
The General Game Playing Description Language Is Universal

Michael Thielscher∗

School of Computer Science and Engineering
The University of New South Wales, Australia

mit@cse.unsw.edu.au

Abstract

The Game Description Language is a high-level,
rule-based formalisms for communicating the rules
of arbitrary games to general game-playing sys-
tems, whose challenging task is to learn to play pre-
viously unknown games without human interven-
tion. Originally designed for deterministic games
with complete information about the game state,
the language was recently extended to include ran-
domness and imperfect information. However, de-
termining the extent to which this enhancement al-
lows to describe truly arbitrary games was left as an
open problem. We provide a positive answer to this
question by relating the extended Game Descrip-
tion Language to the universal, mathematical con-
cept of extensive-form games, proving that indeed
just any such game can be described faithfully.

1 Introduction

A contemporary Grand AI Challenge, General Game Play-
ing (GGP) aims at building systems that learn to play previ-
ously unknown games without human intervention and just
by being told the rules of a game [Genesereth et al., 2005].
Broad interest in this challenge was sparked by the inaugu-
ration of an annual AAAI GGP Competition in 2005, and
in just a few years since then GGP has become an estab-
lished area in AI: An increasing number of research groups
world-wide develop game-playing technology to build ac-
tual systems ([Clune, 2007; Schiffel and Thielscher, 2007;
Björnsson and Finnsson, 2009], just to mention a few); a se-
ries of biennial IJCAI workshops devoted to this topic started
in 2009; and AAAI’10 featured the first ever technical session
on GGP, contributing to a rapidly growing body of literature.

A main reason for this success of the competition (besides
the attractive $10,000 purse!) was the institution of the gen-
eral Game Description Language (GDL) as the foundation for
GGP [Genesereth et al., 2005]. A machine-processable lan-
guage for specifying a wide range of games existed before—
GALA (for: Game Language) [Koller and Pfeffer, 1997],
which however was never used outside of the context of the

∗ The author is the recipient of an Australian Research Council
Future Fellowship (project FT 0991348).

GALA system (that for a given game specification created the
game tree and then computed optimal strategies). Presum-
ably its tight coupling with a programming language (Prolog)
and its operational—rather than declarative—semantics pre-
vented Gala from being adopted by others as a sufficiently
system-independent domain specification language.

With GDL the organisers of the AAAI GGP Competition
sought a high-level game specification language that admits
a purely declarative reading and thus allows general game-
playing systems to reason about the rules of a game. In this
regard, GDL follows the tradition of AI Planning. Planning
languages however describe a problem from the perspective
of a single agent, even in case of adversarial planning (see,
e.g., [Jensen and Veloso, 2000]). GDL generalises this to
the presence of other agents that have their own actions and
goals. Reasoning about the intentions of the other players is
the basis for Opponent Modelling—one of the crucial aspects
in which GGP goes beyond AI Planning [Genesereth et al.,
2005]. On the other hand, GDL shares with existing plan-
ning languages the compactness of specifications so that, un-
like with, say, graph-based, propositionalised encodings (see,
e.g., [Mura, 2000]), games of practical interest such as Chess
can be fully specified with just a few kilobytes of code.

Despite steady progress, the current state of the art in Gen-
eral Game Playing is limited to deterministic games with
complete information about the game state, owing to the
restricted expressiveness of original GDL. In [Thielscher,
2010] we have defined a notationally simple extension to in-
clude both randomness and imperfect information. A num-
ber of examples have showed how this enhanced GDL covers
games with new features like partial observability, informa-
tion asymmetry, and communicative actions. However, de-
termining the extent to which this enhancement allows to de-
scribe truly arbitrary (discretised, finite) games was left open.

In this paper, we provide a positive answer to this question
by relating the extended Game Description Language to the
universal, mathematical concept of extensive-form games. As
the main result we show the following.

1. The players’ information sets determined by a GDL de-
scription satisfy all standard requirements of informa-
tion partitions in extensive-form games.

2. Any extensive-form game can be described faithfully
(that is, move-by-move) in GDL.

1107

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

First and foremost, these results show that GDL can be con-
sidered complete for the purpose of General Game Playing.
But we also expect our result to be of interest beyond GGP,
because game models arise in many other AI disciplines, such
as Multiagent Planning [Larbi et al., 2007] or Multiagent Sys-
tems in general. A universal, compact and purely declarative
description language for games of any kind is potentially use-
ful wherever there is a need for concise, machine-processable
specifications of domains and applications as games.

