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Abstract

Following the recent trend of studying the theory of
belief revision under the Horn fragment of propo-
sitional logic this paper develops a fully charac-
terised Horn contraction which is analogous to the
traditional transitively relational partial meet con-
traction [Alchourrón et al., 1985]. This Horn con-
traction extends the partial meet Horn contraction
studied in [Delgrande and Wassermann, 2010] so
that it is guided by a transitive relation that models
the ordering of plausibility over sets of beliefs.

1 Introduction

The theory of belief change deals with the dynamics of be-
liefs represented as logical formulas, usually under classical
propositional logic (PL). The change often involves removal
of existing beliefs—the contraction operation—and incorpo-
ration of newly acquired beliefs—the revision operation. The
AGM [Alchourrón et al., 1985] framework is generally held
to be the most compelling account of belief change and pro-
vides a common point of reference and comparison.

The nature of belief change where the underlying logic is
restricted to the Horn fragment of classical PL (Horn logic)
has recently attracted significant attention [Delgrande, 2008;
Booth et al., 2009; 2010; Delgrande and Wassermann, 2010;
Zhuang and Pagnucco, 2010a; 2010b]. The topic is interest-
ing for several reasons. Horn logic is an important subset of
PL which has found use in many artificial intelligence and
database applications. The study of belief change under Horn
logic broadens the spectrum of the AGM framework and in
particular it provides a key step towards applying the AGM
framework to non-classical logics with less expressive and
reasoning power than PL.

In the AGM framework beliefs are characterised by belief
sets which are sets of formulas closed under logical deduc-
tion. Once we work under a less expressive logic such as
Horn logic there are various restrictions on how beliefs can be
represented. Under Horn logic a belief set contains only Horn
formulas, thus it is referred to as a Horn belief set. The main
challenge is therefore to define change operations satisfying
the principles of the AGM framework while their resultant
belief sets are still representable as Horn belief sets.

The aim of this paper is to consider a fundamental con-
struction for the contraction operation—transitively rela-
tional partial meet contraction—in the context of Horn logic.
The representation theorem we prove establishes a tight con-
nection between a construction method and a set of ra-
tionality postulates. It guarantees soundness—contractions
constructed by the method satisfy the postulates—and
completeness—all contractions that satisfy the postulates can
be constructed by the method. In the AGM framework con-
struction methods often make use of a reasoner’s belief pref-
erence information represented by orderings over formulas,
maximal non-implying subsets (commonly known as remain-
der sets), or possible worlds (i.e., propositional interpreta-
tions). The contraction we construct extends an existing one
in which preference information over a notion of remainder
sets, namely weak remainder sets, are used for guiding the
operation.

2 Technical Preliminaries

We assume a fixed propositional language L over a finite
set of atoms P = {p, q, . . .}. Lower case Greek characters
φ, ψ, . . . denote formulas and upper case Roman characters
X,Y, . . . denote sets of formulas. Classical logical conse-
quence and logical equivalence are denoted by � and ≡ re-
spectively. Cn is the Tarskian consequence operator such that
Cn(X) = {φ : X � φ}. An interpretation of L is a function
from P to {true, false}. Truth and falsity of a formula in
L is determined by standard rules of PL. An interpretation I
is a model of a formula φ, written I |= φ, if φ is true in I .
An interpretation I is a model of a set of formulas X , writ-
ten I |= X if for each formula φ in X , I |= φ. Given a set
of formulas X , [X] denotes the set of models of X . To de-
note the set of models of a formula φ, we write [φ] instead
of [{φ}]. An interpretation is identified by the set of atoms
assigned true, e.g., the interpretation bc indicates atoms b, c
are assigned true and the others are assigned false.1

A Horn clause is a clause that contains at most one positive
atom, e.g., ¬p ∨ ¬q ∨ r. A Horn formula is a conjunction of
Horn clauses. The Horn language LH is the subset of L that
contains only Horn formulas. The Horn logic generated from
LH is just PL acting on Horn formulas. A Horn theory is a

1Here bc is a shorthand for {b, c} for the sake of simplicity.
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set of Horn formulas. We add the suffix h to logical opera-
tors under Horn logic. For example, Cnh is the Horn conse-
quence operator such that Cnh(X) = {φ : X � φ, φ ∈ LH}.
Horn : 2L → 2LH is a function such that Horn(X) = {φ :
φ ∈ X and φ ∈ LH}. Negation is not always available in
Horn logic. For example, the negation of ¬p∧¬q (i.e., p∨ q)
is not a Horn formula. However, we denote by [¬φ] the set of
interpretations in which φ is false.

