
On the Complexity of Dealing with Inconsistency
in Description Logic Ontologies

Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma, Italy

Abstract

We study the problem of dealing with inconsistency
in Description Logic (DL) ontologies. We consider
inconsistency-tolerant semantics recently proposed
in the literature, called AR-semantics and CAR-
semantics, which are based on repairing (i.e., modi-
fying) in a minimal way the extensional knowledge
(ABox) while keeping the intensional knowledge
(TBox) untouched. We study instance checking
and conjunctive query entailment under the above
inconsistency-tolerant semantics for a wide spec-
trum of DLs, ranging from tractable ones (EL) to
very expressive ones (SHIQ), showing that rea-
soning under the above semantics is inherently in-
tractable, even for very simple DLs. To the aim of
overcoming such a high computational complexity
of reasoning, we study sound approximations of the
above semantics. Surprisingly, our computational
analysis shows that reasoning under the approx-
imated semantics is intractable even for tractable
DLs. Finally, we identify suitable language restric-
tions of such DLs allowing for tractable reasoning
under inconsistency-tolerant semantics.

1 Introduction

In this paper we study the problem of dealing with inconsis-
tency in Description Logic (DL) ontologies. This problem
is becoming of increasing importance in practical applica-
tions of ontologies. In fact, the size of ontologies used by
real applications is scaling up, and ontologies are increasingly
merged and integrated into larger ontologies: the probabil-
ity of introducing inconsistency in these activities is conse-
quently getting higher, and dealing with inconsistency is be-
coming a practical issue in ontology-based systems (see e.g.
[Hogan et al., 2010]).

A traditional approach (analogous to data cleaning in
databases) is to manually (or semi-automatically) repair the
inconsistency, by suitably modifying the ontology. This
might be not be practical or feasible in many contexts, e.g.,
when dealing with (very) large ontologies, or integrating
different ontologies. An alternative approach is to define
inconsistency-tolerant semantics, which, differently from the
classical FOL semantics of DLs, are able to derive meaning-

ful conclusions from inconsistent ontologies, and can be the
formal basis for an automated treatment of inconsistency.

The inconsistency-tolerant semantics for DL ontologies
that we consider are based on repairing (i.e., modifying) the
extensional knowledge (i.e., the ABox A) while keeping the
intensional knowledge (i.e., the TBox T) untouched. Specifi-
cally, such semantics are based on the notion of ABox repair.
Intuitively, given a DL KB K = 〈T ,A〉, a repair AR for K
is an ABox such that the KB 〈T ,AR〉 is satisfiable under the
classical semantics, and AR “minimally” differs from A. No-
tice that in general not a single but several repairs may exist,
depending on the particular minimality criteria adopted.

In particular, we consider inconsistency-tolerant seman-
tics recently proposed in [Lembo et al., 2010], called AR-
semantics and CAR-semantics, for which reasoning has been
studied in the context of the Description Logics of the DL-Lite
family. The notion of ABox repair in the AR-semantics is a
very simple and natural one: a repair is a maximal subset
of the ABox that is consistent with the TBox. The CAR-
semantics is a variant of the AR-semantics that is based on a
notion of “equivalence under consistency” of ABoxes incon-
sistent with respect to a given TBox.

We study the main forms of extensional reasoning in DL
ontologies (instance checking and conjunctive query entail-
ment) under the above inconsistency-tolerant semantics for
a wide spectrum of DLs, ranging from tractable ones (EL) to
very expressive ones (SHIQ). Our results confirm the results
obtained in [Lembo et al., 2010] for DL-Lite and show that
reasoning under the above semantics is inherently intractable,
even for very simple DLs. So, to the aim of overcoming the
high computational complexity of reasoning, we also con-
sider sound approximations of the previous semantics. In
particular, we focus on semantics (called IAR-semantics and
ICAR-semantics in [Lembo et al., 2010]) that consider as a
repair, in each of the previous semantics, the ABox corre-
sponding to the intersection of all the repairs. Surprisingly,
our computational analysis shows that, differently from the
case of DL-Lite, reasoning under the approximated semantics
is in general intractable even for tractable DLs.

Finally, we study tractable cases, i.e., suitable restric-
tions of such DLs that allow for tractable reasoning un-
der inconsistency-tolerant semantics. In particular, we iden-
tify a fragment of the DL EL⊥ for which reasoning under
an inconsistency-tolerant semantics (in particular, the IAR-
semantics) is computationally not harder than reasoning un-

1057

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

DL concept and role expressions TBox axioms

EL⊥
C ::= A | ⊥ | C1 � C2 | ∃P .C

R ::= P
C1 � C2

ALC C ::= A | C1 � C2 | ¬C | ∃P .C
R ::= P

C1 � C2

SHIQ C ::= A | ¬C | C1 � C2 | (≥ nRC)
R ::= P | P−

C1 � C2

R1 � R2

Trans(R)

Figure 1: Abstract syntax of the DLs studied in the paper.

der the standard DL semantics.

