Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

An Assertion Retrieval Algebra for
Object Queries over Knowledge Bases

Jeffrey Pound, David Toman, Grant Weddell, and Jiewen Wu
Cheriton School of Computer Science, University of Waterloo, Canada

{jpound, david, gweddell,

Abstract

We consider a generalization of instance retrieval
over knowledge bases that provides users with as-
sertions in which descriptions of qualifying objects
are given in addition to their identifiers. Notably,
this involves a transfer of basic database paradigms
involving caching and query rewriting in the con-
text of an assertion retrieval algebra. We present
an optimization framework for this algebra, with a
focus on finding plans that avoid any need for gen-
eral knowledge base reasoning at query execution
time when sufficient cached results of earlier re-
quests exist.

1

Many types of structured data repositories can be viewed
as collections of facts about objects (e.g., [Halevy et al.,
2006]), often with schematic information encoding rules and
constraints for how objects relate to each other. An impor-
tant class of search queries over these repositories are ob-
ject queries, which return a set of object identifiers based
on given selection criteria. The importance of these queries
has given rise to a variety of formalisms for expressing ob-
ject queries [Fletcher et al., 2009; Jagadish er al., 2007;
Ross and Janevski, 2004].

In this paper, we consider a description logic (DL) based
representation of the object retrieval problem. Description
logics give us a formal representation of facts about objects
and provide a rich framework for automated reasoning over
the schema information accompanying object databases. In
particular, we assume a database is given in the form of a
knowledge base K = (T,A) over some choice of DL di-
alect £, in which 7 is a terminology (or TBox) that captures
general knowledge, and in which A is a set of assertions (or
ABox) that identifies objects of interest to some agent and as-
serts facts about those objects. In this setting, an object cor-
responds to an individual name occurring in an ABox and the
problem of object querying corresponds to the well-known
problem of instance retrieval [Horrocks et al., 2004].

A particular instance retrieval problem for a knowledge
base K over L is defined by a concept C' in £. The prob-
lem is to compute all objects (or instances) a occurring in A
for which K |= a : C, that is, for which the assertion a : C,
stating that a belongs to concept C, is a logical consequence

Introduction

1051

j55wu}@uwaterloo.ca

of K. Thus, object queries correspond to concepts in £ and
return the subset of ABox objects that satisfy this condition.

We consider a more general problem we call assertion re-
trieval in which a concept C, in L is now paired with each
object a returned by a query concept. C, will be “the most in-
formative” concept about a that can be expressed in a subset
of £ defined by an additional query parameter. In particu-
lar, we assume a user query is now given by a pair (C, Pd)
in which C' is a query concept in £ serving the same role as
in instance retrieval, and in which Pd is the additional pa-
rameter, called a projection description, that defines a subset
Lpg of the concepts of L. The query returns assertions of
the form a : C, such that £ = a : (C 1 C,), where C,
is the most specific concept in Lpg for which this condition
holds. A projection description generalizes the effect of the
relational projection operation by providing a more general
way of controlling both the format and information content
of query results.

There are two compelling reasons for considering assertion
retrieval over basic object retrieval. The first is a practical
reason that relates to usability: since it becomes possible to
include relevant facts about objects in addition to their iden-
tifiers, the results of querying can be more informative and
relevant to a user searching a knowledge base. The second
is a more technical reason that relates to performance: by
caching the computation of earlier assertion retrieval queries,
it becomes possible to explore view-based query rewriting in
the context of object queries over knowledge bases. In par-
ticular, we show rewritings that eliminate the need for gen-
eral knowledge base reasoning during query processing by
reusing previously computed query results.

A running example used in this work relates to a hypo-
thetical knowledge base system encoding product data. In
response to some user action, a web browser submits queries
over the knowledge base. The queries originate in the web
pages for an enterprise, and are replaced on the fly with the re-
sulting set of concept assertions computed by the query (suit-
ably mapped to HTML).

Example 1 Consider the case of an online dealer of photog-
raphy equipment. As part of a web presence, the dealer main-
tains (1) a knowledge base K with a TBox and ABox that
respectively capture ontological knowledge of digital cam-
eras and facts about particular cameras available for purchase
through the dealer, and (2) a collection of web pages with
embedded user queries over this knowledge base. For exam-
ple, one of the web pages might have a query) with a query

concept C of the form
ProductCode = “digicam” M Price < “250.00”
paired with a projection description Pd of the form
(Name? M 3Supplier.(Online Addr? M Rating?)).