The rest of the paper is organised as follows. In the next
section, we give a brief overview of the extended Game De-
scription Language, followed by recapitulating the formal
definition of extensive-form games from a standard textbook
[Rasmusen, 2007]. In the section that follows, we formally
map GDL game descriptions into games in extensive form.
Thereafter we prove that, conversely, every extensive-form
game can be described in the language.

2 Preliminaries

2.1 Game Descriptions

The purpose of the Game Description Language is to allow
for concise, high-level specifications of the rules of arbitrary
finite games. To this end, GDL uses a logic programming-like
syntax and is characterised by the following special keywords.

role(?r) ?r is a player
init(?f) ?f holds in the initial position
true(?f) ?f holds in the current position

legal(?r,?m) ?r can do move ?m
does(?r,?m) player ?r does move ?m
next(?f) ?f holds in the next position
terminal the position is terminal

goal(?r,?v) ?r gets payoff ?v
sees(?r,?p) ?r perceives ?p in the next position

random the random player (aka. Nature)

As an example, the rules in Fig. 1 describe a simple but fa-
mous game where a car prize is hidden behind one of three
doors and where a candidate is given two chances to pick a
door. Lines 1–7 introduce the players’ names and the state
features that hold initially. The possible moves are speci-
fied by the rules with head legal (lines 9–21): first, the
random player must decide where to place the car and, si-
multaneously, the candidate chooses a door; next, random
opens a door that is not the one that holds the car nor the cho-
sen one; finally, the candidate can either stick to his earlier
choice (noop) or switch to the other yet unopened door.

The candidate’s only percept throughout the game, viz. the
door that gets opened, is defined by the rule with head sees
(line 22). The remaining clauses specify the position update
(rules for next), the conditions for the game to end (rule
for terminal), and the payoff for the player depending on
whether he got the door right in the end (rules for goal).

Formal Syntax and Semantics

In order to admit an unambiguous interpretation, a set of GDL
rules must obey certain general syntactic restrictions. Specif-
ically, to be valid a game description must be stratified [Apt
et al., 1987] and allowed [Lloyd and Topor, 1986]. Stratified

logic programs are known to admit a unique standard model;
see [Apt et al., 1987] for details. A further syntactic restric-
tion ensures that only finitely many positive instances are true
in this model; for details we must refer to [Love et al., 2006].
Finally, the special keywords are to be used as follows:

• role only appears in the head of facts;
• init only appears as head of clauses and does not de-

pend on any of true, legal, does, next, sees,
terminal, goal;

• true only appears in the body of clauses;
• does only appears in the body of clauses and does not

depend on any of legal, terminal, goal;
• next and sees only appear as head of clauses.

These restrictions are imposed to ensure that a set of GDL
rules can be effectively and unambiguously interpreted by
a state transition system as follows. To begin with, any
set of clauses G determines an implicit domain-dependent
set of ground symbolic expressions Σ, like candidate,
hide car(1), chosen(3), etc. Game positions (i.e., states) are
represented by subsets of Σ since they are composed of in-
dividual features, as in

{closed(1), closed(2), closed(3), step(1)} (1)

Although Σ itself is usually infinite, the syntactic restric-
tions in GDL guarantee that the set of roles, each reachable
state, and the set of legal moves are always finite subsets
of Σ [Love et al., 2006].

Specifically, then, the derivable instances of role(?r)
define the players. The initial position, (1) in our example
game, is composed of the derivable instances of init(?f).

In order to determine the legal moves of a player in any
given state, this state has to be encoded first, using the key-
word true. More precisely, let S = {f1, . . . , fk} be a
finite state like (1), then G is extended by the k facts

Strue def
= {true(f1)., . . . , true(fk).}

Those instances of legal(?r,?m) that are derivable from
G∪Strue , e.g. legal(random, hide car(3)) given (1), de-
fine all legal moves ?m for role ?r in state S . In the same
way, the clauses for terminal and goal define termina-
tion and goal values relative to the encoding of a position.