The intersection of a pair of interpretations is the interpre-
tation that assigns true to those atoms that are assigned true
by both of the interpretations. We denote the intersection of
interpretations m1 and m2 by m1 ∩ m2, e.g., ab ∩ bc = b,
ab ∩ cd = ∅. Given a set of interpretations M , the closure of
M under intersection is denoted as Cl∩(M). Models of any
Horn theory are closed under intersection, that is for a Horn
theory H , if m1,m2 ∈ [H] then m1 ∩m2 ∈ [H]. Conversely
any set of interpretations that are closed under intersections
can be represented by a Horn theory. This closure property
plays a crucial role in this paper.

3 Background: AGM Contraction

The operation of contraction in the AGM framework con-
cerns giving up beliefs from a belief set K which is closed
under Cn. A set of rationality postulates is formalised for
capturing the intuitive ideas behind the operation, in which
(K

.−1)–(K .−6) are regarded as the basic postulates and
(K

.−7)–(K .−8) as supplementary postulates.
(K .−1) K .−φ = Cn(K .−φ).
(K .−2) K .−φ ⊆ K.
(K .−3) If φ �∈ K, then K .−φ = K.
(K .−4) If �� φ, then φ �∈ K .−φ.
(K .−5) K ⊆ (K .−φ) + ϕ.
(K .−6) If φ ≡ ψ, then K .−φ = K .−ψ.
(K .−7) K .−φ ∩K .−ψ ⊆ K .−φ ∧ ψ.
(K .−8) If φ �∈ K .−φ ∧ ψ then K .−φ ∧ ψ ⊆ K .−φ.
A widely used construction of AGM contraction is that

based on the notion of remainder sets. If K is a set of for-
mulas and φ a formula, we write K ↓ φ for the set of all
maximal subsets X of K such that φ �∈ Cn(X). If K is a
belief set, then elements of K ↓ φ are called remainder sets
ofK with respect to φ. As noted in [Alchourrón et al., 1985],
K ↓ φ is non-empty iff φ �∈ Cn(∅). A selection function γ
for a belief set K is one such that γ(K ↓ φ) returns a non-
empty subset of K ↓ φ whenever K ↓ φ is non-empty and
returnsK otherwise. Let γ be a selection function for a belief
set K, then the partial meet contraction (PMC) .− over K is
defined as K .−φ =

⋂
γ(K ↓ φ). As limiting cases, for all

φ �∈ Cn(∅), if γ(K ↓ φ) = K ↓ φ, then .− is a full meet
contraction; and if γ(K ↓ φ) is a singleton set, then .− is a
maxichoice contraction. A contraction is a PMC iff it satis-
fies the basic postulates. A PMC does not in general satisfy
both the supplementary postulates unless it is transitively re-
lational which requires that further restrictions be imposed on
the selection function. We say that γ is transitively relational
over K iff a transitive relation � over remainder sets of K is
used to generate γ via the marking off identity:

γ(K ↓ φ) = {Y ∈ K ↓ φ : X � Y for all X ∈ K ↓ φ}.

The relation � is intended to capture the intuition thatX � Y
iff Y is at least as plausible as X . X < Y means X � Y and
Y �� X . A PMC is transitively relational, referred to as a
transitively relational partial meet contraction (TRPMC), if
it is determined by a transitively relational selection function.
A contraction is a TRPMC iff it satisfies the full set of postu-
lates.

In the next section we study the operation of contraction
under Horn logic. Obviously, a Horn belief set H is closed
under Horn consequence, that is H = Cnh(H). A Horn
contraction is a function over a Horn belief set that, given a
Horn formula, returns another Horn belief set. In particular,
we develop the Horn analogue of TRPMC.

