Gottlob and Szei-
der, 2006; Samer and Szeider, 2009]), and also for quantified
Boolean formulas and nonmonotonic reasoning [Samer and
Szeider, 2009a; Fichte and Szeider, 2011].

2 Preliminaries

An abstract argumentation system or argumentation frame-
work (AF, for short) is a pair (X,A) where X is a finite set
of elements called arguments and A ⊆ X × X is a binary
relation called attack relation. If (x, y) ∈ A we say that x
attacks y and that x is an attacker of y.

An AF F = (X,A) can be considered as a directed graph,
and therefore it is convenient to borrow notions and notation
from graph theory. For a set of arguments Y ⊆ X we denote
by F [Y ] the AF (Y, { (x, y) ∈ A | x, y ∈ Y }) and by F − Y
the AF F [X \ Y ].
Example 1. An AF with arguments 1, . . . , 5 and attacks
(1, 2), (1, 4), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 2),
(4, 3), (5, 4) is displayed in Fig. 1.

Let F = (X,A) be an AF, S ⊆ X and x ∈ X . We say
that x is defended (in F ) by S if for each x′ ∈ X such that
(x′, x) ∈ A there is an x′′ ∈ S such that (x′′, x′) ∈ A. We
denote by S+

F the set of arguments x ∈ X such that either
x ∈ S or there is an x′ ∈ S with (x′, x) ∈ A, and we omit the
subscript if F is clear from the context. We say S is conflict-
free if there are no arguments x, x′ ∈ S with (x, x′) ∈ A.

1 2

34

5

1 2

34

5

Figure 1: Left: the AF F from Example 1. Right: indicated in gray
the only non-empty complete extension of F .

Next we define commonly used semantics of AFs, see the
survey of Baroni and Giacomin [2009]. We consider a se-
mantics σ as a mapping that assigns to each AF F = (X,A)
a family σ(F ) ⊆ 2X of sets of arguments, called extensions.
We denote by adm, prf, com, sem and stb the admissible, pre-
ferred, complete, semi-stable and stable semantics, respec-
tively. These five semantics are characterized by the follow-
ing conditions which hold for each AF F = (X,A) and each
conflict-free set S ⊆ X .

• S ∈ adm(F ) if each s ∈ S is defended by S.
• S ∈ prf(F ) if S ∈ adm(F ) and there is no T ∈ adm(F )

with S � T .
• S ∈ com(F ) if S ∈ adm(F ) and every argument that is

defended by S is contained in S.
• S ∈ sem(F ) if S ∈ adm(F ) and there is no T ∈

adm(F ) with S+ � T+.
• S ∈ stb(F ) if S+ = X .

Let F = (X,A) be an AF, x ∈ X and σ ∈ {adm, prf, com,
sem, stb}. The argument x is credulously accepted in F with

σ CAσ SAσ

adm NP-complete trivial
prf NP-complete ΠP

2-complete
com NP-complete P-complete
stb NP-complete coNP-complete
sem ΣP

2-complete ΠP
2-complete

Table 1: Complexity of credulous and skeptical acceptance for vari-
ous semantics σ.

respect to σ if x is contained in some extension S ∈ σ(F ),
and x is skeptically accepted in F with respect to σ if x is
contained in all extensions S ∈ σ(F ).

Each semantics σ gives rise to the following two fun-
damental computational problems: σ-CREDULOUS ACCEP-
TANCE and σ-SKEPTICAL ACCEPTANCE, in symbols CAσ

and SAσ , respectively. Both problems take as instance an AF
F = (X,A) together with an argument x ∈ X . Problem
CAσ asks whether F is credulously accepted in F , problem
SAσ asks whether F is skeptically accepted in F . Table 1,
summarizes the complexities of these problems for the con-
sidered semantics (see [Dvořák and Woltran, 2010]).
Example 2. Consider the AF F from Example 1 and the com-
plete semantics (com). F has two complete extensions ∅ and
{1, 3, 5}, see Fig. 1. Consequently, the arguments 1, 3 and 5
are credulously accepted in F and the arguments 2 and 4 are
not. Furthermore, because of the complete extension ∅, no
argument of F is skeptically accepted.

