
Computing Minimum-Cardinality Diagnoses by Model Relaxation

Sajjad Siddiqi

National University of Sciences and Technology (NUST)
Islamabad, Pakistan

sajjad.ahmed@seecs.edu.pk

Abstract

We propose a new approach based on model relax-
ation to compute minimum-cardinality diagnoses
of a (faulty) system: We obtain a relaxed model
of the system by splitting nodes in the system
and compile the abstraction of the relaxed model
into DNNF. Abstraction is obtained by treating
self-contained sub-systems called cones as sin-
gle components. We then use a novel branch-
and-bound search algorithm and compute the ab-
stract minimum-cardinality diagnoses of the sys-
tem, which are later refined hierarchically, in a
careful manner, to get all minimum-cardinality di-
agnoses of the system. Experiments on ISCAS-85
benchmark circuits show that the new approach is
faster than the previous state-of-the-art hierarchical
approach, and scales to all circuits in the suite for
the first time.

1 Introduction

Given an (abnormal) observation of a system, a diagnosis of
the system is a set of system components that if assumed as
broken and the rest as healthy explains the abnormal behavior.
A minimum-cardinality diagnosis is a diagnosis of the system
that declares the least number of components to be broken.

In model-based diagnosis [Reiter, 1987] a model of the
system is maintained against which the observed (abnormal)
behavior of the system can be checked to infer diagnoses. The
previous technique to compute minimum-cardinality diag-
noses maintains an abstract model of the system, and can ef-
ficiently compute diagnoses in a hierarchical fashion [Siddiqi
and Huang, 2007]. However, the technique relies on success-
ful compilation of the system abstraction into DNNF [Dar-
wiche, 2001], which can be prohibitive for large systems.

We propose a novel approach, based upon model relax-
ation, which scales diagnosis to very large systems. If the ab-
straction of a system cannot be compiled, we obtain a relaxed
model of the system, through node-splitting [Choi et al.,
2007], and compile the abstraction of the relaxed model in-
stead. We then perform a two-stage branch-and-bound search
to compute the abstract minimum-cardinality diagnoses of the
relaxed model. The computed diagnoses form a super-set of
the minimum-cardinality diagnoses of the abstraction of the

original system, which are later refined hierarchically to get
all minimum-cardinality diagnoses of the system.

The two stages of the search are as follows: First, we per-
form branch-and-bound search in the space of assignments to
split variables and compute the minimum cardinality of diag-
noses. At each search node, the DNNF compilation of the re-
laxed model is evaluated under the current partial assignment
to split variables. At leaf nodes we get candidate minimum
cardinalities and elsewhere bounds to prune the search. In
the second stage, we consider two kinds of branch-and-bound
search strategies, one that involves search in the space of as-
signments to split variables, and the other involves search in
the space of assignments to health variables (i.e., variables
that model the health of system components). We then, sys-
tematically, combine the two strategies by searching in both
spaces simultaneously to gain the strengths of both strategies.

We deal with intricacies in computing the diagnoses cor-
rectly, and propose novel techniques to improve the efficiency
of search algorithms, including the novel variable and value
ordering heuristics and techniques to avoid redundancy.

2 Background

In model-based diagnosis [Reiter, 1987] a system to be di-
agnosed consisting of a set of components C is modeled as
first order formulas Δ representing the behavior and the con-
nections between various components of the system. Let
okX be a propositional variable representing the health of
a component X ∈ C, we can write sentences of the form
okX →NORMALBEHAVIOR(X) for all X ∈ C to model the
normal behavior of the system.

Given a set of observations β (a set of propositions), a
consistency-based diagnosis of (Δ,C, β) is defined to be a
set D ⊆ C such that Δ∪β∪{okC|C ∈ C\D}∪{¬okC|C ∈
D} is consistent. The cardinality of a diagnosis D is the num-
ber of broken components in D or equivalently |D|. A diag-
nosis D of (Δ,C, β) is of minimum cardinality if there exists
no other diagnosis E of (Δ,C, β) such that |E| < |D|.