4 Belief Contraction Under Horn Logic

4.1 Partial Meet Horn Contraction

The Horn analogue of TRPMC has been studied in [Zhuang
and Pagnucco, 2010b] where the relationship with the epis-
temic entrenchment based Horn contraction (EEHC) [Zhuang
and Pagnucco, 2010a] is investigated but no representation
result is considered. That contraction is defined as an exten-
sion of the partial meet Horn contraction (PMHC) studied in
[Delgrande and Wassermann, 2010] where the notion of weak
remainder sets is proposed.
Definition 1 Let H be a Horn belief set and φ be a Horn
formula. The set of weak remainder sets of H with respect
to φ, denoted by H ↓w φ, is such that X ∈ H ↓w φ iff
X = Cnh(X) and there is an m ∈ [¬φ] such that [X] =
Cl∩([H] ∪ {m}).
Remainder sets of a belief set K with respect to a formula
φ can be obtained semantically by adding counter-models of
φ to the models of K (i.e., Cn(X) ∈ K ↓ φ iff [X] =
[K] ∪ {m} for some m ∈ [¬φ]). Essentially, the number of
remainder sets is identical to the number of counter-models
of φ. Weak remainder sets of a Horn belief set with respect to
a Horn formula are obtained similarly but by also taking into
account the closure property of Horn theories.
Example 1 Let P = {a, b, c} and H = Cnh(a ∧ b). Con-
sider H ↓w (a ∧ b). As [H] = {ab, abc} and [¬(a ∧ b)] =
{ac, a, bc, b, c, ∅}, we have H ↓w (a ∧ b) = {X1, . . . , X6}
such that [X1] = Cl∩([H] ∪ {ac}) = {ab, abc, ac, a} and
X1 = Cnh({a}); [X2] = Cl∩([H] ∪ {a}) = {ab, abc, a}
and X2 = Cnh({a,¬c ∨ b}); [X3] = Cl∩([H] ∪ {bc}) =
{ab, abc, bc, b} and X3 = Cnh({b}); [X4] = Cl∩([H] ∪
{b}) = {ab, abc, b} and X4 = Cnh({b,¬c ∨ a}); [X5] =
Cl∩([H] ∪ {c}) = {ab, abc, c, ∅} and X5 = Cnh({¬a ∨
b,¬b ∨ a}); [X6] = Cl∩([H] ∪ {∅}) = {ab, abc, ∅} and
X6 = Cnh({¬a ∨ b,¬b ∨ a,¬c ∨ a,¬c ∨ b}). Note that
X1 ⊂ X2, X3 ⊂ X4, and X5 ⊂ X6.

We first prove some new results concerning weak remain-
der sets which stem from the model-theoretic definition and
the closure property.
Lemma 1 Let K be a belief set and H be a Horn belief set
such that φ, ψ ∈ H then
1. If X ∈ H ↓w φ and X �� ψ then X ∈ H ↓w ψ.
2. H ↓w φ ∧ ψ = (H ↓w φ) ∪ (H ↓w ψ).
3. Horn(X) ∈ Horn(K) ↓w φ iff X ∈ K ↓ φ.
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Proof: 1. Suppose X ∈ H ↓w φ and X �� ψ we need
to show X ∈ H ↓w ψ. From Definition 1 it follows that
X = Cnh(X) and [X] = Cl∩([H] ∪ {u}) for some u ∈
[¬φ]. Assume X �∈ H ↓w ψ, then u ∈ [ψ] for otherwise it
follows from Definition 1 and u ∈ [¬ψ] that X ∈ H ↓w ψ
contradicting the assumption. ψ ∈ H implies [H] ⊆ [ψ].
From [H] ⊆ [ψ] and u ∈ [ψ] it follows that [H] ∪ {u} ⊆ [ψ],
hence Cl∩([H] ∪ {u}) ⊆ Cl∩[ψ]. Since X �� ψ, there is
v ∈ [X] such that v �∈ [ψ]. Since [X] ⊆ Cl∩[ψ], we have
v ∈ Cl∩[ψ]. From v ∈ Cl∩[ψ] and v �∈ [ψ] we can conclude,
by the closure property, that ψ �∈ LH , contradicting ψ ∈ [H].