In the following we list classes of AFs for which CA and
SA are known to be solvable in polynomial time [Dung, 1995;
Baroni and Giacomin, 2009; Coste-Marquis et al., 2005;
Dunne, 2007].

• ACYC is the class of acyclic argumentation frameworks,
i.e., of AFs that do not contain directed cycles.

• NOEVEN is the class of noeven argumentation frame-
works, i.e., of AFs that do not contain directed cycles of
even length.

• SYM is the class of symmetric argumentation frame-
works, i.e., of AFs whose attack relation is symmetric.

• BIP is the class of bipartite argumentation frameworks,
i.e., of AFs whose sets of arguments can be partitioned
into two conflict-free sets.

Lemma 1. The classes ACYC, NOEVEN, SYM and BIP can
be recognized in polynomial time (i.e., given an AF F , we
can decide in polynomial time whether F belongs to any of
the four classes).

Proof. The statement of the lemma is easily seen for the
classes ACYC, BIP and SYM. For class NOEVEN it follows
by a result of Robertson et al. [1999].
Since the recognition and the acceptance problems are poly-
nomial for these classes, we consider them as “tractable frag-
ments of abstract argumentation.”

Parameterized Complexity For our investigation we need
to take two measurements into account: the input size n of
the given AF F and the distance k of F from a tractable
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ACYC

1 2

34

5

NOEVEN

1 2

34

5

BIP

1 2

34

5

SYM

1 2

34

5

Figure 2: Backdoors for the AF F from Example 1, with respect to
the indicated classes.

fragment. The theory of parameterized complexity, intro-
duced and pioneered by Downey and Fellows [1999], pro-
vides the adequate concept and tools for such an investiga-
tion. We outline the basic notions of parameterized com-
plexity that are relevant for this paper, for an in-depth treat-
ment we refer to other sources [Flum and Grohe, 2006;
Niedermeier, 2006].

An instance of a parameterized problem is a pair (I, k)
where I is the main part and k is the parameter; the latter
is usually a non-negative integer. A parameterized problem
is fixed-parameter tractable (FPT) if there exist a computable
function f such that instances (I, k) of size n can be solved
in time f(k) · nO(1). Fixed-parameter tractable problems are
also called uniform polynomial-time tractable because if k is
considered constant, then instances with parameter k can be
solved in polynomial time where the order of the polynomial
is independent of k, in contrast to non-uniform polynomial-
time running times such as nO(k). Thus we have three com-
plexity categories for parameterized problems: (1) problems
that are fixed-parameter tractable (uniform polynomial-time
tractable), (2) problems that are non-uniform polynomial-
time tractable, and (3) problems that are NP-hard or coNP-
hard if the parameter is fixed to some constant (such as k-SAT
which is NP-hard for k = 3).

Backdoors We borrow and adapt the concept of backdoors
from the area of propositional satisfiability [Williams et al.,
2003; Gottlob and Szeider, 2006; Samer and Szeider, 2009].
Let C be a class of AFs, F = (X,A) an AF, and Y ⊆ X . We
call Y a C-backdoor for F if F − Y ∈ C. We write distC(F )
for the size of a smallest C-backdoor for F , i.e., distC(F ) rep-
resents the distance of F from the class C. For an illustration
see Fig. 2.

In the following we consider CA and SA parameterized by
the distance to a tractable fragment C.

3 Tractability Results

Regarding the fragments of acyclic and noeven argumenta-
tion frameworks we obtain the following two results which
show that these two fragments admit an amplification.

Theorem 1. The problems CAσ and SAσ are fixed-
parameter tractable for parameter distACYC and the semantics
σ ∈ {adm, com, prf, sem, stb}.

Theorem 2. The problems CAσ and SAσ are solvable in
non-uniform polynomial-time for parameter distNOEVEN and
the semantics σ ∈ {adm, com, prf, sem, stb}.

The remainder of this section is devoted to a proof of Theo-
rems 1 and 2.

The solution of the acceptance problems involves two
tasks: (i) Backdoor Detection: to find a C-backdoor B for
F of size at most k. (ii) Backdoor Evaluation: to use
the C-backdoor B for F for deciding whether x is credu-
lously/skeptically accepted in F .