We assume a particular fault model for every component,
in which a component always outputs a wrong value if it
fails. These can be described by sentences of the form
¬okX → ¬NORMALBEHAVIOR(X) for each component
X . Such fault models allow stronger inference on the sys-
tem model, while the minimum-cardinality diagnoses with or
without fault models remain the same in this case. We also

1087

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



Figure 1: A circuit with abnormal observation P ∧ Q ∧ R ∧
S ∧ U ∧ V (left). A split circuit obtained from this circuit
after splitting B according to E (right). The binary gates are
AND gates and unary gates are NOT gates.

assume that inputs and outputs of the system are observed
and the internal variables are non-observable. For example,
the NOT gate J in the circuit in Figure 1 (left) can be mod-
eled as okJ → (P ↔ ¬J),¬okJ → (P ↔ J). Given the
observation P ∧Q∧R∧S∧U ∧V , the minimum cardinality
of diagnoses of this circuit is 2 and one minimum-cardinality
diagnosis is {J,A}.

System models can be compiled into a graph-based repre-
sentation of propositional theories known as decomposable
negation normal form (DNNF), which exploits system struc-
ture to compactly represent the functionality of the system,
and supports efficient computation of common diagnostic
queries. Once a system is compiled into DNNF all minimum-
cardinality diagnoses can be computed in time polynomial in
the size of the DNNF [Darwiche, 2001].

If a system is too large to compile, one can obtain a relaxed,
easy to compile, model of the system by splitting nodes in the
system (from graph point of view) [Pipatsrisawat and Dar-
wiche, 2007; Choi et al., 2007]. Let N be the system graph
where each component and every primary input of the system
are represented with nodes. A node X is a parent of a node
Y , and Y is a child of X , if the output of Y is an input of X
in the system. Node splitting creates a clone X̂ of a node X

such that X̂ inherits some of the parents of X . Formally:

Definition 1 (Node Splitting). Let X be a node in a system
graph N with parents Y. We say that X is split according to
parents Z ⊆ Y when it results in a graph N ′ that is obtained
from N as follows: The edges outgoing from X to its parents
Z are removed, and a new primary input node X̂ (having no
children) is added to the system graph with nodes Z as its
parents [Choi et al., 2007].

When X is split according to its every parent it is said to
be fully split, in which case X becomes a primary output of
the new system. For example, in Figure 1 (right) B has been
split according to its only parent E, and B̂ is a clone of B. B
becomes a primary output of the new circuit.

We say that if e is an assignment to variables in system
represented by N , then −→e is the compatible assignment to
corresponding clones in system represented by N ′, i.e a vari-
able and its clones (if any) are assigned the same value. For
example, if e = {B = b}, then −→e = {B̂ = b}.

3 Previous Work

In previous work, the abstraction-based hierarchical tech-
nique to compute minimum-cardinality diagnoses [Sid-
diqi and Huang, 2007] aims at reducing the required num-
ber of health variables in the model, and scales the base-
line compilation-based diagnosis approach. It exploits self-
contained sub-systems referred to as cones that can be treated
as single components. One needs only a single health vari-
able to model the health of all components in a cone. For
example, in the circuit in Figure 1 (left), E is a cone with
inputs {P,Q,A} and output E. A cone may contain further
cones and so on the phenomenon leads us to a hierarchy of
cones. When all maximal cones in a system C are treated as
single components we obtain an abstraction AC of the sys-
tem, where a maximal cone is one that is either contained in
no other cone or contained in exactly one other cone which is
the whole system. Formally:

Definition 1 (Abstraction of System). Given a system C,
let C̄ = C if C has a single output; otherwise let C̄ be C
augmented with a dummy component collecting all outputs of
C. Let O be the only output of C′. The abstraction AC of
system C is then the set of components X ∈ C such that X
is not dominated in C̄ by any component other than X and
O [Siddiqi and Huang, 2007].

For example, the abstraction of the circuit given in Fig-
ure 1 (left) contains the gates {U, V,E,A}, excluding the set
of gates {J,B} which become part of the cone E. The size of
an abstraction is the number of components contained in it.