Consequently, when browsing this page, a user sees in place
of @ a list of inexpensive digital cameras, with each list el-
ement displaying the name of the camera together with a
nested sublist of supplier URLs and ratings for that camera.

The example above illustrates how a set of concept assertions
computed by our query language can resemble a nested rela-
tion. Note that such queries are not expressible as conjunctive
queries over either a DL-based knowledge base or a relational
database. Our contributions are as follows.

1. We propose the task of assertion retrieval for object
queries over knowledge in which it becomes possible
for a user to control the format and content of additional
facts about qualifying objects returned in response.

2. By choosing a DL-based presentation of object data in
the form of a knowledge base, we provide a way to re-
solve the problem of incorporating ontological domain
knowledge for object queries.

3. We introduce an assertion retrieval algebra over a com-
bination of a knowledge base and a set of cached query
results. We show how this can enable a transfer of basic
database paradigms involving caching and view based
query rewriting.

4. We present an optimization framework for query rewrit-
ing and show that applying rewrites to query plans can
enable the resulting plans to avoid general knowledge
base reasoning during their execution.

We also present experimental results illustrating evidence for
both the utility of our optimization framework and the feasi-
bility of our approach for supporting assertion retrieval over
knowledge bases.

Subsequent sections are organized as follows. Section 2
provides the necessary foundations. Our main results follow
in Section 3 in which we introduce our assertion retrieval al-
gebra together with an optimization framework for this al-
gebra that enables a transfer of basic database paradigms in-
volving caching and view-based query rewriting. The section
concludes by considering how rewrites can be introduced that
will overcome the overhead of general knowledge based rea-
soning during query execution. In Section 4, we present the
results of preliminary experiments and conclude in Section 5
with a discussion of how our work leads to a variety of possi-
ble extensions and future work.

1.1 On Expressiveness and Related Work

The notion of an object query language for object data was
proposed in [Ross and Janevski, 2004] and further consid-
ered in [Fletcher et al., 2009] for object data that includes
links between objects. The latter work also exhibits a corre-
spondence between an object query language proposed by the
authors and a restricted semi-join algebra over two-column
relational data. Thus, in this earlier work, object query lan-
guages are viewed as strictly less powerful than first order
query languages such as the relational algebra.

2 Definitions

We assume web data is formally understood as a knowledge
base over some choice of DL dialect £. For the remainder
of the paper, £ will correspond to the dialect ALC(S) de-
fined below. However, our results apply to any dialect that
has ALC(S) as a fragment, such as the dialect that underlies
OWL DL [W3C, 2009]. (This requirement can be relaxed
slightly without harm by removing the need to support con-
cept negation.)

Definition 1 (Description Logic ALC(S)) Let {A, Ay, ...},
{R,Ry1,...}, {f,9, f1,...} and {a,b,...} denote countably
infinite and disjoint sets of concept names, role names, con-

crete features and individual names, respectively. A concept
is defined by:

C,D == T|L1L]A|-C|CnD]|3RC
| f=k (equality over S)
| f<yg (linear order over S)

where k is a finite string. A constraint C is an inclusion de-
pendency C' C D, a concept assertion a : C, or role assertion
R(a,b). A knowledge base K is a finite set of constraints, fur-
ther divided into a TBox T of all the inclusion dependencies
and an ABox A of concept/role assertions.

An interpretation T is a 2-tuple (A W S, 1) in which A is
an abstract domain of objects and in which S is a disjoint con-
crete domain of finite strings. The interpretation function -*
maps each concrete feature f to a total function (f)* : A —
S, each role name R to a relation (R)T C (A x A), each
concept name A to a set (A)T C A, the “=" symbol to the
equality relation on S, the “<” symbol to the binary relation
for an alphabetical ordering of S, and a finite string k to it-
self. The interpretation function is extended to all concepts in
the standard way, e.g., (f = k)T = {o € & | (f)%(0) = k},
(=C)E = A — (O)%, etc. An interpretation T satisfies an
inclusion dependency C T D (concept assertion a : C,

role assertion R(a,b)) if (C)T C (D)* ((a)f € (O)%,
((a)T, (b)T) € (R)%, respectively). We write K |= C if all
interpretations that satisfy constraints in KC also satisfy C.