Determining a position update and the percepts of the play-
ers requires the encoding of the current position and of a joint
move (i.e., one move from each player). Specifically, if play-
ers r1, . . . , rn take moves a1, . . . , an , then let

Mdoes def
= {does(r1, a1)., . . . , does(rn, an). }

The instances of next(?f) that are derivable from G ∪
Mdoes ∪ Strue compose the updated position; likewise,
the derivable instances of sees(?r,?p) describe all per-
cepts ?p for any particular role ?r (except random) when
the given joint move is done in the given position. All this
is summarised in the following definition, where “|=” means
entailment wrt. the aforementioned standard model.
Definition 1. [Thielscher, 2010] The semantics of a valid
GDL specification is given by a state transition system com-
posed as follows.

1108

1 role(candidate).
2 role(random).
3
4 init(closed(1)).
5 init(closed(2)).
6 init(closed(3)).
7 init(step(1)).
8
9 legal(random,hide_car(?d)) <= true(step(1)),

10 true(closed(?d)).
11 legal(random,open_door(?d)) <= true(step(2)),
12 true(closed(?d)),
13 not true(car(?d)),
14 not true(chosen(?d)).
15 legal(random,noop) <= true(step(3)).
16
17 legal(candidate,choose(?d)) <= true(step(1)),
18 true(closed(?d)).
19 legal(candidate,noop) <= true(step(2)).
20 legal(candidate,noop) <= true(step(3)).
21 legal(candidate,switch) <= true(step(3)).

22 sees(candidate,?d) <= does(random,open_door(?d)).
23
24 next(car(?d)) <= does(random,hide_car(?d)).
25 next(car(?d)) <= true(car(?d)).
26 next(closed(?d)) <= true(closed(?d)),
27 not does(random,open_door(?d)).
28 next(chosen(?d)) <= does(candidate,choose(?d)).
29 next(chosen(?d)) <= true(chosen(?d)),
30 not does(candidate,switch).
31 next(chosen(?d)) <= does(candidate,switch),
32 true(closed(?d)),
33 not true(chosen(?d)).
34
35 next(step(2)) <= true(step(1)).
36 next(step(3)) <= true(step(2)).
37 next(step(4)) <= true(step(3)).
38
39 terminal <= true(step(4)).
40
41 goal(candidate,100) <= true(chosen(?d)), true(car(?d)).
42 goal(candidate, 0) <= true(chosen(?d)), not true(car(?d)).

Figure 1: A GDL description of the Monty Hall game [Rosenhouse, 2009]. The host is modelled by the standard role random.

• R = {r : G |= role(r)} (player names);

• s0 = {f : G |= init(f)} (initial state);

• t = {S : G ∪ Strue |= terminal} (terminal states);

• l = {(r,m, S) : G∪Strue |= legal(r,m)} (legal moves);

• u(M,S) = {f : G ∪Mdoes ∪ Strue |= next(f)}, for all
joint moves M and states S (position update);

• I = {(r,M, S, p) : G∪Mdoes∪Strue |= sees(r, p)}, for
all roles r ∈ R \ {random} (players’ percepts);

• g = {(r, v, S) : G ∪ Strue |= goal(r, v)} (goal values).

This definition provides the basis for the execution model
for GDL: Starting with initial state S ← s0 , in each S each
player r ∈ R selects one of his or her legal moves m, that
is, which satisfies l(r,m, S). Role random chooses a legal
move with uniform probability. The update function (syn-
chronously) applies the joint move M to the current position,
resulting in the new position S ← u(M,S). Furthermore,
each role r ∈ R \ {random} gets to see any p that satisfies
the information relation, I(r,M, S, p). The game ends when
a terminal state S ∈ t is reached, and then the goal relation
g(r, v, S) determines the result for player r.

2.2 Extensive-Form Games

The next definition introduces the mathematical concept of a
finite game in extensive form following [Rasmusen, 2007].

Definition 2. An n-player extensive-form game consists in

• a finite tree with

– nodes S (called states),
– initial state s0 ∈ S ,
– terminal states T ⊆ S ,
– predecessor function f : (S \ {s0}) �→ S;

• a function ι : (S \ T) �→ {0, . . . , n}, indicating which
state belongs to which player (player no. 0 is Nature);

• a function υ : T �→ R
n (called utility), defining a payoff

value for each player and each terminal state;

• a probability measure ρs over f−1(s) for all states
with ι(s) = 0 (i.e., which belong to Nature);

• for all players r = 1, . . . , n a set Hr of information
partitions such that for each H ∈ Hr :

1. the elements (called information sets) in H are
mutually disjoint;

2. all children of a node s such that ι(s) = r are in
different information sets;

3. for all branches β there is exactly one s ∈ β such
that s occurs in some information set in H ; and

4. for all h ∈ H the predecessors of all nodes in h
are in one h′ ∈ H .