2 Preliminaries

The DLs mainly considered in this paper are the following:
• EL [Baader et al., 2005], a prominent tractable DL.

Here, we consider EL⊥, a slight extension of EL al-
lowing for the empty concept ⊥ (and hence for incon-
sistency in KBs);

• ALC, a very well-known DL which corresponds to mul-
timodal logic Kn [Baader et al., 2003];

• SHIQ [Glimm et al., 2008], a very expressive DL
which constitutes the basis of the OWL family of DLs
adopted as standard languages for ontology specification
in the Semantic Web.

In every DL, concept expressions and role expressions can
be constructed starting from concept and role names. Such
expressions are used to define axioms. Typical axioms are
concept inclusions, role inclusions, and instance assertions.
A concept inclusion is an expression of the form C1 � C2,
where C1 and C2 are concept expressions. Similarly, a role
inclusion is an expression of the form R1 � R2, where R1

and R2 are role expressions. An instance (ABox) assertion is
an expression of the form A(a) or P (a, b), where A is a con-
cept name, P is a role name, and a, b are constant (individual)
names. We do not consider complex concept and role expres-
sions in instance assertions. A DL knowledge base (KB) is a
pair 〈T ,A〉, where T , called the TBox, is a set of concept and
role inclusions, and A, called the ABox, is a set of instance
assertions.

The syntax of EL⊥, ALC and SHIQ is summarized in
Figure 1, in which the symbol A denotes a concept name and
the symbol P denotes a role name (in addition to concept and
role inclusions, SHIQ also allows for TBox axioms of the
form Trans(R), which state transitivity of the role R).

The semantics of DLs can be given through the well-known
translation ρfol of DL knowledge bases into FOL theories
with counting quantifiers (see [Baader et al., 2003]). An in-
terpretation of K is a classical FOL interpretation for ρfol(K).
A model of a DL KB K = 〈T ,A〉 is a FOL model of ρfol(K).
We say that K is satisfiable if K has a model. We say that K
entails a FOL sentence φ (and write K |= φ) if φ is satisfied
in every model of K.

In the following, we are interested in particular in UCQ
entailment, i.e., the problem of deciding whether a KB entails
a (Boolean) union of conjunctive queries (UCQ), i.e., a FOL
sentence of the form ∃�y1.conj 1(�y1) ∨ · · · ∨ ∃ �yn.conjn(�yn)
where �y1, . . . , �yn are terms (i.e., constants or variables), and
each conj i(�yi) is a conjunction of atoms of the form A(z)

and P (z, z′), where A ia a concept name, P is a role name
and z, z′ are terms. Instance checking (IC) is a restricted form
of UCQ entailment, corresponding to the case when the UCQ
is an ABox assertion (i.e., a ground atom). Notice that all
the results we achieve about Boolean UCQ entailment can be
easily extended in the standard way to the presence of free
variables in queries (see e.g. [Glimm et al., 2008]).

In this paper, we will consider data complexity (i.e., the
complexity with respect to the size of the ABox) and com-
bined complexity (i.e., the complexity with respect to the
size of the whole input) of UCQ entailment and instance
checking. Besides the usual complexity classes NP, coNP,
Πp

2, EXPTIME, 2-EXPTIME, we will mention the following
classes:

• Δp
2[O(log n)] (resp., Δp

3[O(log n)]) is the class of prob-
lems that can be solved in polynomial time using
O(log n) calls to an NP-oracle (resp., a Σp

2-oracle) (see
e.g. [Gottlob, 1995]);

• DP is the class of problems corresponding to the con-
junction of a problem in Σp

2 and a problem in Πp
2. An

example of a problem complete for this class is 3-CNF-
SAT+UNSAT: given two 3-CNF formulas φ1, φ2, decide
whether φ1 is satisfiable and φ2 is unsatisfiable. Notice
that DP = BH2(NP), i.e., DP is the second level of the
Boolean hierarchy over NP;

• BH2(Σ
p
2) is the class of problems corresponding to the

conjunction of a problem in Σp
2 and a problem in Πp

2.
An example of a problem complete for this class is 2-
QBF-SAT+UNSAT: given two 2-QBF formulas φ1, φ2,
decide whether φ1 is not valid and φ2 is valid.

Finally, the following table recalls known results on the
complexity of instance checking and UCQ entailment under
standard semantics in the DLs considered in this paper (all
problems are complete w.r.t. the class reported).