We use standard abbreviations such as C = D for (C C
D)n(DCC),CuDfor-(-Cn-D)and f <k for (f =
E)U((f < g)N(g = k)). Also, given a finite set S of ALC(S)
concepts, we write NS to be the concept D, M --- M D, for
D; € S(and Tif S = 0).

Now recall that a user query (C, Pd) consists of a query
concept C paired with a projection description Pd. The syn-
tax for a Pd and the sublanguage of concepts in ALC(S) that
are induced by a Pd are defined as follows.

Definition 2 (Projection Description) Let f, R and C be a
concrete feature, role and concept, respectively. A projection
description Pd is defined by the grammar:

Pd ::= C? | f? | PdinNPds | 3R.Pd (1)
Definition 3 (Induced Concepts) Let Pd be a projection

description. We define the sets Lpy and LTSY, the L con-
cepts generated by Pd and L tuple concepts generated by

1052

Pd, respectively, as follows:
Lpa={NS|S Cgn LTI

L& ={CT}
Ly ={f=k|keStu{T}

LI by, ={C1NCe | C1 € LBYP,Co € LFYP

PdiNPdy Pd; > Pd,
TUP _
L3p'pg, ={3R.C|C € Lpa, }

Thus, for a given Pd, any concept occurring in L p, satisfies
a syntactic format conforming to Pd independently of any
knowledge base K. For example, let Pd = (A? M (f = 1)7).
Then L pg is the set of concepts

{HS | S Chin {(THT)><AHT>7(TH (f = 1));
(AN(f=1)}}

where Cg,, denotes a finite subset. Given a knowledge base

K and set of concepts S, we will need to refer to the most
informative concepts in S with respect to .

Definition 4 (Most Informative Concepts w.r.t. Lp)

Let S be a set of concepts specified by Lpgq and
K knowledge base. We write |S|x to denote
{CeS|-3DeS: (KEDCCKKECLED)}
Lemma 5 Let KC be an ALC(S) knowledge base, Pd a pro-
Jection description and C' a concept. The following hold for
the set S of concepts defined by {D € Lpq | K = C C D}:

1. | S|k is non-empty;
2. K E Cy =0y, forany {C1,Ca} C | S|k, and
3. S|k o is non-empty,

Parts / and 2 of Lemma 5 ensure that at least one least sub-
suming concept of C' exists in Lpg and, when there is more
than one, that any pair are semantically equivalent with re-
spect to a given K. Note that some such L restriction of
ALC(S) is essential to ensure Part /, e.g., that a more gen-
eral fragment that simply excludes concept negation from
ALC(S) may not have this property [Baader er al., 2007].
Also note that, although Lpg is infinite in general, for any
fixed and finite terminology 7 and concept C, the language
L pg restricted to the symbols used in 7 and C is necessar-
ily finite. Part 3 of Lemma 5 ensures that, among the least
subsuming concepts of C' in Lp,4 with respect to /C, there is
at least one least subsuming concept that is the most infor-
mative when no knowledge of K is presumed. For example,
let K = {AC (f = 1)} and Pd = (A? 1 f7?), and let
SZ{DEL:Pd“C':AED}.Then

L [Sle={AN(f=1), AN T},

2. 1Skl = {AN(f = 1)} and

3. ISk =An(f=1).
where || .S || is the minimum concept from a set of concepts
| S|k |¢ according to an (arbitrary) total ordering of all con-
cepts in ALC(S).
Definition 6 (Query Semantics) Let K be an ALC(S)

knowledge base and QQ = (C, Pd) a user query over K. Then
Q) computes the set of concept assertions

{a:||{D| D€ Lpy,K=a: D}k)

| K Ea:C,aoccurs in K}
Observe that concept assertion retrieval generalizes instance
retrieval. In particular, an instance retrieval query C' over

1053

can be formulated as query (C, T?) (effectively retrieving no
further information about qualifying individual names in).

3 An Assertion Retrieval Algebra

We now introduce an algebra for manipulating sets of con-
cept assertions. The algebra is centered around our ability
to store (cache) and later use results of previous queries to
aid the evaluation of subsequent queries. To this end the al-
gebra uses operations for (efficient) selection of qualifying
objects from cached query results [Pound et al., 2007] and
for concept projection [Pound er al., 2009]. Additional oper-
ators are included that allow basic combinations of queries.
We show how expressions in this algebra can describe a va-
riety of query plans for evaluating a user query that can vary
widely in the cost of their evaluation, and we outline how sev-
eral standard relational-style query optimization techniques
can be accommodated in this framework.