2. Let X ∈ H ↓w φ ∧ ψ then X �� φ or X �� ψ, so
by part 1, X ∈ H ↓w φ or X ∈ H ↓w ψ. Conversely, if
X ∈ H ↓w φ or X ∈ H ↓w ψ then X �� φ ∧ ψ so, by part 1
again, X ∈ H ↓w φ ∧ ψ.

3. For one direction (⇒) suppose Y ∈ Horn(K) ↓w φ
then by Definition 1, there is m ∈ [¬φ] such that [Y ] =
Cl∩([Horn(K)] ∪ {m}) = Cl∩(Cl∩([K]) ∪ {m}) =
Cl∩([K] ∪ {m}). By a property of standard remainder sets,
there is X ∈ K ↓ φ such that [X] = [K] ∪ {m}, that is
Cl∩([K] ∪ {m}) = Cl∩([X]) = [Horn(X)] which implies
Y = Horn(X).

For the other direction (⇐), suppose X ∈ K ↓w φ, then
[X] = [K] ∪ {u} for some u ∈ [¬φ]. [Horn(X)] =
Cl∩[X] = Cl∩([K] ∪ {u}) = Cl∩(Cl∩[K] ∪ {u}) =
Cl∩([Horn(K)] ∪ {u}). Then by Definition 1, we have
Horn(X) ∈ Horn(K) ↓w φ.

�

Part 1 says that if a weak remainder set of H does not con-
tain ψ then it is a weak remainder set of H with respect to ψ,
provided that ψ is an element of H . Part 2 says that weak
remainder sets with respect to conjunctions are comprised
of the union of the remainder sets with respect to each con-
junct. Part 3 says that there is a one-to-one correspondence
between the remainder sets ofK and the weak remainder sets
of Horn(K).

PMHC is defined similarly to PMC:

Definition 2 [Delgrande and Wassermann, 2010] Let γ be a
selection function for H , then the PMHC .− over H is given
by: H .−φ =

⋂
γ(H ↓w φ).

The representation result for PMHC is as follows:

Theorem 1 [Delgrande and Wassermann, 2010] Let H be a
Horn belief set. Then .− is a PMHC over H iff .− satisfies:
(H .−1) H

.−φ = Cnh(H
.−φ). (closure)

(H .−2) H
.−φ ⊆ H . (inclusion)

(H .−3) If φ �∈ H , then H .−φ = H . (vacuity)
(H .−4) If �� φ, then φ �∈ H

.−φ. (success)
(H .−f) If � φ, then H .−φ = H . (failure)
(H .−6) If φ ≡ ψ, then H .−φ = H

.−ψ. (extensionality)
(H .−wr) If ψ ∈ H \ (H .−φ), then there is some H

′
such

that H .−φ ⊆ H
′
, φ �∈ Cnh(H

′
) and φ ∈ Cnh(H

′ ∪ {ψ})
(weak relevance)

(H
.−1)–(H .−4) and (H

.−6) are Horn analogues of the corre-
sponding AGM postulates. (H .−f) captures the failure prop-
erty which states that the contraction of a tautology leaves
the belief set unchanged. The property is derivable from
(K

.−2) and (K
.−5). Since (K

.−5) is not compatible with

Horn logic [Flouris, 2006], (H .−f) is needed here to take
care of a special case. (H

.−wr) is a weaker version of the
relevance postulate [Hansson, 1999] for Horn logic.

In the subsequent section we investigate PMHCs whose de-
termining selection functions are constrained by transitivity
and relationality.

4.2 Transitively Relational PMHC

A PMHC is transitively relational and referred to as a transi-
tively relational partial meet Horn contraction (TRPMHC) if
it is determined by a transitively relational selection function.

Definition 3 Let γ be a transitively relational selection func-
tion for a Horn belief set H . Then .− is a TRPMHC over H
iff H .−φ =

⋂
γ(H ↓w φ) for all φ ∈ LH .

TRPMHC is more sophisticated than PMHC as it brings in
more order via the transitively relational selection function.
As with TRPMC, the additional order makes TRPMHC sat-
isfy some extra postulates regarding the contraction of con-
junctive formulas.