For backdoor detection we utilize recent results from fixed-
parameter algorithmics. For backdoor evaluation we intro-
duce and use the new concept of partial labelings.

Backdoor Detection The following proposition gives an
easy upper bound for the complexity of detecting a C-back-
door for any class C of AFs that can be recognized in polyno-
mial time.

Proposition 1. Let C be a class of AFs that can be recognized
in polynomial time and F = (X,A) an AF with distC(F ) ≤
k. Then a C-backdoor for F of size at most k can be found in
time |X|O(k) and hence in non-uniform polynomial-time for
parameter k.

Proof. To find a C-backdoor for F of size at most k we simply
check for every subset B ⊆ X of size ≤ k whether F −B ∈
C. There are O(|X|k) such sets and each check can be carried
out in polynomial time.

Together with Lemma 1 we obtain the following conse-
quence of Proposition 1.

Corollary 1. Let C ∈ {ACYC, NOEVEN, SYM, BIP} and
F = (X,A) an AF with distC(F ) ≤ k. Then a C-backdoor
for F of size at most k can be found in time |X|O(k) and hence
in non-uniform polynomial-time for parameter k.

It is a natural question to ask whether the above result can
be improved to uniform-polynomial time. We get an affirma-
tive answer for three of the four classes under consideration.

Lemma 2. Let C ∈ {ACYC, SYM, BIP} and F = (X,A) an
AF with distC(F ) ≤ k. Then the detection of a C-backdoor
for F of size at most k is fixed-parameter tractable for pa-
rameter k.

Proof. The detection of ACYC-backdoors is easily seen to be
equivalent to the so-called directed feedback vertex set prob-
lem which has recently been shown to be fixed-parameter
tractable by Chen et al. [2008]. Similarly, the detection of
BIP-backdoors is equivalent to the problem of finding an odd
cycle traversal which is fixed-parameter tractable due to a re-
sult of Reed et al. [2004]. Finally, the detection of a SYM-
backdoor set is equivalent to the vertex cover problem which
is well known to be fixed-parameter tractable [Downey and
Fellows, 1999].

We must leave it open whether the detection of NOEVEN-
backdoors of size at most k is fixed-parameter tractable for
parameter k. Since already the polynomial-time recognition
of NOEVEN is highly nontrivial, a solution for the backdoor
problem seems very challenging. However, it is easy to see
that C-backdoor detection, considered as a non-parameterized
problem, where k is just a part of the input, is NP-complete
for C ∈ {ACYC, NOEVEN, SYM, BIP}. Hence it is unlikely
that Lemma 2 can be improved to a polynomial-time result.

Backdoor Evaluation Let F = (X,A) be an AF. A partial
labeling of F , or labeling for short, is a function λ : Y →
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{IN, OUT, UND} defined on a subset Y of X . Partial labelings
generalize total labelings which are defined on the entire set
X of arguments [Modgil and Caminada, 2009].

We denote by IN(λ), OUT(λ) and UND(λ) the sets of argu-
ments x ∈ X with λ(x) = IN, λ(x) = OUT and λ(x) = UND
respectively. Furthermore, we set DEF(λ) = Y and UD(λ) =
X \ DEF(λ) and denote by λ∅ the the empty labeling, i.e.,
the labeling with DEF(λ∅) = ∅. For a set S ⊆ X we de-
fine lab(F, S) to be the labeling of F with respect to S by
setting IN(lab(F, S)) = S, OUT(lab(F, S)) = S+ \ S and
UND(lab(F, S)) = X \ S+. We say a set S ⊆ X is com-
patible with a labeling λ if λ(x) = lab(F, S)(x) for every
x ∈ DEF(λ).

Let F = (X,A) be an AF and λ a partial labeling of F .
The propagation of λ with respect to F , denoted λ∗, is the
labeling that is obtained from λ by initially setting λ∗(x) =
λ(x), for every x ∈ DEF(λ), and subsequently applying one
of the following three rules to unlabeled arguments x ∈ X as
long as possible.

Rule 1. x is labeled OUT if x has at least one attacker that
is labeled IN.