The rationale behind the conditions on the information par-
tition is as follows [Rasmusen, 2007].

1. If a node s belonged to two information sets h and
h′ , then when the game were in s the player would
not know whether a node in h or h′ had been reached,
hence h and h′ were really the same information set.

2. Players know their own moves.
3. For every stage of the game there is an information par-

tition which represents the positions a player is able to
distinguish from each other at this stage.

4. If a player knows whether the predecessor of s or the
predecessor of s′ has been reached, then this informa-
tion suffices to distinguish s from s′ .

To see an example at this point, the reader may peek at Fig. 2.

3 From GDL to Extensive-Form Games

The mathematical definition of extensive-form games uses
the very general concept of information partitions to model
partial observability and information asymmetry. The key to
our perhaps surprising result in this paper lies in the fact that
the sees(?r,?p) predicate in GDL can be used equally
generally. The reason is that percepts ?p are not confined to
specific observables (e.g., opponents’ moves, state features)
but can also be used as abstract identifiers to encode just any

1109

desired information partition. In this section, we will first
show that every GDL game, by virtue of the underlying ex-
ecution model and provided it always terminates, can be un-
derstood as a game in extensive form that satisfies all require-
ments in Definition 2. Two main issues need to be addressed:

1. The perceptive capabilities of the players must be
mapped onto appropriate information partitions.

2. Joint moves in GDL need to be serialised in a way that
no player is aware of the simultaneous moves by the
other players.

While all this can be done for arbitrary n-player games, in the
following we will confine ourselves to the notationally sim-
pler case of just two players, one of which is random. This
covers all relevant aspects of the general case but will con-
siderably ease the notation for the benefit of the reader; the
generalisation of the mapping is tedious but straightforward.

We first recall a basic property of GDL games: how
they are run and how a player can or cannot distinguish
different runs on the basis of his or her percepts. Runs
can be described by developments, which are sequences of
states and moves by each player. The following is adapted
from [Thielscher, 2010] to the special case of GDL games
(R, s0, t, l, u, I, g) (cf. Definition 1) with the two fixed roles
R = {random, player}.

Proposition 1. A development δ is a sequence

〈s0, arandom
1 , aplayer

1 , s1, . . . , sd−1, a
random
d , aplayer

d , sd〉 (2)

such that d ≥ 0 and for all i ∈ {1, . . . , d},

• the selected moves are legal: (random, arandom
i , si−1) ∈ l

and (player, aplayer
i , si−1) ∈ l;

• states are updated: si = u((arandom
i , aplayer

i), si−1);

• only sd may be terminal: {s1, . . . , sd−1} ∩ t = ∅.

Consider developments δ = 〈s0, arandom
1 , aplayer

1 , s1, . . .〉
and δ′ = 〈s0, brandom

1 , bplayer
1 , s′1 . . .〉. The player cannot dis-

tinguish δ from δ′ iff δ, δ′ are of the same length d and for
all i ∈ {1, . . . , d− 1},

1. the player’s percepts are always the same, that is, the
two sets {p : (player, (arandom

i , aplayer
i), si, p) ∈ I} and

{p′ : (player, (brandom
i , bplayer

i), s′i, p
′) ∈ I} are equal; and

2. the player takes the same moves, i.e., aplayer
i = bplayer

i .

This characterisation of different executions and how a player
can distinguish them provides the basis for the mapping of
any GDL game model into an extensive-form game accord-
ing to Definition 2. Some additional notations are helpful
to this end: For a development δ of the form (2) we write
length(δ) = d and end(δ) = sd . Also,

• prefixplayer(δ) = 〈s0, arandom
1 , aplayer

1 , . . . , sd−1, a
random
d 〉

(here, a move by player would continue the sequence);

• prefixrandom(prefixplayer(δ))= 〈s0, arandom
1 , aplayer

1 , . . . , sd−1〉
(here, a move by random would follow).