DL (problem) data complexity combined complexity
EL, EL⊥ (IC) PTIME PTIME

EL, EL⊥ (UCQ) PTIME NP
ALC (IC) coNP EXPTIME

ALC (UCQ) coNP EXPTIME

SHIQ (IC) coNP EXPTIME
SHIQ (UCQ) coNP 2-EXPTIME

3 Inconsistency-tolerant semantics

In this section we recall the inconsistency-tolerant semantics
for DL ontologies defined in [Lembo et al., 2010].1 We as-
sume that, for a knowledge base K = 〈T ,A〉, T is satisfiable,
whereas A may be inconsistent with T , i.e., the set of models
of K may be empty.
AR-semantics The first notion of repair that we consider,
called AR-repair, is a very natural one: a repair is a maximal
subset of the ABox that is consistent with the TBox. Thus, an
AR-repair is obtained by throwing away from A a minimal
set of assertions to make it consistent with T .

Definition 1 Let K = 〈T ,A〉 be a DL KB. An AR-repair of
K is a set A′ of membership assertions such that: (i)A′ ⊆ A;

1Due to space limitations, we refer the reader to [Lembo et al.,
2010] for introductory examples illustrating these semantics.

1058

(ii) 〈T ,A′〉 is satisfiable; (iii) there does not exist A′′ such
that A′ ⊂ A′′ ⊆ A and 〈T ,A′′〉 is satisfiable. The set of
AR-repairs for K is denoted by AR-Rep(K). Moreover, we
say that a first-order sentence φ is AR-entailed by K, written
K |=AR φ, if 〈T ,A′〉 |= φ for every A′ ∈ AR-Rep(K).

CAR-semantics We start by formally introducing a notion of
“equivalence under consistency” for inconsistent KBs.

Given a KB K, let SK denote the signature of K, i.e., the
set of concept, role, and individual names occurring in K.
Given a signature S, we denote with HB(S) the Herbrand
Base of S, i.e. the set of ABox assertions (ground atoms) that
can be built over the signature S. Then, given a KB K =
〈T ,A〉, we define the consistent logical consequences of K
as the set clc(K) = {α | α ∈ HB(SK) and there exists A′ ⊆
A such that 〈T ,A′〉 is satisfiable and 〈T ,A′〉 |= α}.

Finally, we say that two KBs 〈T ,A〉 and 〈T ,A′〉 are
consistently equivalent (C-equivalent) if clc(〈T ,A〉) =
clc(〈T ,A′〉).

We argue that the notion of C-equivalence is very reason-
able in settings in which the ABox (or at least a part of it) has
been “closed” with respect to the TBox, e.g., when (some or
all) the ABox assertions that are entailed by the ABox and the
TBox have been added to the original ABox. This may hap-
pen, for example, when the ABox is obtained by integrating
different (and locally consistent) sources, since some of these
sources might have been locally closed with respect to some
TBox axioms.

In settings where C-equivalence makes sense, the AR-
semantics is not suited to handle inconsistency. In fact, we
would expect two C-equivalent ontologies to produce the
same logical consequences under inconsistency-tolerant se-
mantics. Unfortunately, the AR-semantics does not have
this property. A simple example is the following: let
T = {student � young , student � worker � ⊥}
and let A = {student(mary),worker(mary)}, A′ =
{student(mary),worker(mary), young(mary)}. It is im-
mediate to verify that clc(K) = clc(K′) = A′, thus K and
K′ are C-equivalent, however K′ |=AR young(mary) while
K �|=AR young(mary).

To overcome the above problem, the CAR-semantics has
been defined in [Lembo et al., 2010], through a modification
of the AR-semantics.2

Definition 2 Let K = 〈T ,A〉 be a DL KB. A CAR-repair
for K is a set A′ of membership assertions such that A′ is an
AR-repair of 〈T , clc(K)〉. The set of CAR-repairs for K is
denoted by CAR-Rep(T ,A). Moreover, we say that a first-
order sentence φ is CAR-entailed by K, written K |=CAR φ,
if 〈T ,A′〉 |= φ for every A′ ∈ CAR-Rep(K).

Going back to the previous example, it is immediate to see
that, since K and K′ are C-equivalent, the set of CAR-repairs
(and hence the set of CAR-models) of K and K′ coincide.

As the above example shows, there are sentences entailed
by a KB under CAR-semantics that are not entailed under
AR-semantics. Conversely, it is shown in [Lembo et al.,

2The definition provided here of the CAR-semantics is a slight
simplification of the one appearing in [Lembo et al., 2010]: this
modification, however, does not affect any of the computational re-
sults presented in [Lembo et al., 2010].