The set of minimum-cardinality diagnoses computed from
the compilation of the abstraction is always the sub-set of the
minimum-cardinality diagnoses of the system. If none of the
diagnoses mention the possibility of a cone to be faulty, then
the computed set of diagnoses is complete. Otherwise, we
note that a cone mentioned in an abstract diagnosis (i.e., the
diagnosis of the abstraction) represents a set of possible sin-
gle faults in the cone (the minimum cardinality of diagnoses
of a cone is always 1). These single faults, once correctly
diagnosed, can be substituted for the cone, one by one, in
the abstract diagnosis to generate a set of global minimum-
cardinality diagnoses that are guaranteed to be valid. Doing
the same for every cone in every abstract diagnosis and those
generated from them gives us the complete set of minimum-
cardinality diagnoses.

Suppose that a cone X is declared to be faulty in an abstract
diagnosis D. X can be diagnosed hierarchically by again di-
agnosing the abstraction of X , once a correct abnormal ob-
servation at the inputs and output of X has been computed.
For this purpose, first the values of system inputs (given in the
observation) are propagated into the system assuming every
component is healthy. Since, one has to diagnose X under the
assumption that all of the components Gi ∈ D are faulty, the
fault effect of all Gis has to be propagated into the system as
well. Therefore, the set of components in D are placed in de-
creasing order of their depths in the system, as deeper faults
must be propagated before the less deeper ones. The fault ef-
fect of a component is propagated by changing its output to
the abnormal value and propagating its effect. Doing this for
all Gi ∈ D separately in the order in which they appear in D

1088



sets the required observation for the cone X .
For example, one minimum-cardinality diagnosis of the

circuit in Figure 1 (left) is D = {E,A}, which declares
the cone E as faulty. To compute an abnormal observa-
tion at the inputs and output of E (a valuation of variables
{P,Q,A,E}), we re-order gates in D as {A,E} (gate A is
deeper than E). We then propagate the circuit inputs into the
model and get the valuation P ∧ Q ∧ ¬A ∧ ¬E. We then
propagate the faults declared in D one by one after flipping
the values of A and then E and get the required valuation
α = P ∧Q∧A∧E. The cone E is then separately diagnosed
under the observation α. One diagnosis of E is given by {J}.
Substituting J for E in D we get {A, J}, which is another
minimum-cardinality diagnosis of the circuit.

A drawback of this approach is that compilation can still
become a bottleneck if a system model remains very large
even after abstraction has been applied on it. Below we de-
scribe the new approach we have proposed to circumvent this
limitation in scalability.

4 Diagnosis by Model Relaxation

If the abstraction of a system cannot be compiled, we obtain
a relaxed model of the system through node-splitting and di-
agnose the system using the relaxed model: We keep splitting
nodes in a system until its treewidth falls to a preset target at
which point it can be easily compiled. Once the abstraction of
the split system has been compiled minimum-cardinality di-
agnoses of the abstraction can be computed using a two stage
branch-and-bound search. The complete set of the minimum-
cardinality diagnoses can be obtained after carefully diagnos-
ing cones declared faulty in abstract diagnoses.

However, node-splitting can change the abstraction of a
system. It may expose components that were previously con-
tained in cones. For example, the abstraction of the split cir-
cuit in Figure 1 (right) now contains one more gate namely B
(the original abstraction contained gates {U, V,A,E}). The
new circuit has one more primary output B and one more pri-
mary input B̂. The cone E has also changed as it has lost the
gate B and its inputs are {P, B̂}. Hence the set of compo-
nents in the abstraction of the split system is a super-set of
the set of components in the abstraction of the original sys-
tem. Intuitively, the set of abstract minimum-cardinality di-
agnoses of the the split system if correctly computed would
be the super-set of that of the original system.

We now describe the new diagnosis algorithm and also dis-
cuss additional techniques that we have introduced to cor-
rectly compute the required set of diagnoses.