3.1 Cached Query Results

Intuitively, cached query results store explicit information
about the qualifying individuals obtained by previous user
queries.

Definition 7 (Cached Query Results) A cached query re-
sult S, is the set of concept assertions obtained by a user
query (C;, Pd;).

The above definition permits the existence of any number of
cached query results often organized in data structures de-
signed to support user queries'. Note that cached query re-
sults are essential in our approach. They enable query evalu-
ation to avoid (or reduce) the amount of general DL reasoning
during query evaluation. A particular query answer may be
more preferable for caching than that of another, though, in
principle, all user query results could be cached. Details on
selecting which query answer to store are beyond the scope
of this paper.

Example 2 To continue with our running example: we as-
sume cached query results are available:

Sy :=(T, ProductCode?),
Sy = (Price < “999.99”, Price?), and
Sy = (T, Name?N3Supplier.(Online Addr?M Rating?)).

The first caches the ProductCode of every product (with
the idea that the underlying data structure can be efficiently
searched given a particular product code), the second caches
the Price for products costing under $1000, and the last
stores a more elaborate projection of the information asso-
ciated with every product.

3.2 The Algebra

To facilitate efficient evaluation of such requests we introduce
a query algebra to manipulate sets of concept assertions. The
algebra allows for the use of cached query results to speed-up
search for qualifying individuals and to retrieve appropriate
concepts needed to construct answer concept assertions.

IThis is analogous to relational systems, multiple specialized in-
dices are typically defined to support queries. This is in contrast to
approaches that aspire to developing a “universal” search structure
to represent semantic data.

Definition 8 (Assertion Retrieval Algebra) The algebra
consists of the operators listed in the grammar below.

Q:=C {a: C| aappearsin K}
| Pk {a: T | aappearsin K}
| S;(Q) {a:Cl(a:C)e S, (a:D)eQ,
{a:C} Ea:D}
| 05(Q) {a:D|(a:D)eQ,KU{a:D}Ea:C}
| 754(@Q) {a: [{D|KU{a:C}=a: D,
DGﬁpd}JJ}c|(aZC)€Q}
| leQQ{aID1HD2|(a:Di)GQi,i:1,2}

where C' is a concept description and S; a cached query re-
sult. The semantics of each operator is given immediately to
the right of its position in the grammar, and is defined with re-
spect to (a) zero or more cached query results {S;,...,S,},
and (b) a given knowledge base K.

The operators are either pure or impure: C' is impure, P*

and S;(Q) are pure, o5 (Q) and 7’5 ,(Q) are pure if Q is pure,
and Q1 N Qs is pure if both Q1 and Q2 are pure.
Each of the operators maps sets of concept assertions to a
set of concept assertions, with the S;(Q)) operator provid-
ing an access to the previously cached results of queries.
The operator accepts an argument that can supply search
conditions with the intention of using the underlying data
structure representing the cached result to facilitate efficient
search. For example, the cached result S; from Example 2
can be used to efficiently search for descriptions of the form
(ProductCode = k) for a given string k.

Note that queries of the form C' can be, without loss of
generality, compactly represented by a single generalized as-
sertion of the form {x : C'} where * stands for an arbitrary
ABox individual. This arrangement leads to greatly improved
efficiency when executing S;(C') operators to select cached
results subsumed by the constant description C'

3.3 Queries as Algebraic Expressions

In this setting, a given user query (C, Pd) can always be
translated into the algebraic expression

pa(06(PY)); 3)
this follows immediately from the definitions. However, to
benefit from the performance gains made possible by cached
query results, the algebra allows a richer space of expressions:

Lemma 9 (Caching Introduction) Let (C, Pd) be a user
query. Then the expression

mpa(o¢((S1(C1) N+ NS, (Cn)))) Q)
is equivalent to (3), provided that (i) S; := (D;, Pd;)), (ii)
Lpy,, K =ECLC D}k, forall0 < i <n.
Conditions (i) and (ii) ensure that the combination (intersec-
tion) of the cached query results .S, contains sufficient data to
answer the original query. The last condition in the lemma
serves two purposes: first it supplies a sufficiently general
search concept to each of the cached results. Note that using
the original search concept C' instead would lead to loss of
answers since the concept assertions stored in the cached re-
sults are more general than those implied by the knowledge
base, in general. Secondly, as the concepts C; are results of
the same projections used to create the cached result S;, all