2010] that the AR-semantics is a sound approximation of the
CAR-semantics, i.e., for every KB K and every FOL sen-
tence φ, K |=AR φ implies K |=CAR φ.
IAR-semantics and ICAR-semantics We then recall the
sound approximations of the AR-semantics and the CAR-
semantics, called IAR-semantics and ICAR-semantics, re-
spectively [Lembo et al., 2010].
Definition 3 Let K = 〈T ,A〉 be a DL KB. The IAR-
repair (respectively, ICAR-repair) for K, denoted
by IAR-Rep(K) (respectively, ICAR-Rep(K)) is de-
fined as IAR-Rep(K) =

⋂
A′∈AR-Rep(K) A′ (respectively,

ICAR-Rep(K) =
⋂

A′∈CAR-Rep(K) A′). Moreover, we say
that a first-order sentence φ is IAR-entailed (resp., ICAR-
entailed) by K, and we write K |=IAR φ (resp., K |=ICAR φ),
if 〈T , IAR-Rep(K)〉 |= φ (resp., 〈T , ICAR-Rep(K)〉 |= φ).

It is immediate to see [Lembo et al., 2010] that the IAR-
semantics is a sound approximation of the AR-semantics, and
that the ICAR-semantics is a sound approximation of the
CAR-semantics, while the converse in general does not hold.

4 Lower bounds

We start by considering data complexity. First, we provide
lower bounds for instance checking in EL⊥.3

Theorem 1 Let K be an EL⊥ KB and let α be an ABox
assertion. Then: (i) deciding whether K |=AR α is coNP-
hard w.r.t. data complexity; (ii) deciding whether K |=IAR α
is coNP-hard w.r.t. data complexity; (iii) deciding whether
K |=CAR α is DP-hard w.r.t. data complexity.

Then, we consider UCQ entailment, still in EL⊥.

Theorem 2 Let K be an EL⊥ KB and let Q be a UCQ.
Then: (i) deciding whether K |=CAR Q is Δp

2[O(log n)]-
hard w.r.t. data complexity; (ii) deciding whether K |=ICAR

Q is Δp
2[O(log n)]-hard w.r.t. data complexity.

We then provide a lower bound for instance checking in
ALC.

Theorem 3 Let K be an ALC KB and let α be an ABox
assertion. Then: (i) deciding whether K |=AR α is Πp

2-
hard w.r.t. data complexity; (ii) deciding whether K |=IAR

α is Πp
2-hard w.r.t. data complexity; (iii) deciding whether

K |=CAR α is BH2(Σ
p
2)-hard w.r.t. data complexity.

We now turn our attention to UCQ entailment in ALC.

Theorem 4 Let K be an ALC KB and let Q be a UCQ.
Then: (i) deciding whether K |=CAR Q is Δp

3[O(log n)]-
hard w.r.t. data complexity; (ii) deciding whether K |=ICAR

Q is Δp
3[O(log n)]-hard w.r.t. data complexity.

Finally, we consider combined complexity and provide
lower bounds for UCQ entailment in EL⊥.

Theorem 5 Let K be an EL⊥ KB and let Q be a UCQ. Then:
(i) deciding whether K |=IAR Q is Δp

2[O(log n)]-hard w.r.t.
combined complexity; (ii) deciding whether K |=AR Q is
Πp

2-hard w.r.t. combined complexity; (iii) deciding whether
K |=CAR Q is Πp

2-hard w.r.t. combined complexity.

3Due to lack of space, in the present version of the paper we omit
the proofs of lower bounds.

1059

5 Upper bounds

We start by providing upper bounds for the combined com-
plexity of instance checking in EL⊥.

Theorem 6 Let K be an EL⊥ KB and let α be an ABox as-
sertion. Then: (i) deciding whether K |=AR α is in coNP
w.r.t. combined complexity; (ii) deciding whether K |=IAR α
is in coNP w.r.t. combined complexity; (iii) deciding whether
K |=CAR α is in DP w.r.t. combined complexity.

Proof. For case (i), we define the following Algorithm AR1:

ALGORITHM AR1 (decides 〈T ,A〉 |=AR Q with Q UCQ)
if there exists A′ ⊆ A such that

1) 〈T ,A′〉 satisfiable and

2) A′ is maximal T -consistent subset of A and

3) 〈T ,A′〉
|= Q
then return false else return true

It is easy to verify that the above algorithm is correct for every
DL, i.e., it returns true iff 〈T ,A〉 |=AR Q, and that, in the
case of EL⊥ and when Q is an ABox assertion, the algorithm
runs in coNP.