4.1 Search for Minimum Cardinality

An interesting property of a split system is that under the
given observation the minimum cardinality with respect to the
split system gives a lower bound on the minimum cardinality
with respect to the original system [Pipatsrisawat and Dar-
wiche, 2007]. Hence, if Δ and Δ′ are models of the original
and the split systems, respectively, then min card(Δ|e) ≥
min card(Δ′|e−→e ), where min card(Δ|e) is the minimum
cardinality of diagnoses represented by Δ under e. If, how-
ever, e contains a complete instantiation of split variables then

min card(Δ|e) = min card(Δ′|e−→e ).
Therefore, to compute the exact minimum cardinality of

diagnoses we perform branch-and-bound search in the space
of instantiations of split variables S: At each node of the
search tree we compute min card(Δ′|e−→e s−→s ) by evaluating
the DNNF compilation of Δ′, where e is the given observa-
tion, and s is the current partial assignment to split variables.
At leaf nodes of the search tree (where s is a complete assign-
ment to split variables) the values of min card(Δ′|e−→e s−→s )
give candidate minimum cardinalities, and elsewhere they
give lower bounds to prune the search. As soon as the lower
bound becomes equal to or greater than the current minimum
cardinality the branch gets pruned.

The efficiency of branch-and-bound search is significantly
affected by the choice of a search seed (the starting upper
bound on the minimum cardinality) as well as the ordering
of the search variables and their values. We note that a good
search seed can be computed from the given abnormal ob-
servation and the system model: We propagate the values of
system inputs (given in the observation) into the model and
compute normal values at the outputs of system components.
We then compare the values of outputs of components with
those given in the observation. If the values of k components
are found to be inconsistent then it is intuitive to note that k
is the upper bound on the minimum cardinality of diagnoses.
Hence k can be used as a seed for the search.

For variable and value ordering of search variables, we use
the nogood-based scoring heuristic similar to [Siddiqi and
Huang, 2009]. Each value (true or false) of a split vari-
able X is associated with a score S(X = x). The score
S(X) of the variable X is the average of the scores of its
values. Once a variable X is assigned a value x, the amount
of increase in the bound caused by it is added to the score of
X = x. That is, the score S(X = x) is updated as S(X =
x) = S(X = x) + (new bound − current bound), where
current bound is the bound before assigning the value x to
X and new bound is the bound after the assignment. We
compute initial scores for each variable by setting each value
of that variable hypothetically (separately) and computing the
increase caused in the initial bound (i.e., the bound computed
before starting the search) by that assignment.

During the search, the heuristic chooses a variable X with
the highest score and assigns values to it in decreasing or-
der of the scores of its values. Since, over the course of
the search the scores can become misleading, as past updates
to the scores may have lost their relevance under the current
search conditions. Therefore, we divide the scores by a con-
stant c periodically after having visited p search nodes. Em-
pirically, we found that p = 500 and c = 2 worked well.

4.2 Search for Diagnoses

Once the minimum cardinality of diagnoses has been com-
puted branch-and-bound search is again performed to com-
pute the minimum-cardinality diagnoses. We discuss two
strategies in this regard and then combine the two strategies
to gather the advantages of both.

Search Strategies. In the first strategy, we note that
if e contains a complete assignment to split variables then
min card diags(Δ|e) = min card diags(Δ′|e−→e ), where

1089



Algorithm 1 BNB-MINC-DIAGS : Branch-and-Bound Search
for minimum-cardinality diagnoses
procedure BNB-MINC-DIAGS ( Δ′,h, s )
inputs: {Δ′ : DNNF of split system}, {h : partial assignment to
health variables} {s : assignment to split variables}
global variables: {e : observation}, {H : health variables},
{mincard: minimum cardinality},
{D : set of minimum-cardinality diagnoses}
1: if (it is the root node of search ||

(Δ′|he−→e s−→s == false) ||
card(h) +min card(Δ′|he−→e s−→s ) > mincard) then

2: s = search a complete assignment to split variables
such that Δ′|he−→e s−→s is consistent and card(h) +
min card(Δ′|he−→e s−→s ) ≤ mincard

3: if (s is not empty) then
4: P = {X : okX = false ∈ h}
5: D = D ∪ {{P} ×min card diags(Δ′|he−→e s−→s )}
6: else
7: return
8: if card(h) == mincard then
9: return