1054

the general subsumption checks reduce to structural tests (cf.
section 3.4). This rewriting completely avoids the use of P*.
The rewriting, when coupled with the ability to store and
search efficiently among descriptions, yields a path to defin-
ing appropriate physical data layout designs in the form of
cached query results and in turn to efficient plans for answer-
ing assertion retrieval queries. The general form of (4) can
be further simplified using the analogues of relational-style
query rewrites that allow the use of cached query results:

Lemma 10 (Removing Redundant Selections) The selec-
tion operation o5 (+) can be removed from (4) to obtain the
expression

mpa((S1(C1) N---N S, (C)))
fFKECiN...NnC,) CC.
Example 3 Recall the running example query (1). With the

help of cached query results defined in Example 2, we can
obtain the following equivalent query expression:

78 4(S1 (ProductCode = “digicam”) N ©)
Sy(Price < “250.00”) N S5(T)).

The cached results S; and S, fully qualify the individu-
als needed to answer the query and can be efficiently ac-
cessed using the concepts (ProductCode = “digicam”) and
(Price < “250.007), respectively. The reason for using Sy is
to form the concept assertions for the answer since Sy stores
the most specific descriptions conforming to Pd.

A final feature of the proposed algebraic framework is its
ability to use results of queries to further qualify scans over
cached query results:
Lemma 11 (Nested Searches) An expression of the form

5 (Si(ci) N Sj(cj))

Tpq

&)

is equivalent to
K K

e (Si(Ci N mpa(S;(C5))))
where Pd is such that Lpq C Lpg, (the projection descrip-
tion used to define S;) and Pd' is an arbitrary projection.
Note that the projection description Pd in the above rewriting
rule is not unique; in particular, the projection description T 7
can be always used in place of Pd. However, the more gen-
eral this projection description is, the less information about
objects retrieved from S is used to qualify the search in S;.

Example 4 The above lemma applied twice to our running
example (6) will produce the following expression:

7054 (S5 (7%, (Sy (Price < ©250.00” N 7
75, (S, (ProductCode = “digicam”))))))

Note that the outermost projection is identical to the projec-
tion used to define S3 and can be removed.

3.4 On Purely Structural Reasoning

There are a variety of cases in which the operators in our al-
gebra can be evaluated with simple structural subsumption
testing in place of general reasoning (indeed, this is already
the case when accessing the cached results). In this section,
we characterize a general condition in which this holds for
various operators in a given concept assertion query Q). We
devise a test that allows us to determine whether a particular
operator of our algebra can be executed without referring to
the knowledge base K. This goal requires us to devise con-

ditions under which OP’C(Ql, Q) = OP@(Ql7 e Q)

for every operator OP in our algebra and every knowledge

base K, where OP? denotes executing the operator w.r.t. the
empty knowledge base. Intuitively this means that the con-
cept assertions in the answers to (J; contain sufficient explicit
information about an individual; the goal is to ultimately ob-
tain this information using some cached query result rather
than via reasoning in /.

Definition 12 (Representative Language) We define Lg to
be a language of representative concepts for an algebraic

query Q as follows:

{c} ifQ="C"
{7} fQ="P""
Lpa, ifQ="S;(Q1)"
Lo =1 Lcng, ifQ="05(Q1)"
Lpa if Q= “m5,(Q1)"; and
{CNnD| CEEQl,D€£Q2}
fQ="0Q1NQ",

where Pd, is the projection description used to define S;, For
representative languages Lqg, and Lg, we define Lo, —
Lo, if for all C1 € Lg, there is Cy € Lg, such that =
Cl = CQ.

Theorem 13 Ler (C, Pd) be a user query, (C;, Pd;) queries
that define cached query results S;, and) an algebraic query
equivalent to (C, Pd). Then, for every pure subquery Q' of
Q, the following holds:

1. o85(Q") = o (Q) iff Lox(qry = Lar
2. whg(Q) = mpa (@) iff Lok (1) = Lar-

Proof (sketch): (a sketch for case 1; the other case is similar)
For (a : D) € of(Q") we have (a : D) € Q" and K U {a :
D} = a : C where D is the most specific in L such that
a : D. However, by the assumption of the theorem, concept
C' N D, up to equivalence, is also a member of L. Thus,
B D C Cimpliesa : C M D € @': acontradiction. Hence
C C D and thus (a : C) € ¢%(Q’). The other direction is
immediate from definitions.