Lemma 2 Let H be a Horn belief set and .− be a
PMHC over H determined by a transitively relational se-
lection function γ, then .− satisfies the following postulates:
(H .−7) H .−φ ∩H .−ψ ⊆ H .−φ ∧ ψ.
(H .−8) If φ �∈ H .−φ ∧ ψ then H .−φ ∧ ψ ⊆ H .−φ.
(H .−ct) If ψ ∈ H .−φ ∧ ψ then ψ ∈ H .−φ ∧ ψ ∧ δ
(H .−pa) (H .−φ) ∩ Cnh(φ) ⊆ H .−φ ∧ ψ.
(H .−c) H .−φ ∧ ψ ⊆ H .−φ or H .−φ ∧ ψ ⊆ H .−ψ.
Proof: We only show the proof for (H .−pa) as proofs for the
others are very similar to those in [Alchourrón et al., 1985].
If � φ, � ψ, φ �∈ H or ψ �∈ H then (H

.−pa) is trivially
satisfied, so suppose �� φ, �� ψ, φ ∈ H and ψ ∈ H . By the
construction of TRPMHC and Part 2 of Lemma 1, it suffices
to show

⋂
γ(H ↓w φ)∩Cnh(φ) ⊆ ⋂

γ(H ↓w φ∪H ↓w ψ)
that is, by model theory, to show [

⋂
γ(H ↓w φ∪H ↓w ψ)] ⊆

[
⋂
γ(H ↓w φ)∩Cnh(φ)]. Since [

⋂
γ(H ↓w φ∪H ↓w ψ)] =

[X1] ∪ · · · ∪ [Xn] for X1, . . . , Xn ∈ γ(H ↓w φ ∪H ↓w ψ)
and [

⋂
γ(H ↓w φ) ∩ Cnh(φ)] = [Y1] ∪ · · · ∪ [Ym] ∪ [φ]

for Y1, . . . , Ym ∈ γ(H ↓w φ). It remains to show for each
X ∈ {X1, . . . , Xn}, [X] ⊆ [Y1] ∪ · · · ∪ [Ym] ∪ [φ].

First case, X ∈ H ↓w φ. It follows from relationality of γ
and X ∈ γ(H ↓w φ ∪H ↓w ψ) that X ∈ γ(H ↓w φ). Thus
there is a Y ∈ {Y1, . . . , Ym} such that [X] = [Y ].

Second case, X �∈ H ↓w φ. It follows from X ∈ (H ↓w
φ ∪H ↓w ψ) and X �∈ H ↓w φ that X ∈ H ↓w ψ. Assume
X �� φ then by Part 1 of Lemma 1 we have X ∈ H ↓w φ
thus contradicting the assumption, so X � φ which implies
[X] ⊆ [φ].

�

(H
.−7) and (H

.−8) are Horn analogues of (K
.−7) and

(K
.−8). Some conjunctive postulates are derivable from

(K
.−7) and (K

.−8) such as partial antitony, conjunctive tri-
section, and covering. Let .− be a PMC for K, we have that.− satisfies (K .−7) iff it satisfies partial antitony [Alchourrón
et al., 1985]; .− satisfies partial antitony iff it satisfies con-
junctive trisection [Rott, 1992]; and .− satisfies (K

.−8) only
if it satisfies covering [Alchourrón et al., 1985]. (H

.−pa),
(H

.−ct) and (H
.−c) are Horn analogues of partial antitony,
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conjunctive trisection, and covering respectively. The con-
nection between (H

.−7) and (H
.−8) and Horn analogues of

the derived postulates are also preserved except for (H .−pa)
which is is not related to (H

.−7). It is for this reason that
(H

.−pa) is able to stand alone, capturing properties exclusive
to (H

.−7).
The following notion of completed selection function [Al-

chourrón et al., 1985] is useful in proving completeness of
TRPMHC with respect to its set of characterising postulates.

Definition 4 Let γ be a selection function for a Horn belief
setH . The completion of γ is a function γ̂ such that: γ̂(H ↓w
φ) = {X :

⋂
γ(H ↓w φ) ⊆ X ∈ H ↓w φ} if H ↓w φ is

non-empty and γ̂(H ↓w φ) = γ(H ↓w φ) = {H} otherwise.
γ is completed iff γ = γ̂.