10: pick some okX ∈ H such that okX = okx �∈ h
11: for each value okxi of variable okX do
12: h← h ∪ {okX = okxi}
13: BNB-MINC-DIAGS (Δ′,h, s)
14: h← h\{okX = okxi}

min card diags(Δ|e) is the set of minimum-cardinality di-
agnoses represented by Δ under e. Therefore, we search in
the space of assignments to split variables and explore all
those leaf nodes where the computed minimum cardinality
is equal to the actual minimum cardinality. Hence a branch
is pruned only if the lower bound exceeds the current mini-
mum cardinality. At such leaf nodes we compute diagnoses
as min card diags(Δ′|e−→e s−→s ). The union of all such sets
of diagnoses gives us the required set of minimum-cardinality
diagnoses. The advantage of this approach is that at a leaf
node we can enumerate significantly large number of diag-
noses from the DNNF. We noted that in several cases we had
to explore extremely large search spaces while the number of
diagnoses was reasonably small, and it seemed more useful
to search in the space of assignments to health variables.

Therefore, in the second strategy we considered search in
the space of assignments to health variables. Each partial
assignment to health variables gives us a partial diagnosis.
To enumerate all minimum-cardinality diagnoses we have to
check each partial assignment to health variables for valid-
ity. As described earlier, the number of health variables as
well as the diagnoses are often quite small due to abstraction,
which gives advantage to this approach. However, for cases
where the number of diagnoses was very large it proved quite
inefficient as each and every diagnosis had to be searched.

Combined Approach. In the combined approach, we
start by searching in the space of assignments to health vari-
ables. At each node of the search tree we check the current
partial assignment h to health variables (current partial di-
agnosis) for validity, where h is valid if and only if it is
logically consistent with the observation, and it can be ex-
tended to a minimum-cardinality diagnosis. For this pur-

pose we perform another branch-and-bound search in the
space of assignments to split variables and try to find a com-
plete assignment s to these variables such that Δ′|he−→e s−→s
is consistent (i.e., does not evaluate to false) and card(h) +
min card(Δ′|he−→e s−→s ) ≤ the minimum cardinality of di-
agnoses. If such an assignment s does not exist we regard
h as invalid and backtrack. If card(h) equals the minimum
cardinality we backtrack as h need not be extended further.

At each node of the search tree where h is valid we
compute all minimum-cardinality diagnoses from Δ′ under
he−→e s−→s (the precise method of computing these diagnoses
is given in Algorithm 1, lines 4 − 5, to be described later).
Note that if B is the set of components assumed broken in
h, then, intuitively, all computed diagnoses will also declare
the components B as broken. Also the computed set of diag-
noses will be a sub-set of the set of all minimum-cardinality
diagnoses that declare the components B as broken.

The union of all the sets of diagnoses computed at each
node of the search (where h is valid) gives us the required
minimum-cardinality diagnoses of the system abstraction. A
formal proof of the completeness of this procedure is omitted
due to lack of space. However, the completeness follows from
the fact that we are exhaustively searching in the space of
assignments to health variables, and the techniques to avoid
redundancy described below only avoid having to enumerate
the same diagnoses multiple times.

Avoiding Redundancy. During the search the set of
recorded diagnoses can be treated as nogoods to prune the
search space of assignments to health variables. For this pur-
pose we utilize a technique similar to watch literals (used in
satisfiability): As soon as all but one components that appear
in an already recorded diagnosis have been assumed broken
in the current partial diagnosis then the remaining component
in the recorded diagnosis is forced to be healthy.

Although nogoods help avoid some redundancy, several di-
agnoses will still be enumerated multiple times, which can
lead to inefficiency. For example, suppose that the current
partial diagnosis h is declared valid during search because
we are able to find a complete assignment s to split variables
without violating the above mentioned validity criteria for h.
Hence we enumerate a set of diagnoses D from Δ′ under
he−→e s−→s . Let he is a an extension of h (he ⊃ h) that is also
valid and the search for a complete assignment to split vari-
ables to check the validity of he happens to find the same as-
signment s that was found for h. Suppose that we enumerate
a set of diagnoses De from Δ′ under hee−→e s−→s . It is evident
that De ⊆ D and diagnoses De will get enumerated twice.
We avoid this redundancy as follow.