For case (ii), we define the following Algorithm IAR1:

ALGORITHM IAR1 (decides 〈T ,A〉 |=IAR Q with Q UCQ)
if there exist A′ ⊆ A (let A−A′ = {α1, . . . , αn}),
A1 ⊆ A, . . . , An ⊆ A such that

1) 〈T ,A′〉
|= Q and
2) for each i such that 1 ≤ i ≤ n,

αi ∈ Ai and Ai is a minimal T -inconsistent subset of A
then return false else return true

It is easy to verify that the above algorithm is correct for every
DL, i.e., it returns true iff 〈T ,A〉 |=IAR Q, and that, in the
case of EL⊥ and when Q is an ABox assertion, the algorithm
runs in coNP.

For case (iii), we define the following algorithm ICAR1:

ALGORITHM ICAR1 (decides 〈T ,A〉 |=ICAR α)
if (a) for each A′ ⊆ A, either 〈T ,A′〉 unsatisfiable or 〈T ,A′〉
|= α
or (b) there exist A′′ = {α1, . . . , αn} ⊆ HB(T ,A),

A1 ⊆ A, . . . , An ⊆ A such that
1) α ∈ A′′ and 2) 〈T ,A′′〉 unsatisfiable and
3) for every i s.t. 1 ≤ i ≤ n

3.1) 〈T ,A′′ − {αi}〉 satisfiable and
3.2) 〈T ,Ai〉 satisfiable and 3.3) 〈T ,Ai〉 |= αi

then return false else return true

It is easy to verify that the above algorithm is correct for every
DL, i.e., it returns true iff 〈T ,A〉 |=ICAR α, and that, in the
case of EL⊥, the algorithm runs in DP.

We now turn our attention to both data and combined com-
plexity of UCQ entailment in EL⊥.

Theorem 7 Let K be an EL⊥ KB and let Q be a UCQ. Then:
(i) deciding whether K |=AR Q is in coNP w.r.t. data com-
plexity; (ii) deciding whether K |=IAR Q is in coNP w.r.t.
data complexity; (iii) deciding whether K |=CAR Q is in
Δp

2[O(log n)] w.r.t. data complexity.

Proof. Case (i) follows from the correctness of Algorithm
AR1 defined in the proof of Theorem 6. Case (ii) follows
from the correctness of Algorithm IAR1 defined in the proof
of Theorem 6. Finally, case (iii) follows from the correctness
(for every DL) of the following Algorithm CAR1:

ALGORITHM CAR1 (decides 〈T ,A〉 |=CAR Q with Q UCQ)
A′ = ∅;
for each α ∈ HB(T ,A) do

if there exists A′′ ⊆ A
such that 〈T ,A′′〉 satisfiable and 〈T ,A′′〉 |= α
then A′ = A′ ∪ {α};

if 〈T ,A′〉 |=AR Q then return true else return false

When the input KB is in EL⊥, the above algorithm can
be reduced to an NP tree [Gottlob, 1995], which proves the
Δp

2[O(log n)] upper bound.

Theorem 8 Let K be an EL⊥ KB and let Q be a UCQ.
Then: (i) deciding whether K |=AR Q is in Πp

2 w.r.t. com-
bined complexity; (ii) deciding whether K |=CAR Q is in Πp

2
w.r.t. combined complexity; (iii) deciding whether K |=IAR Q
is in Δp

2[O(log n)] w.r.t. combined complexity; (iv) deciding
whether K |=ICAR Q is in Δp

2[O(log n)] w.r.t. combined
complexity.
Proof. Case (i) follows from the correctness of Algorithm
AR1 defined in the proof of Theorem 6. Case (ii) follows
from the correctness (for every DL) of the following Algo-
rithm CAR2:
ALGORITHM CAR2 (decides 〈T ,A〉 |=CAR Q with Q UCQ)
if there exists A′ ⊂ HB(T ,A) such that

1) for each α ∈ A′

α ∈ clc(T ,A) and

2) for each α ∈ HB(T ,A)−A′

α
∈ clc(T ,A) or 〈T ,A′ ∪ {α}〉 unsatisfiable and

3) 〈T ,A′〉
|= Q
then return false else return true

and from the fact that deciding α ∈ clc(T ,A) (with α ABox
assertion) can be decided in NP. Case (iii) follows from the
correcness (for every DL) of the following Algorithm IAR2:
ALGORITHM IAR2 (decides 〈T ,A〉 |=IAR Q with Q UCQ)
for each α ∈ A do

if α does not belong to any minimal T -inconsistent subset of A
then A′ = A′ ∪ {α};

if 〈T ,A′〉 |= Q then return true else return false

Finally, Case (iv) follows from the correctness (for every
DL) of the following Algorithm ICAR2:
ALGORITHM ICAR2 (decides 〈T ,A〉 |=ICAR Q with Q UCQ)
A′ = ∅;
for each α ∈ HB(T ,A) do

if there exists A′′ ⊆ A
such that 〈T ,A′′〉 satisfiable and 〈T ,A′′〉 |= α
then A′ = A′ ∪ {α};

if 〈T ,A′〉 |=IAR Q then return true else return false

and from the fact that, when the input KB is in EL⊥, the
above algorithm can be reduced to an NP tree [Gottlob, 1995],
which proves the Δp

2[O(log n)] upper bound.