Clearly, γ̂ is also a selection function. Let γ be a selection
function for a belief setK. We have

⋂
γ̂(K ↓ φ) = ⋂

γ(K ↓
φ) for all φ [Alchourrón et al., 1985], thus γ̂ determines the
same PMC as γ does. Selection functions for Horn belief sets
exhibit a similar property. The proof is identical to the PL
case.

Lemma 3 Let γ be a selection function for a Horn belief set
H . Then

⋂
γ(H ↓w φ) =

⋂
γ̂(H ↓w φ) for all φ ∈ LH .

All selection functions for determining PMCs are completed2

[Alchourrón et al., 1985], however, this is not the case for
PMHC. In Example 1, if γ is such that γ(H ↓w (a ∧ b)) =
{X1}, then γ̂(H ↓w (a ∧ b)) = {X1, X2} as X1 ⊂ X2.

Given a PMHC determined by a selection function γ, the
following lemma shows that (H .−pa) and (H

.−8) are suffi-
cient conditions for γ̂ to be transitively relational.

Lemma 4 Let H be a Horn belief set and .− be a PMHC
over H determined by a selection function γ. If .− satisfies
(H

.−pa) and (H
.−8), then γ̂ is transitively relational.

Proof: Let � be the relation over all weak remainder sets of
H such that X � Y iff either:
(i) Y = H or both of the following hold:
(iia) there is some φ ∈ H such that H .−φ ⊆ Y ∈ H ↓w φ.
(iib) for all φ, if X,Y ∈ H ↓w φ and H .−φ ⊆ X , then
H

.−φ ⊆ Y .
We need to show that (1) � generates the completion γ̂ of

γ via the marking off identity, and (2) � is transitive.
(1) Suppose for the principal case that H ↓w φ �= ∅.

We need to show γ̂(H ↓w φ) = {Y ∈ H ↓w φ |X �
Y for all X ∈ H ↓w φ}.

For one direction, suppose Z �∈ γ̂(H ↓w φ). We need to
show Z �∈ {Y ∈ H ↓w φ : X � Y for all X ∈ H ↓w φ}.

First case, φ �∈ H . By Definition 1, φ �∈ H implies H ↓w
φ = {H} hence γ̂(H ↓w φ) = {H}. So it follows from
Z �∈ γ̂(H ↓w φ) that Z �∈ H ↓w φ.

Second case, φ ∈ H . If Z �∈ H ↓w φ, then Z �∈ {Y ∈
H ↓w φ |X � Y for all X ∈ H ↓w φ} holds trivially. So
suppose Z ∈ H ↓w φ. Since H ↓w φ �= ∅, we have by
definition of γ, γ̂(H ↓w φ) �= ∅. By Lemma 3, H .−φ =⋂
γ(H ↓w φ) =

⋂
γ̂(H ↓w φ). Let N ∈ γ̂(H ↓w φ), then

H
.−φ =

⋂
γ̂(H ↓w φ) ⊆ N . By the completion property of

2The result only holds for belief sets that are finite modulo Cn.
As we assume a finite language, this is always the case.

γ̂, Z �∈ γ̂(H ↓w φ) implies H .−φ �⊆ Z. Then from condition
(iib) it follows that N �� Z which implies Z �∈ {Y ∈ H ↓w
φ |X � Y for all X ∈ H ↓w φ}.

For the other direction suppose Z ∈ γ̂(H ↓w φ). We need
to show Z ∈ {Y ∈ H ↓w φ : X � Y for all X ∈ H ↓w φ}.
Let N ∈ H ↓w φ. It remains to show N � Z.

First case, φ �∈ H . By Definition 1, φ �∈ H implies H ↓w
φ = {H}. It then follows from N ∈ H ↓w φ, Z ∈ H ↓w φ
and H ↓w φ = {H} that N = Z = H . Hence by condition
(i) we have N � Z.