Let Q be a child node of a node P in the search tree in that
Q is the immediate successor of P in the tree. Let h and he

be the partial diagnoses at P and Q respectively. Let s be the
complete assignment to split variables under which the valid-
ity conditions for h are met. To check the validity conditions
for he at the node Q we first try to see if the he can be de-
clared valid using the assignment s to split variables that was
previously used at the parent node P of Q. If both conditions
of validity are met we regard he as valid but do not enumer-
ate diagnoses from Δ′ under hee−→e s−→s (as described earlier
these diagnoses would have already been enumerated). Oth-

1090



erwise we perform search on split variables and try to find a
fresh assignment to split variables that can satisfy the validity
conditions for he. If such an assignment exists only then we
enumerate diagnoses.

Variable and Value Ordering. For variable and value or-
dering of health variables we use a similar scoring heuristic
as in the first stage of search. However, this time scores are
based upon the amount of search performed to validate the
current partial diagnosis at a search node. The idea, intu-
itively, is to reduce the amount of search required for valida-
tion. We noted that as we try to reduce the overall amount of
search required for validation the amount of search performed
in space of assignments to health variables also reduced.

Therefore, we favor those health variables and their val-
ues that may result in less amount of search for validation.
Suppose that a health variable okX is assigned a value okx
and we have to explore p search nodes to validate the current
partial diagnosis then the score of okX = okx is S(okX =
okx) = S(okX = okx) + 1/p (scores are higher for smaller
values of p). If the current partial diagnosis is validated by us-
ing the assignment s (to split variables) passed by the parent
node (and no search is performed) then a hypothetical value
of p is used which is half of the value used at the parent node
(assuming that assigning value to a health variable would re-
duce the amount of search required to find s by half). The
scores are reduced periodically as in stage 1, described above.

We compute initial scores of health variables using the fail-
ure probabilities of system components, as computed in [Sid-
diqi and Huang, 2010]. We assume that each component fails
with equal prior probability of 0.1 and then compute the pos-
terior probabilities under the given observation by evaluating
and differentiating [Darwiche, 2003] the DNNF of the split
system. Let f be the (posterior) failure probability of a com-
ponent X . The initial score of okX = true is set to 0, while
the initial score of okX = false is set to f . This effectively
gives an initial ordering to health variables based upon the
failure probabilities of the corresponding components.

The Algorithm. A basic procedure for the second stage
of search is given in Algorithm 1 (BNB-MINC-DIAGS). It ac-
cepts as input the DNNF compilation Δ′ of the split system,
the current partial assignment h to health variables H, and
the assignment s to split variables S that is passed to the child
search node by the parent node. s is empty for the root node
of the search tree. The procedure updates the computed set of
diagnoses in the global variable D.

Algorithm 1 is a recursive procedure executed for each par-
tial diagnosis h explored by the search. For each h, we start
by checking the validity of h at lines 1 − 3 in two steps.
Specifically we first check if h can be declared valid using
the assignment s to split variables passed as parameter by the
parent node. This is done using the if condition at line 1,
which can be described as follows: The current partial di-
agnosis cannot be declared valid by the virtue of s passed
as parameter to the procedure if either of the three condi-
tions are true: (1) s is empty (i.e., the current node is the
root of the search tree). (2) Δ′|he−→e s−→s evaluates to false
(i.e., s is not consistent with h, model, and the observation).
(3) card(h)+min card(Δ′|he−→e s−→s ) > mincard (i.e., the
minimum-cardinality condition is violated).