To make the above theorem into an effective rewriting rule
we need to define finite approximations of the languages Lg.
Definition 14 Ler (C, Pd) be a user query and (C;, Pd;)
queries that define cached query results S;. We define a set
of concrete domain values (strings) S to be the set of values
k such that (f = k) is a subexpression in any of the above
queries for some feature f. We define ,Cg“ to be the restriction
of the language L to those concepts C for which k € {x}US
whenever f = k is a subconcept of C, where x is an arbitrary
concrete value that does not appear in S.

It is easy to see that Lg“ is finite; moreover:

Lemma 15 L, — Lo, iff L5 — L3

Hence the precondition for the rewriting defined in Theo-
rem 13 can be tested using finitely many subsumption tests
in the underlying description logic.

Example 5 Applying the results in Theorem 13 to the alge-
braic version of our running example (7) top-down yields:

Sy (72, (S, (Price < “250.00” N

7T@r?(5'1 (ProductCode = “digicam™))))) ®)

1055

Knowledge
Base
4
Reasoning DL
Reasoner

Query
Results

Query Cached Cache
Evaluator Results Store

Query
Optimizer

Figure 1: System Architecture

The complete query can now be executed exclusively using
the cached query results and without referring to the knowl-
edge base K.

Note the essential use of S, that stores sufficient explicit in-
formation about retrieved objects, even though in itself does
not facilitate the search for such objects.

4 Experimental Evaluation

To evaluate the utility of our optimization framework and the
feasibility of our approach to supporting object queries over
knowledge bases, we implemented the assertion retrieval al-
gebra defined in the previous section together with a basic DL
reasoner to support subsumption testing in ALC(S). Our im-
plementation uses standard tableaux-based techniques with a
straightforward extension to support reasoning over our very
simple concrete domain of strings. Our implementation of the
projection and scanning operations on top of the DL reasoner
are based on the algorithms reported in [Pound et al., 2007]
and [Pound et al., 2009].

An overview of our system architecture is illustrated in
Figure 1. The system assumes clients browse Web pages
that contain embedded user queries. These are more generic
queries that have parameters that are initialized by user input
when browsing such pages. The resulting queries are then
sent to the query evaluator for execution. In the current sys-
tem, general plans for the original queries with parameters
will have already been cached. These plans use cached query
results that are stored in specialized data structures called de-
scription indices [Pound et al., 2007]. Initialized queries are
then evaluated using the cached plans to produce the resulting
set of concept assertions, which are then returned to the client
browser for display.

We compare two systems, both of which evaluate queries
using cached query results. The baseline system always eval-
uates the query using calls to our DL reasoner. The optimized
system takes advantage of the structure of cached queries to
use structural subsumption testing and avoid general DL rea-
soning in some cases. The full source code for our imple-
mentation, along with our evaluation workload and test data
is available online?. For our evaluation knowledge base, we
encoded all publications from the last ten years of all pro-
gram committee members for major conferences as an ABox
(approximately 900 publications). We then extracted a tax-
onomy of computer science conferences from Wikipedia us-
ing an automated procedure, and hand coded additional ax-
ioms for affiliations of authors for our TBox (approximately
350 inclusion dependencies about authors’ affiliation, organi-
zation locations and so on). Finally, we constructed a suite

“http://code.google.com/p/projection-alcd/

12

H Optimized
Baseline

10

Time (s)

Q1 Q2 Q3 Q4 Q@5 Q@6 Q7 Q8 Q9

Query
Figure 2: Execution time of queries.

of queries that exercise various scenarios, such as feature
equality queries, feature range queries, and arbitrary concept
queries including disjunctions and existential quantification.
Queries were created for scenarios in which a cached query
result efficiently supports the query (no general DL reasoning
is required) and for scenarios in which a full scan and general
DL reasoning is necessary. For example, one of our queries
finds all publications published in some artificial intelligence
proceedings, and returns concept assertions containing the ti-
tle, proceedings name, and author names:
(FinProceedings.Artificial intelligence,

title? M (JinProceedings.name?) M (FhasAuthor.name?)).