Second case, φ ∈ H . We will show conditions (iia)–
(iib) for deriving N � Z are satisfied. It follows from
Z ∈ γ̂(H ↓w φ) and the construction of PMHC that H .−φ ⊆
Z ∈ H ↓w φ. So condition (iia) is satisfied. For condi-
tion (iib), suppose ψ ∈ LH , N ∈ H ↓w ψ, Z ∈ H ↓w ψ
and H

.−ψ ⊆ N . It remains to show H
.−ψ ⊆ Z. It fol-

lows from (H
.−c) which follows from (H

.−8) that either
H

.−φ ∧ ψ ⊆ H
.−φ or H .−φ ∧ ψ ⊆ H

.−ψ. In the latter case
H

.−φ ∧ ψ ⊆ H
.−ψ ⊆ N ∈ H ↓w φ, so φ �∈ H

.−φ ∧ ψ; then
by (H

.−8) we have H .−φ ∧ ψ ⊆ H
.−φ. Thus in either case

H
.−φ∧ψ ⊆ H

.−φ. Let μ ∈ H
.−ψ then [H

.−ψ] ⊆ [μ]. We are
going to show μ ∈ Z. By (H

.−pa) we haveH .−ψ∩Cn(ψ) ⊆
H

.−φ ∧ ψ ⊆ H
.−φ ⊆ Z. So by model theory we have

[Z] ⊆ [H
.−φ] ⊆ [H

.−φ∧ψ] ⊆ [H
.−ψ∩Cn(ψ)] ⊆ [μ]∪ [ψ].

Z ∈ H ↓w ψ implies Z �� ψ, hence [Z] �⊆ [ψ]. By (H
.−2),

μ ∈ H
.−ψ ⊆ H , so [H] ⊆ [μ]. By Definition 1 we have

Z = Cnh(Z) and [Z] = Cl∩([H]∪{u}) for some u ∈ [¬ψ].
It follows from u ∈ [Z] ⊆ [ψ] ∪ [μ] and u ∈ [¬ψ] that
u ∈ [μ]. It then follows from μ ∈ LH (i.e., its models
are closed under intersection), [H] ⊆ [μ] and u ∈ [μ] that
[Z] = Cl∩([H] ∪ {u}) ⊆ [μ] which implies Z � μ. Since
Z = Cnh(Z), Z � μ implies μ ∈ Z.

(2). Let X,Y and Z be weak remainder sets of H and
suppose X � Y and Y � Z. We need to show X � Z. In
the case that Z = H , X � Z follows from condition (i). In
the case that Z �= H , we have to show conditions (iia)–(iib)
for deriving X � Z are satisfied. Condition (iia) follows
from the definition of Y � Z and Z �= H . For condition
(iib), suppose ψ ∈ LH , X,Z ∈ H ↓w ψ, and H .−ψ ⊆ X . It
remains to verifyH .−ψ ⊆ Z. It follows from Y � Z, Z �= H
and the definition of � that Y �= H . It follows from Y �= H ,
X � Y and condition (iia) that there is some φ ∈ H such
that H .−φ ⊆ Y ∈ H ↓w φ. By part 2 of Lemma 1, we have
H ↓w φ ∧ ψ = (H ↓w φ) ∪ (H ↓w ψ) from which it follows
that X,Y, Z are all elements of H ↓w φ ∧ ψ. By (H

.−c),
either H .−φ ∧ ψ ⊆ H

.−φ or H .−φ ∧ ψ ⊆ H
.−ψ.

First case, H .−φ ∧ ψ ⊆ H
.−φ. Since H .−φ ⊆ Y , we have

H
.−φ ∧ ψ ⊆ Y . It then follows from condition (iib) and

Y � Z that H .−φ ∧ ψ ⊆ Z.
Second case, H .−φ ∧ ψ ⊆ H

.−ψ. Since H .−ψ ⊆ X , we
have H .−φ ∧ ψ ⊆ X . It then follows from condition (iib)
and X � Y that H .−φ ∧ ψ ⊆ Y . Similarly, it follows from
condition (iib) and Y � Z that H .−φ ∧ ψ ⊆ Z.