If all of the three conditions described in the previous para-
graph are false then h is considered valid, in which case we
jump to line 8 of the algorithm, and as described earlier we do
not need to enumerate diagnoses from Δ′ in this case. How-
ever, if either of the above three conditions is true the valid-
ity of h is then checked through a branch-and-bound search
(line 2) performed in the space of assignments to split vari-
ables. As the result of this search if h was valid we get a
new assignment s to split variables which satisfies the condi-
tions specified at line 2, in which case we enumerate the set
of minimum-cardinality diagnoses from Δ′ (lines 4− 5) and
update them in D. Otherwise if h was invalid then s is empty
and the algorithm backtracks (line 7).

After the validity of h has been established we check if
card(h) == mincard and if so we backtrack (lines 8−9), as
we do not want to enumerate diagnoses of cardinality greater
than mincard. Otherwise we pick an un-assigned health
variable okX ∈ H (line 10), and for each of its values okxi

append h with okX = okxi (lines 11 − 12) and recursively
call the procedure BNB-MINC-DIAGS with arguments Δ′, up-
dated h, and updated s (at line 13) (note that s is passed to
the children nodes of the current search node as a parame-
ter to the procedure call at line 13). After the recursive call
okX = okxi is erased from h (line 14).

4.3 Diagnosis of Cones

We must take care of two things before we can correctly diag-
nose a cone of a split system. First, while propagating normal
values in the system followed by faulty values to compute
observation at the inputs and output of a cone, whenever we
assign a value to (the output of) a component we must assign
the same value to all of its clones and propagate the values of
clones as well. Second, splitting changes the depths of com-
ponents in the new system compared with their depths in the
original system. We must keep track of the original depths of
components and use those depth values while ordering com-
ponents in an abstract diagnosis.

For example, one minimum-cardinality diagnosis of the
circuit in Figure 1 (right) is D = {E,A}, which declares the
cone E as faulty. To compute an abnormal observation at the
inputs and output of E (a valuation of variables {P, B̂, E}),
we re-order gates in D as {A,E} (gate A was originally
deeper than E). We then propagate the circuit inputs into
the model. When we compute a value 0 at B we assume the
same for B̂ and propagate the value of B̂ also. Thus we get
the valuation P ∧ ¬B̂ ∧ ¬E. We then propagate the faults
declared in D one by one after flipping the values of A and E

and get the required valuation α = P ∧ B̂ ∧ E.
We have done an enhancement in the original abstraction-

based technique that provided substantial performance im-
provement: We note that a cone can be diagnosed multiple
times during the refinement of abstract diagnoses. Hence
there is a possibility that a cone is diagnosed multiple times
under the same observation. Therefore, we maintain a hash
table of observations on a cone and save the corresponding
diagnoses, and avoid diagnosing a cone a second time if the
cone has already been diagnosed with the same observation.

We now give results of our empirical analysis.

1091



circuit gates cases
HDIAG DCAS

health vars solved time treewidth health vars split vars solved time
c432 160 350 59 350 0.21 15 63 13 350 0.31
c499 202 400 58 400 0.12 15 58 11 400 0.20
c880 383 400 77 396 0.07 15 77 10 396 0.12

c1355 546 400 58 398 0.16 15 58 11 398 0.25
c1908 880 160 160 122 368.13 22 161 29 153 82.25
c2670 1193 160 167 145 176.17 12 223 33 160 3.15
c3540 1669 40 353 0 - 10 379 125 30 173.78
c5315 2307 40 385 0 - 16 388 66 39 52.34
c6288 2416 40 1456 0 - 20 1456 75 11 305.10
c7552 3512 40 545 0 - 16 564 76 35 260.93

Table 1: Experiments.

5 Experiments

We conducted experiments using ISCAS-85 benchmark cir-
cuits and compared the new approach, referred to as DCAS
(Diagnosis by Compilation, Abstraction, and Search), with
HDIAG [Siddiqi and Huang, 2007].

Test cases were generated randomly as in [Siddiqi and
Huang, 2007]: For each circuit, we randomly generated a
set of complete instantiations of inputs and outputs accord-
ingly to the correct behavior of the circuit. We then randomly
flipped k primary outputs, with k ranging from 1 to 8, in each
instantiation to get an (abnormal) observation (the minimum
cardinality of the diagnoses was often close to the number of
flipped outputs), except for c432 for which the range is from
1 to 7 as it has only 7 outputs. For circuits upto c1355 we gen-
erated 50 test cases for each cardinality. For larger circuits we
generated less number of test cases due to limited computa-
tional resources. Thus, for c1908 and c2670 we generated 20
test cases, and for c3540 to c7552 we generated 5 test cases
for each cardinality, respectively.