We then consider the combined complexity of UCQ entail-
ment in ALC.
Theorem 9 Let K be an ALC KB and let Q be a UCQ. Then:
(i) deciding whether K |=AR Q is in EXPTIME w.r.t. com-
bined complexity; (ii) deciding whether K |=CAR Q is in
EXPTIME w.r.t. combined complexity; (iii) deciding whether
K |=IAR Q is in EXPTIME w.r.t. combined complexity; (iv)
deciding whether K |=ICAR Q is in EXPTIME w.r.t. com-
bined complexity.

1060

Proof. Case (i) follows from the correctness of Algorithm
AR1 defined in the proof of Theorem 6. Case (ii) follows
from the correctness of Algorithm CAR1 defined in the proof
of Theorem 7. Case (iii) follows from the correctness of Al-
gorithm IAR2 defined in the proof of Theorem 8. Finally,
case (iv) follows from the correctness of Algorithm ICAR2
defined in the proof of Theorem 8.

Then, we provide upper bounds for the data complexity of
both instance checking and UCQ entailment in SHIQ.

Theorem 10 Let K be an SHIQ KB and let α be an ABox
assertion. Then, deciding whether K |=CAR α is in BH2(Σ

p
2)

w.r.t. data complexity.

Proof. The proof follows from the correctness of Algorithm
ICAR1 defined in the proof of Theorem 6.

Theorem 11 Let K be a SHIQ KB and let Q be a UCQ.
Then: (i) deciding whether K |=AR Q is in Πp

2 w.r.t. data
complexity; (ii) deciding whether K |=IAR Q is in Πp

2 w.r.t.
data complexity; (iii) deciding whether K |=CAR Q is in
Δp

3[O(log n)] w.r.t. data complexity; (iv) deciding whether
K |=ICAR Q is in Δp

3[O(log n)] w.r.t. data complexity.

Proof. Case (i) follows from the correctness of Algorithm
AR1 defined in the proof of Theorem 6. Case (ii) follows
from the correctness of Algorithm IAR2 defined in the proof
of Theorem 8. Case (iii) follows from the correctness of
Algorithm CAR1 defined in the proof of Theorem 7. It
can be proved that, when the input KB is in SHIQ, Algo-
rithm CAR1 can be reduced to a Σp

2 tree, which proves the
Δp

3[O(log n)] upper bound. Analogously, case (iv) follows
from the correctness of Algorithm ICAR2 defined in Theo-
rem 8: when the input KB is in SHIQ, Algorithm ICAR2
can be reduced to a Σp

2 tree, which proves the Δp
3[O(log n)]

upper bound.

Finally, we provide upper bounds for the combined com-
plexity of instance checking and UCQ entailment in SHIQ.

Theorem 12 Let K be a SHIQ KB and let α be an ABox as-
sertion. Then: (i) deciding whether K |=AR α is in EXPTIME
w.r.t. combined complexity; (ii) deciding whether K |=CAR α
is in EXPTIME w.r.t. combined complexity; (iii) deciding
whether K |=IAR α is in EXPTIME w.r.t. combined complex-
ity; (iv) deciding whether K |=ICAR α is in EXPTIME w.r.t.
combined complexity.

Proof. Case (i) follows from the correctness of Algorithm
AR1 defined in the proof of Theorem 6. Case (ii) follows
from the correctness of Algorithm CAR1 defined in the proof
of Theorem 7. Case (iii) follows from the correctness of Al-
gorithm IAR2 defined in the proof of Theorem 8. Finally,
case (iv) follows from the correctness of Algorithm ICAR2
defined in the proof of Theorem 8.

Theorem 13 Let K be a SHIQ KB and let Q be a UCQ.
Then: (i) deciding whether K |=AR Q is in 2-EXPTIME
w.r.t. combined complexity; (ii) deciding whether K |=CAR Q
is in 2-EXPTIME w.r.t. combined complexity; (iii) deciding
whether K |=IAR Q is in 2-EXPTIME w.r.t. combined com-
plexity; (iv) deciding whether K |=ICAR Q is in 2-EXPTIME
w.r.t. combined complexity.