In the following, let Δ be the set of all developments
and Δplayer all incomplete developments of the form
prefixplayer(δ), that is, where a move by player is to follow.

We write ∼ {δ : δ ∈ Δ} to denote the partitioning of ele-
ments in Δ such that two developments δ, δ′ are in the same
partition if, and only if, the player cannot distinguish the two.
Similarly, we write ∼ {δ : δ ∈ Δplayer} to denote the par-
titioning of elements in Δplayer such that two developments
δ, δ′ are in the same partition if, and only if, the player cannot
distinguish prefixrandom(δ) from prefixrandom(δ′).

We can now show how to map any terminating GDL game
({random, player}, s0, t, l, u, I, g) into extensive form:

The nodes are Δ ∪Δplayer.
The root is 〈s0〉.
The leaf nodes are T = {δ ∈ Δ: end(δ) ∈ t}.
The predecessor function is defined as

f(δ) =

{
prefixplayer(δ) if δ ∈ Δ \ {〈s0〉}
prefixrandom(δ) if δ ∈ Δplayer

The nodes are assigned to players by

ι(δ) =

{
0 if δ ∈ Δ \ T
1 if δ ∈ Δplayer

The utility satisfies g(player, υ(δ), end(δ)) for δ ∈ T .
The probability measure is given as uniform distribution

over f−1(δ), for all random nodes δ ∈ Δ.
The information partitions in H1 are:

∼{δ : δ ∈ Δ, length(δ) = 0} (i.e., {{〈s0〉}})
∼{δ : δ ∈ Δplayer, length(δ) = 1}
∼{δ : δ ∈ Δ, length(δ) = 1}
∼{δ : δ ∈ Δplayer, length(δ) = 2}
. . .
∼{δ : δ ∈ Δ, length(δ) = d}

where d is the maximal length of developments.
As an example, Fig. 2 depicts the extensive-form game thus

obtained from the Monty Hall game description in Fig. 1. The
following result shows that we have arrived at a faithful inter-
pretation of GDL games as extensive-form games.
Theorem 2. The construction above satisfies the following.

1. H1 satisfies the conditions of Definition 2.
2. There is a one-to-one correspondence between the

branches (of the extensive-form game) and the develop-
ments (of the GDL game), with identical payoffs.

3. The combined probabilities of a branch equals the com-
bined probabilities in the development in the leaf.

4. player cannot distinguish two developments iff they are
in the same information set of some H ∈ H1 .

Proof (sketch): Proposition 1, along with construction
of H1 on the basis of the equivalence relation induced by
indistinguishable developments, ensure that the information
sets are disjoint and that player knows his own moves. Also
according to the construction of H1 , each information parti-
tion H ∈ H1 contains developments of the same length k,
and hence each branch (i.e., maximal development δ) is rep-
resented by exactly one element in each such H , namely, the

1110

�

������������������

� ������������������

...

��
�
�
�
��

� ��
�

�
�

��

��
�

�
�

��

� ��
�

�
�

��

�

...

�

...

��
�
�
��

...

��
�

�
��

...

� ��
�
�
��

��
�

�
��

...

�

...

0

1

0

1

��
�
�
��

100
��

�
�

��

100
�

0
�

0

hide car(1)
1
3

hide car(2)

1
3 hide car(3)

1
3

choose(3)

choose(2)

choose(1) choose(1)

choose(2)

choose(3)

open(2) open(3) open(2)
1
2

open(3)
1
2

open(3) open(1)
1
2

open(3)
1
2

open(1)

switchswitch
noop noop

Figure 2: The game of Fig. 1 mapped onto extensive form (with some nodes and branches omitted). The numbers to the very
right indicate to which player the nodes of that height belong (0 = random, 1 = candidate). Dotted lines connect nodes in the
same information set for the candidate. His information partitions are the collections of his information sets on each height.

prefix of δ of length k. Finally, if player can distinguish
two developments then he can distinguish any of their con-
tinuations, too, according to Proposition 1. Altogether, this
proves 1. Properties 2.–4. can be easily proved from the con-
struction of the game tree, the payoff function, the probability
measures, and player’s information partitions. �

4 From Extensive-Form Games to GDL

To show that any extensive-form game can be described faith-
fully (that is, move-by-move) in GDL we need to address two
main issues. First, the given information partitions need to be
encoded by appropriate sees-rules for the individual play-
ers. Second, non-uniform probabilities for moves by Nature
need to be mapped onto uniform probability distributions for
random’s moves. This will be achieved by introducing a pro-
portional number of moves that have different names but lead
to the same successor state.1 As before, all this can be done
for arbitrary n-player games in extensive form, but for the
sake of clarity we again restrict our exposition to the spe-
cial case of two players, 0 (= random) and 1 (= player).
We also assume, without loss of generality since Nature al-
ways chooses among finitely many moves, that each individ-
ual probability measure ρs is given as a collection of rational
numbers, which moreover have the same denominator. Then
any extensive-form game (S, s0, T, f, ι, υ, ρ,H) (cf. Defini-
tion 2) can be described by the following set of GDL rules.

The players and the initial state are defined as
role(random). role(player). init(s0).

For each leaf node s ∈ T :
terminal <= true(s).
goal(player, υ(s))<= true(s).

For non-leafs s ∈ S\T , let their child nodes be given in an
arbitrary but fixed order, f−1(s) = {s1, . . . , sm} (m ≥ 1) .

1This follows our example in [Thielscher, 2010] of an unfair coin
showing heads with probability 1

3
, modelled by three legal moves

for random, two of which result in the coin showing tails.

For non-random nodes, i.e. where ι(s) = 0:

legal(player, 1) <= true(s).
. . .
legal(player,m) <= true(s).
legal(random, noop)<= true(s).
next(s1) <= true(s), does(player, 1).
. . .
next(sm) <= true(s), does(player,m).

For random nodes, i.e. where ι(s) = 0, suppose ρs over
{s1, . . . , sm} is given by the probabilities {p1

q , . . . , pm

q }
such that (

∑m
k=1 pk) = q. Then

legal(random, 1) <= true(s).
. . .
legal(random, q) <= true(s).
legal(player, noop)<= true(s).

and for each i = 1, . . . ,m :

next(si)<= true(s), does(random, 1 +
∑i−1

k=1 pk).
. . .

next(si)<= true(s), does(random,
∑i

k=1 pk).

Hence, for each child si there are proportionally many (pi ,
to be precise) moves that all lead to si . Let S1, . . . , Sl be
a partition (in arbitrary but fixed order) of s1, . . . , sm such
that si, si′ are in the same set Sj iff they occur in the same
information set of some partition H ∈ H1 . (In other words,
the player cannot distinguish any two states from the same Sj

but any two states from different Sj , Sj′).
For all j = 1, . . . , l and all si ∈ Sj such that si is a

non-player move, i.e. where ι(si) = 1:

sees(player, j)<= true(s),
does(random, 1 +

∑i−1
k=1 pk).

. . .

sees(player, j)<= true(s), does(random,
∑i

k=1 pk).

Here, index j serves as abstract percept that allows player to
identify the information set to which si belongs but nothing

1111

more. Obviously, the size of the resulting game description is
of the same order as the original game tree since moves are
not parallelised and states are encoded as individual objects
rather than being factored into atomic features. Hence, unlike
the Monty Hall description in Fig. 1, say, the construction
does not exploit the conciseness of descriptions made pos-
sible by having a high-level knowledge representation lan-
guage. However, this suffices for a proof of principle, and the
following result shows that we can give a valid and faithful
GDL description for any extensive-form game.
Theorem 3. The construction above satisfies the following.

1. The resulting set of rules meets all syntactic require-
ments of valid GDL descriptions.

2. There is a one-to-one correspondence between the
branches (of the game tree) and the set of all maxi-
mal developments (in GDL) in which random chooses
moves with the same effect, with identical payoffs.

3. The combined probabilities of a branch equals the sum
of the combined probabilities of all corresponding max-
imal developments.

4. player cannot distinguish two developments iff their last
states are in the same information set of some H ∈ H1 .