Rule 2. x is labeled IN if all attackers of x are labeled OUT.
Rule 3. x is labeled UND if all attackers of x are either

labeled OUT or UND and at least one attacker of x is labeled
UND.

It is easy to see that λ∗ is well-defined and unique.
For an AF F , a set B of arguments of F and a partial la-

beling λ of F we set:

com∗(F, λ) = { IN(λ∗) ∪ S | S ∈ adm(F − DEF(λ∗)) };
com∗(F,B) =

⋃
λ:B→{IN,OUT,UND} com∗(F, λ).

The following lemma can be established by induction on
the number of arguments that have been labeled according to
Rules 1–3 (omitted proofs can be found in a longer version of
this paper at http://arxiv.org/abs/1104.2842).

Lemma 3. Let F = (X,A) be an AF, λ a partial labeling
of F , and S a complete extension that is compatible with λ.
Then the propagation λ∗ of λ is compatible with S.

The following lemma can be shown using Lemma 3.

Lemma 4. Let F = (X,A) be an AF and B ⊆ X . Then
com(F ) ⊆ com∗(F,B).

For an AF F we set F ∗ = F − DEF(λ∗
∅). In other words,

F ∗ is obtained from F after deleting all arguments from F
that, starting from the empty labeling, are labeled according
to the Rules 1–3. We observe that because we start from the
empty labeling Rule 3 will not be invoked.

We say a class C of AFs is fully tractable if (i) for every
F ∈ C the set adm(F ∗) can be computed in polynomial time,
and (ii) C is closed under the deletion of arguments, i.e., if
F = (X,A) ∈ C and Y ⊆ X , then F − Y ∈ C.

Theorem 3. Let C be a fully tractable class of AFs, F =
(X,A) an AF and B a C-backdoor for F with |B| ≤ k.
Then the computation of the sets com(F ), prf(F ), sem(F )
and stb(F ) can be carried out in time 3k|X|O(1) and is there-
fore fixed-parameter tractable for parameter k.

Proof. Let C be a fully tractable class of AFs, F = (X,A) an
AF and B a C-backdoor for F with |B| ≤ k. We first show
that the computation of com(F ) is fixed-parameter tractable
for parameter k. Let λ be one of the 3k partial labelings
of F defined on B. We first show that we can compute
com∗(F, λ) = { IN(λ∗) ∪ S | S ∈ adm(F − DEF(λ∗)) }
in polynomial time, i.e., in time |X|O(1). Clearly, we can
compute the propagation λ∗ of λ in polynomial time. Fur-
thermore, because F − B ∈ C (B is a C-backdoor) also
F − DEF(λ∗) ∈ C; this follows since B ⊆ DEF(λ∗) and
C is closed under argument deletion since C is assumed
to be fully tractable. Moreover, since C is assumed to be
fully tractable and F − DEF(λ∗) ∈ C, we can compute
adm((F − DEF(λ∗))∗) = adm(F − DEF(λ∗)) in polynomial
time. Consequently, we can compute the set com∗(F, λ) in
polynomial time. Since there are at most 3k partial labelings
of F defined on B, it follows that we can compute the entire
set com∗(F,B) in time 3k|X|O(1).

By Lemma 4 we have com(F ) ⊆ com∗(F,B). Thus we
can obtain com(F ) from com∗(F,B) by simply testing for
each S ∈ com∗(F,B) whether S is a complete extension of
F . It is a well-known fact that each such a test can be carried
out in polynomial time (see e.g. [Dvořák and Woltran, 2010]).
Hence, we conclude that indeed com(F ) can be computed in
time 3k|X|O(1).

For the remaining sets prf(F ), sem(F ) and stb(F ) we
note that each of them is a subset of com(F ). Further-
more, the extensions in prf(F ) are exactly the extensions in
com(F ) which are maximal with respect to set inclusion.
Similarly, the extensions in sem(F ) are exactly the exten-
sions in S ∈ com(F ) where the set S+ is maximal with re-
spect to set inclusion, and stb(F ) are exactly the extensions
S ∈ com(F ) where S+ = X . Clearly, these observations
can be turned into an algorithm that computes from com(F )
the sets prf(F ), sem(F ), stb(F ) in polynomial time.