Proof. Case (i) follows from Algorithm AR1 defined in the
proof of Theorem 6. Case (ii) follows from Algorithm CAR1
defined in the proof of Theorem 7. Case (iii) follows from
Algorithm IAR2 defined in the proof of Theorem 8. Finally,
case (iv) follows from Algorithm ICAR2 defined in the proof
of Theorem 8.

The theorems presented in the last two sections provide a
complete picture of the complexity of reasoning in the DLs
considered in this paper under the four inconsistency-tolerant
semantics. A summary of the complexity results obtained is
reported in Figure 2. All the results displayed are complete-
ness results: all the lower bounds are implied by theorems 1–
5 and by the lower bounds for reasoning under standard DL
semantics reported in the preliminaries, while all the upper
bounds are implied by theorems 6–13.

6 Tractable cases

We now consider a language restriction of EL⊥ whose aim is
to allow for tractable reasoning under inconsistency-tolerant
semantics, in particular, under the IAR-semantics. The con-
dition is on the form of empty concept assertions, i.e., con-
cept inclusions whose right-hand side is the empty concept
⊥. Formally, an empty concept assertion in EL⊥ is an inclu-
sion of the form C1 � . . . � Cn � ⊥.

Given an EL⊥ TBox T , we say that a concept name N
is relevant for empty concepts in T if there exists an empty
concept assertion δ such that N occurs in δ and T |= δ and
T �|= δ[/N], where δ[/N] is the empty concept assertion
obtained from δ by replacing every occurrence of N with .
Intuitively, concept names relevant for empty concepts in a
TBox T are those involved in the empty concept assertions
entailed by T . The above definition filters out “redundant”
(i.e., non-minimal) empty concept assertions.

Then, we introduce the notion of (non)-recursive concept
name in T . A concept name N is recursive in T if T entails
an inclusion of the form C � N , where C contains at least an
occurrence of N nested into an existentially quantified con-
cept expression, and there exists no concept C′ such that T
entails C ′ � N and C ′ is more specific than C in T (i.e., T
entails C ′ � C but not vice versa). Otherwise, we say that
N is non-recursive in T . We call EL⊥nr (EL⊥ with non-
recursive empty concepts) KB every EL⊥ KB K = 〈T ,A〉
such that every concept name that is relevant for empty con-
cepts in T is non-recursive in T . It is easy to see that decid-
ing whether an EL⊥ KB is an EL⊥nr KB can be done in time
polynomial w.r.t. the size of the TBox.

The language restriction imposed in EL⊥nr KBs allows us
to prove the following property, which is crucial for lowering
the complexity of reasoning under the IAR-semantics.

Lemma 1 Let 〈T ,A〉 be an EL⊥nr KB. The maximum car-
dinality of a minimal T -inconsistent subset of A is bounded
by the number of concept expressions occurring in T .

We are now ready to state the complexity of reasoning in
EL⊥nr under IAR-semantics.

Theorem 14 Let K be an EL⊥nr KB, let α be an ABox as-
sertion, and let Q be a UCQ. Then: (i) deciding whether
K |=IAR α is PTIME-complete w.r.t. data complexity; (ii)

1061

data complexity combined complexity
semantics AR CAR IAR ICAR AR CAR IAR ICAR

EL⊥ (IC) coNP DP coNP DP coNP DP coNP DP
EL⊥ (UCQ) coNP Δp

2[O(log n)] coNP Δp
2[O(log n)] Πp

2 Πp
2 Δp

2[O(log n)] Δp
2[O(log n)]

ALC (IC) Πp
2 BH2(Σ

p
2) Πp

2 BH2(Σ
p
2) EXPTIME EXPTIME EXPTIME EXPTIME

ALC (UCQ) Πp
2 Δp

3[O(log n)] Πp
2 Δp

3[O(log n)] EXPTIME EXPTIME EXPTIME EXPTIME

SHIQ (IC) Πp
2 BH2(Σ

p
2) Πp

2 BH2(Σ
p
2) EXPTIME EXPTIME EXPTIME EXPTIME

SHIQ (UCQ) Πp
2 Δp

3[O(log n)] Πp
2 Δp

3[O(log n)] 2-EXPTIME 2-EXPTIME 2-EXPTIME 2-EXPTIME

Figure 2: Complexity of UCQ entailment over DL KBs under inconsistency-tolerant semantics.

deciding whether K |=IAR α is PTIME-complete w.r.t. com-
bined complexity; (iii) deciding whether K |=IAR Q is
PTIME-complete w.r.t. data complexity; (iv) deciding whether
K |=IAR Q is NP-complete w.r.t. combined complexity.