Figures 2 and 3 summarize our query processing experi-
ments. The results are evidence for both the utility of our
optimization framework and the feasibility of our approach
to supporting object queries over knowledge bases. Figure 2
shows the overall execution time of each system over all
queries with and without optimization, and Figure 3 shows
a breakdown of the number of structural (OSS) and reasoner
(ORS) subsumption tests for the optimized system, compared
to the total number of reasoner subsumption tests for the base-
line system (BRS). The results indicate that the optimized
system has a clear performance advantage across a major-
ity of our test queries. In particular, queries 3 and 4 involve
feature projections on multiple features for a large number
of results. In these scenarios, C-free structural subsumption
testing leads to a significant advantage over the baseline.

5 Conclusions & Future Work

The framework for assertion retrieval proposed in this pa-
per provides a basis for introducing efficient relational-style
query processing to querying object data. The key features of
the approach are the ability to compute projections of general
concepts to make properties of individuals syntactically ex-
plicit, to cache such assertions for efficient query evaluation,
and to account for circumstances in which general knowledge
base reasoning can be supplanted with simple structural sub-
sumption testing at query evaluation time.

Future research can use the proposed query algebra to
develop additional tools and techniques facilitating efficient
query execution, for example: (1) optimization techniques
that determine optimal reformulations of user queries in the
algebra or its extensions, possibly integrated with cost and
selectivity estimates; and (2) extensions of the language of
projection descriptions that allow, e.g., alternatives in the ex-
plicit information stored with objects (efficient query process-

1056

14000
H ORS
M Oss

BRS

12000

10000

8000

6000

4000

of Subsumption Tests

2000

- I I = 0 01 1
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Query

Figure 3: Number of reasoner subsumption tests.

ing in such an extension crucially depends on the ability to
reason with fragments of the original knowledge base, pos-
sibly based on the notion of modules [Konev et al., 2008]).
Another direction of research is whether more complex user
queries, e.g., an equivalent of conjunctive queries, can be ac-
commodated by modest extensions to the framework.

References

[Baader er al., 2007] Franz Baader, Baris Sertkaya, and
Anni-Yasmin Turhan. Computing the least common sub-
sumer w.r.t. a background terminology. J. App. Logic,
5(3):392-420, 2007.

[Fletcher et al., 2009] George H. L. Fletcher, Jan Van den
Bussche, Dirk Van Gucht, and Stijn Vansummeren. To-
wards a theory of search queries. In Proc. ICDT, pages
201-211, 2009.

[Halevy et al., 2006] Alon Y. Halevy, Michael J. Franklin,
and David Maier. Principles of dataspace systems. In Proc.
PODS, pages 1-9, 2006.

[Horrocks et al., 2004] Ian Horrocks, Lei Li, Daniele Turi,
and Sean Bechhofer. The Instance Store: DL Reasoning
with Large Numbers of Individuals. In Proc. Description
Logics, 2004.

[Jagadish er al., 2007] H. V. Jagadish, Adriane Chapman,
Aaron Elkiss, Magesh Jayapandian, Yunyao Li, Arnab
Nandi, and Cong Yu. Making database systems usable.
In Proc. ACM SIGMOD, pages 13-24, 2007.

[Konev et al., 2008] Boris Konev, Carsten Lutz, Dirk
Walther, and Frank Wolter. Semantic modularity and
module extraction in description logics. In Proc. ECAI
2008, pages 55-59, 2008.

[Pound ef al., 2007] Jeffrey Pound, Lubomir Stanchev,
David Toman, and Grant Weddell. On Ordering Descrip-
tions in a Description Logic. In Proc. Description Logics,
pages 123—-134. CEUR-WS vol. 250, 2007.

[Pound er al., 2009] Jeffrey Pound, David Toman, Grant
Weddell, and Jiewen Wu. Concept Projection in Algebras
for Computing Certain Answer Descriptions. In Proc. De-
scription Logics. CEUR-WS vol. 477, 2009.

[Ross and Janevski, 2004] Kenneth A. Ross and Angel
Janevski. Querying faceted databases. In Proc. Seman-
tic Web and Databases, pages 199-218, 2004.

[W3C,2009] W3C. OWL 2 Web Ontology Language:
Document Overview, 2009. http://www.w3.org/TR/owl2-
overview.