Lemma 5. The classes ACYC and NOEVEN are fully
tractable.

Proof. It is easy to see that both classes satisfy condition (ii)
of being fully tractable, i.e., both classes are closed under
the deletion of arguments. It remains to show that they also
satisfy condition (i) of being fully tractable, i.e., for every
F ∈ ACYC ∪ NOEVEN = NOEVEN it holds that the set
adm(F ∗) can be computed in polynomial time. Dunne and
Bench-Capon [2001] have shown that if F ∈ NOEVEN and
every argument of F is contained in at least one directed cy-
cle, then adm(F ) = {∅}. Consequently, it remains to show
that if F ∈ NOEVEN then every argument of F ∗ lies on a
directed cycle. To see this it suffices to show that every argu-
ment x of F ∗ has at least one attacker in F ∗. Suppose not,
i.e., there is an argument x ∈ X \ DEF(λ∗

∅) with no attacker
in F ∗. It follows that every attacker of x must be labeled and
hence x ∈ DEF(λ∗

∅), a contradiction.

Combining Theorem 3 with Lemma 5 we conclude that if
C ∈ {ACYC, NOEVEN} then the backdoor evaluation prob-
lem is fixed-parameter tractable parameterized by the size of
the backdoor set for the semantics σ ∈ {com, prf, sem, stb}.
For the remaining case of admissible semantics, we recall
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from Table 1 that SAadm is trivial. Furthermore, we observe
that every admissible extension is contained in some com-
plete extension, and every complete extension is also admis-
sible. We conclude that an argument is credulously accepted
with respect to the admissible semantics if and only if the
argument is credulously accepted with respect to complete
semantics. Hence, we have shown that backdoor evaluation
is also fixed-parameter tractable with respect to admissible
semantics. Together with Lemma 2 and Lemma 1 this es-
tablishes our main results Theorem 1 and Theorem 2 of this
section.

λ λ∗ IN(λ∗) ∈
2 4 1 3 5 IN(λ∗) com(F )?
IN IN OUT OUT OUT {2, 4} no
IN OUT OUT OUT OUT {2} no
IN UND OUT OUT OUT {2} no

OUT IN OUT OUT IN {4, 5} no
OUT OUT IN IN IN {1, 3, 5} yes
OUT UND UND UND IN {5} no
UND IN OUT OUT UND {4} no
UND OUT UND UND UND ∅ yes
UND UND UND UND UND ∅ yes

Table 2: Calculation of all complete extensions for the AF F of
Example 1 using the ACYC-backdoor {2, 4}.

Example 3. Consider again the AF F from Example 1. We
have observed above that F has an ACYC-backdoor B con-
sisting of the arguments 2 and 4. We now show how to use the
backdoor B to compute all complete extensions of F using
the procedure given in Theorem 3. Table 2 shows the prop-
agations for all partial labelings of F defined on B together
with the set IN(λ∗) and for every λ it is indicated whether
the set IN(λ∗) is a complete extension of F . Because F − B
is acyclic it follows that adm(F − DEF(λ∗)) = {∅} (see the
proof of Lemma 5) and hence com∗(F, λ) = {IN(λ∗)}. It is
now easy to compute com∗(F,B) as the union of all the sets
IN(λ∗) given in Table 2. Furthermore, using the rightmost
column of Table 2 we conclude that com(F ) = {∅, {1, 3, 5}},
which is in full correspondence to our original observation in
Example 2.

4 Hardness Results

The hardness results for CAσ and SAσ are not completely
symmetric since for σ ∈ {adm, com} the former problem is
NP-complete, the latter is solvable in polynomial time (recall
Table 1).

Theorem 4. (1) The problem CAσ is NP-hard for AFs F with
distBIP(F ) = 1 and σ ∈ {adm, com, prf, sem, stb}. (2) The
problem SAσ is coNP-hard for AFs F with distBIP(F ) = 1
and σ ∈ {prf, sem, stb}.

Proof. (Sketch.) The hardness results follow by reduc-
tions from Monotone 3-Satisfiability [Garey and Johnson,
1979] and its complement, similar to reductions used by
Dunne [2007]. Because of space restrictions we omit details
and only illustrate the constructions in Fig. 3.