Proof. For all the four cases, the upper bounds are an im-
mediate consequence of Lemma 1 and of the correctness of
Algorithm IAR2 in the proof of Theorem 8 (observe that
Lemma 1 implies that there are only polynomially many po-
tential minimal T -inconsistent subsets w.r.t. the size of the
ABox), while the lower bounds are immediately implied by
the complexity of reasoning under standard DL semantics in
EL (notice that EL is a sublogic of EL⊥nr).

The above theorem shows the nice computational be-
haviour of reasoning under IAR semantics in EL⊥nr , which
is not harder than reasoning under standard DL semantics.
This case seems very important not only from the theoretical
viewpoint, but also for practical applications, since it identi-
fies a DL allowing for tractable automated treatment of incon-
sistency. Conversely, it can be shown that reasoning under the
ICAR semantics is still intractable in EL⊥nr . Informally, the
reason is that the restriction imposed by EL⊥nr only affects
the cardinality of minimal T -inconsistent subsets of A, while
it leaves unbounded the cardinality of the minimal subsets of
A entailing an ABox assertion. Therefore, it is still NP-hard
to decide whether an ABox assertion belongs to clc(T ,A).

7 Related work and conclusions

Inconsistency-tolerance has been studied in various forms in
several areas of Artificial Intelligence and databases. While
several recent papers have dealt with different forms of incon-
sistency in DL ontologies (focusing especially on the TBox,
see e.g. [Qi and Du, 2009]), the approach considered in this
paper (based on instance-level repair only) is novel for DLs,
and is actually inspired by the work on consistent query an-
swering (CQA) in databases (see [Chomicki, 2007] for a sur-
vey). Moreover, the form of inconsistency-tolerance con-
sidered in this paper corresponds to a form of belief revi-
sion [Eiter and Gottlob, 1992]: more precisely, with respect
to the knowledge base revision framework, the ABox corre-
sponds to the initial knowledge, while the TBox represents
the new information. Based on such a correspondence, the
semantic studies on belief revision are indeed very relevant
for the present setting (e.g., the IAR-semantics and ICAR-
semantics are deeply connected to the well-known WIDTIO
semantics of belief revision [Eiter and Gottlob, 1992]): how-
ever, the kind of theories and formulas considered in the DL

setting have a very special form, which has never been con-
sidered in the research in belief revision and update. There-
fore, (to the best of our knowledge) there are no available
results about reasoning in the present setting.

The present work can be continued along several lines.
For instance, it would be very interesting to see whether
the present approach can be extended to handle more gen-
eral forms of ABoxes (e.g., ABoxes with variables and/or
non-atomic concept expressions). Also, it would be very im-
portant for practical purposes to identify further DL sublan-
guages allowing for tractable reasoning under the IAR and
the ICAR semantics.
Acknowledgments This research has been partially sup-
ported by the EU funded Project ACSI (Artifact-Centric Ser-
vice Interoperation).

References
[Baader et al., 2003] Franz Baader, Diego Calvanese, Deborah

McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, 2003.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and Carsten
Lutz. Pushing the EL envelope. In Proc. of IJCAI 2005.

[Chomicki, 2007] Jan Chomicki. Consistent query answering: Five
easy pieces. In Proc. of ICDT 2007.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg Gott-
lob, and Andrei Voronkov. Complexity and expressive power of
logic programming. ACM Computing Surveys, 33(3), 2001.

[Eiter and Gottlob, 1992] T. Eiter and G. Gottlob. On the complex-
ity of propositional knowledge base revision, updates and coun-
terfactuals. Artificial Intelligence, 57:227–270, 1992.

[Glimm et al., 2008] Birte Glimm, Ian Horrocks, Carsten Lutz, and
Uli Sattler. Conjunctive query answering for the description logic
SHIQ. J. of Artificial Intelligence Research, 31:151–198, 2008.

[Gottlob, 1995] Georg Gottlob. NP trees and Carnap’s modal logic.
J. of the ACM, 42(2):421–457, 1995.

[Hogan et al., 2010] Aidan Hogan, Andreas Harth, Alexandre Pas-
sant, Stefan Decker, and Axel Polleres. Weaving the pedantic
web. In Proc. of 3rd Int. Workshop on Linked Data on the Web
(LDOW2010), 2010.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini, Ric-
cardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant semantics for description logics. In Proc.
of RR 2010, 2010.

[Qi and Du, 2009] Guilin Qi and Jianfeng Du. Model-based revi-
sion operators for terminologies in description logics. In Proc. of
IJCAI 2009, pages 891–897, 2009.

1062