Proof (sketch): It is easy to verify that the use of the key-
words complies with all requirements stated in Section 2.1
and that the program is stratified and allowed. The seman-
tics according to Definition 1, the execution model for GDL,
and the construction of the rules for init, legal, next,
and terminal entail the one-to-one correspondence be-
tween the branches of the game tree and the maximal de-
velopments modulo choices by random of different moves
that result in the same successor state. The construction of
the clauses for goal ensure that the payoffs are identical.
The construction of the legal moves for random ensure that
the combined probabilities of a branch equals the sum of the
combined probabilities for all corresponding developments.
Finally, the construction of the clauses for sees ensure that
player gets identical percepts if, and only if, the states after
a move by random are in the same information set. This in
conjunction with Proposition 1 entails the claim. �

5 Conclusion

One of the reasons why General Game Playing has not yet
found as many applications outside the game-playing area as
it could, is that the current state of the art is restricted to de-
terministic games with complete state information. The re-
cent enhancement of the general Game Description Language
aims at remedying this limitation. In this paper we proved
that this language extension, notationally simple as it is, in-
deed suffices to describe just any finite game faithfully. This
shows that for the purpose of General Game Playing the lan-
guage GDL can be considered complete; additional elements
can only serve to obtain more succinct descriptions (e.g., by
allowing explicit specifications of non-uniform probabilities
for moves by random) or will be needed when the very con-
cept of General Game Playing itself is extended beyond the
current setting, e.g. to open-world games (say, Scrabble) or
systems that play real, physical games [Barbu et al., 2010].

Beyond General Game Playing we envision applications of
our result in other AI areas in which game models arise, such
as Multiagent Planning [Larbi et al., 2007] or Multiagent Sys-
tems in general. A universal description language for games
of any kind is potentially useful wherever there is a need
for compact and high-level yet machine-processable specifi-
cations of problem domains and applications in the form of
games.

References

[Apt et al., 1987] K. Apt, H. Blair, and A. Walker. Towards a
theory of declarative knowledge. In Foundations of Deduc-
tive Databases and Logic Programming, 89–148, 1987.

[Barbu et al., 2010] A. Barbu, S. Narayanaswamy, and J.
Siskind. Learning physically-instantiated game play
through visual observation. In Proc. of the IEEE Int.’l
Conf. on Robotics and Automation, 1879–1886, 2010.

[Björnsson and Finnsson, 2009] Y. Björnsson and H. Finns-
son. CADIAPLAYER: A simulation-based general game
player. IEEE Trans. on CI&AI in Games, 1(1):4–15, 2009.

[Clune, 2007] J. Clune. Heuristic evaluation functions for
general game playing. In Proc. of AAAI, 1134–1139, 2007.

[Genesereth et al., 2005] M. Genesereth, N. Love, and B.
Pell. General game playing: Overview of the AAAI com-
petition. AI Magazine, 26(2):62–72, 2005.

[Jensen and Veloso, 2000] R. Jensen and M. Veloso. OBDD-
based universal planning for synchronized agents in non-
deterministic domains. JAIR, 13:189–226, 2000.

[Koller and Pfeffer, 1997] D. Koller and A. Pfeffer. Repre-
sentations and solutions for game-theoretic problems. Ar-
tificial Intelligence, 94(1):167–215, 1997.

[Larbi et al., 2007] R. Ben Larbi, S. Konieczny, and P. Mar-
quis. Extending classical planning to the multi-agent case:
A game-theoretic approach. In Proc. of ECSQARU, vol.
4724 of LNCS, 63–75. Springer, 2007.

[Lloyd and Topor, 1986] J. Lloyd and R. Topor. A basis for
deductive database systems II. Journal of Logic Program-
ming, 3(1):55–67, 1986.

[Love et al., 2006] N. Love, T. Hinrichs, D. Haley, E.
Schkufza, and M. Genesereth. General Game Playing:
Game Description Language Specification. Tech. Rep.
LG–2006–01, Stanford, 2006. games.stanford.edu

[Mura, 2000] P. La Mura. Game networks. In Proc. of the
Conference on Uncertainty in AI, 335–342, 2000.

[Rasmusen, 2007] E. Rasmusen. Games and Information:
an Introduction to Game Theory. Blackwell, 4th ed., 2007.

[Rosenhouse, 2009] J. Rosenhouse. The Monty Hall Prob-
lem. Oxford University Press, 2009.

[Schiffel and Thielscher, 2007] S. Schiffel and M.
Thielscher. Fluxplayer: A successful general game
player. In Proc. of AAAI, 1191–1196, 2007.

[Thielscher, 2010] M. Thielscher. A general game descrip-
tion language for incomplete information games. In Proc.
of AAAI, 994–999, 2010.

1112