Theorem 5. (1) The problem CAσ is NP-hard for AFs F with
distSYM(F ) = 1 and σ ∈ {adm, com, prf, sem, stb}. (2) The

ϕ

C1 x1 x2 x3

C1
x1 x2 x3

ϕ′
ϕ

C1 x1 x2 x3

C1
x1 x2 x3

Figure 3: Illustrations for the reductions in the proof of Theorem 4,
showing instances (F,ϕ) and (F ′, ϕ′) for the problems CAσ and
SAσ , respectively, obtained from the monotone 3-CNF formula ϕ =
C1 ∧ C1 with C1 = x1 ∨ x2 ∨ x3 and C1 = ¬x1 ∨ ¬x2 ∨ ¬x3.
The set {ϕ} is a BIP-backdoor for F and F ′.

problem SAσ is coNP-hard for AFs F with distSYM(F ) = 1
and σ ∈ {prf, sem, stb}.

Proof. (Sketch.) We use a reduction from 3-Satisfi-
ability [Garey and Johnson, 1979] and its complementary
problem, similar to reductions used by Dimopoulos and Tor-
res [1996]. We illustrate the reductions in Fig. 4.

ϕ

x1 x1 x2 x2 x3 x3

C1 C2 C3

ϕ′

ϕ

x1 x1 x2 x2 x3 x3

C1 C2 C3

Figure 4: Illustrations for the reductions in proof of Theorem 5.
(F,ϕ) and (F ′, ϕ′) are instances of CAσ and SAσ , respectively,
obtained from the 3-CNF formula ϕ = C1 ∧ C2 ∧ C3 with C1 =
x1 ∨ x2 ∨ x3, C2 = ¬x1 ∨ x2 ∨¬x3 and C3 = ¬x1 ∨¬x2 ∨¬x3.
The set {ϕ} is a SYM-backdoor for F and F ′.

5 Comparison with other Parameters

In this section we compare our new structural parameters
distACYC and distNOEVEN to the parameters treewidth and
clique-width that have been introduced to the field of abstract
argumentation by Dunne [2007] and Dvořák et al. [2010], re-
spectively. Due to space requirements we cannot give the def-
initions of these parameters and must refer the reader to the
above references. The following two propositions show that
treewidth and clique-width are both incomparable to our dis-
tance parameters.
Proposition 2. There are acyclic and noeven AFs that have
arbitrarily high treewidth and clique-width.

Proof. Consider any symmetric AF F of high treewidth or
clique-width together with an arbitrary but fixed ordering <
of the arguments of F . By deleting all attacks from an argu-
ment x to an argument y with y < x we obtain an acyclic
AF F ′ whose treewidth and clique-width is at least as high
as the treewidth and clique-width of F , but distNOEVEN(F ) =
distACYC(F ) = 0.
Proposition 3. There are AFs with bounded treewidth and
clique-width where distNOEVEN and distACYC are arbitrarily
high.
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Proof. Consider the AF F that consists of n disjoint directed
cycles of even length. It is easy to see that the treewidth
and the clique-width of F are bounded by a constant but
distNOEVEN(F ) = distACYC(F ) = n.

6 Conclusion

We have introduced a novel approach to the efficient solution
of acceptance problems for abstract argumentation frame-
works by “augmenting” a tractable fragment. This way the
efficient solving techniques known for a restricted fragment,
like the fragment of acyclic argumentation frameworks, be-
come generally applicable to a wider range of argumentation
frameworks and thus relevant for real-world instances. Our
approach is orthogonal to decomposition-based approaches
and thus we can solve instances efficiently that are hard for
known methods.

The augmentation approach entails two tasks, the detec-
tion of a small backdoor and the evaluation of the backdoor.
For the first task we could utilize recent results from fixed-
parameter algorithm design, thus making results from a dif-
ferent research field applicable to abstract argumentation. For
the second task we have introduced the concept of partial la-
belings, which seems to us a useful tool that may be of in-
dependent interest. In view of the possibility of an augmen-
tation, our results add significance to known tractable frag-
ments and motivate the identification of new tractable frag-
ments. For future research we plan to extend our results to
other semantics and new tractable fragments.
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