All experiments were conducted on a set of eight Quad
Core machines each running linux with 2.4 GHz Intel Xeon
X3220 CPU and 2 GB of RAM. A memory limit of 768 MB
and a time limit of 30 CPU minutes were imposed on each
test case. Note that only two test cases were executed on a
machine at one time due to limited amount of available RAM.

When splitting nodes the objective is to gain more effi-
ciency in compilation with less number of split variables, as
complexity of search can grow exponentially with increase
in the number of split variables. We used the heuristic stud-
ied in [Choi et al., 2007], which achieves the same objective.
In addition, one has to choose a treewidth that achieves the
optimal overall performance in terms of space and time re-
quirements. We tried a range of treewidths for each circuit
to find the one that gave the optimal performance. Splitting
achieved significant simplification in the circuit and offset any
disadvantage of increase in the abstraction size due to this.

The results of the experiments are given in Table 1. The
first column gives the name of the circuit, the second gives
the number of gates in the circuit, the third gives the total
number of test cases used, and the fourth and fifth columns
compare HDIAG and DCAS respectively. For HDIAG we re-
port the number of health variables (or the abstraction size) in
the model, the number of cases solved, and the average run-
ning time to solve those cases. For DCAS we also report the

reduced treewidths of the circuits and the number of split vari-
ables. The times for DCAS includes times for node-splitting,
compilation, and search.

HDIAG could not solve any circuit beyond c2670, while
DCAS can solve most of the diagnostic cases on every circuit,
except on c6288. Almost all failures occurred in those cases
where the number of diagnoses was too large such that all
diagnoses could not be enumerated within the given space,
except on c6288 where many failures occurred due to very
large search space resulting from very large number of health
variables. Note that c6288 has a flat structure (having very
large abstraction size) and lacks the kind of hierarchy that is
vital for the success of our techniques.

On cases that can be solved by both systems, the running
times of both are either comparable (upto c1355) or DCAS
is significantly faster than HDIAG, notably in case of c1908
where DCAS is almost 4 times faster and on c2670 where it is
almost two orders of magnitude faster than HDIAG.

6 Conclusion

We have presented a new tool referred to as DCAS which
uses model relaxation, abstraction, and search to compute
minimum-cardinality diagnoses of a faulty system. The new
approach significantly advances the state of the art by solving
non-trivial diagnostic cases on large systems that could not
be solved previously, and is much more efficient on cases that
can be solved by the previous technique.

References
[Choi et al., 2007] Arthur Choi, Mark Chavira, and Adnan Darwiche. Node splitting:

A scheme for generating upper bounds in Bayesian networks. In UAI, pages 57–66,
2007.

[Darwiche, 2001] Adnan Darwiche. Decomposable negation normal form. Journal of
the ACM, 48(4):608–647, 2001.

[Darwiche, 2003] Adnan Darwiche. A differential approach to inference in Bayesian
networks. Journal of the ACM, 50(3):280–305, 2003.

[Pipatsrisawat and Darwiche, 2007] Knot Pipatsrisawat and Adnan Darwiche. Clone:
Solving weighted Max-SAT in a reduced search space. In AI, pages 223–233, 2007.

[Reiter, 1987] R Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[Siddiqi and Huang, 2007] Sajjad Siddiqi and Jinbo Huang. Hierarchical diagnosis of
multiple faults. In IJCAI, pages 581–586, 2007.

[Siddiqi and Huang, 2009] Sajjad Siddiqi and Jinbo Huang. Variable and value order-
ing for MPE search. In IJCAI, pages 1964–1969, 2009.

[Siddiqi and Huang, 2010] Sajjad Siddiqi and Jinbo Huang. New advances in sequen-
tial diagnosis. In KR, pages 17–25, 2010.

1092