So in both cases H .−φ ∧ ψ ⊆ Z. Let μ ∈ H
.−ψ. We are

going to show μ ∈ Z. μ ∈ H
.−ψ implies [H .−ψ] ⊆ [μ]. By

(H
.−pa) we have H .−ψ ∩ Cn(ψ) ⊆ H

.−φ ∧ ψ ⊆ Z. So
by model theory [Z] ⊆ [H

.−φ ∧ ψ] ⊆ [H
.−ψ ∩ Cn(ψ)] ⊆

[ψ] ∪ [μ]. Z �� ψ follows from Z ∈ H ↓w ψ, and it implies
[Z] �⊆ [ψ]. By (H

.−2), μ ∈ H
.−ψ ⊆ H , which implies
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[H] ⊆ [μ]. It follows from Definition 1 and Z ∈ H ↓w ψ that
Z = Cnh(Z) and [Z] = Cl∩([H]∪{u}) for some u ∈ [¬ψ].
It then follows from u ∈ [Z] ⊆ [ψ] ∪ [μ] and u ∈ [¬ψ] that
u ∈ [μ]. Finally from μ ∈ LH (i.e. its models are closed
under intersection), [H] ⊆ [μ] and u ∈ [μ] we have Z =
Cl∩([H]∪{u}) ⊆ [μ] that is [Z] ⊆ [μ] which implies μ ∈ Z.

�

Let a PMHC .− for H be determined by a selection function
γ. If .− satisfies (H .−pa) and (H

.−8), then by Lemma 4, γ̂ is
transitively relational. Lemma 3 guarantees that γ̂ determines
the same PMHC as γ does, so .− is also determined by γ̂, and
since γ̂ is transitively relational, .− is a transitively relational
PMHC. Combining Theorem 1, Lemma 2 and Lemma 4 we
obtain the representation theorem for TRPMHC.

Theorem 2 Let H be a Horn belief set. .− is a TRPMHC for
H iff .− satisfies (H .−1)–(H .−4), (H .−f), (H .−6), (H .−wr),
(H

.−pa) and (H
.−8).

In subsequent sections we investigate PMHCs whose deter-
mining selection functions are constrained by—in addition to
transitivity and relationality—connectivity and maximality.

4.3 Connectively TRPMHC

As mentioned in Section 3, the relation � is intended to cap-
ture the intuition that X � Y iff Y is at least as plausible as
X . It is reasonable to enforce connectivity on the relation �
so that all pairs of X,Y are comparable by �. A selection
function γ is connectively relational over a belief set K if it
is generated from a connected relation of K via the marking
off identity. We call such a γ a connected selection function.

Connectivity is shown in [Alchourrón et al., 1985] to be
a redundant requirement for selection functions that are tran-
sitively relational. For each transitively relational PMC .−,
there is a transitively and connectively relational PMC that
is identical to .−, and vice versa. This is also the case for
TRPMHC.

Theorem 3 Let H be a Horn belief set and .− be a PMHC
over H , then .− is transitively relational over H iff it is tran-
sitively and connectively relational over H .

In fact, all selection functions for determining TRPMC are
connected [Alchourrón et al., 1985] 3. This is easy to ver-
ify. Assume the transitively relational selection function γ
for a belief set K is not connected thus the transitive rela-
tion � for generating γ is not connected. Let X,Y be the
only remainder sets of K with respect to φ 4 such that neither
X � Y nor Y � X . If .− is the TRPMC determined by γ
then K .−φ =

⋂
γ(H ↓ φ) =

⋂
γ(X,Y ) is undefined, thus

violates the definition of selection function.
However, as illustrated in Example 2, selection functions

for determining TRPMHC need not be connected. Let X,Y
be a pair of weak remainder sets for a Horn belief H . Due
to the closure property, we may not have a Horn formula φ
with respect to which X,Y are the only weak remainder sets
i.e., H ↓w φ = {X,Y }. So, without knowing the relation

3The result only hold for belief set that are finite modulo Cn, as
we assume a finite propositional language, this is always the case.

4By property of remainder set such φ always exists.

between X and Y , the transitive relation for H can still de-
termine a selection function that covers all Horn formulas.

Example 2 Let P = {p, q}, and let Horn belief set H =
Cnh(p ∧ ¬q), then [H] = {p} and [¬(p ∧ ¬q)] = {pq, q, ∅}.
Suppose [X] = Cl∩([H] ∪ {pq}), [Y ] = Cl∩([H] ∪ {q}),
[Z] = Cl∩([H] ∪ {∅}) such that X,Y and Z are closed
under Cnh, then X,Y and Z are weak remainder sets of
H . Assume H ↓w φ = {X,Z}, then [¬φ] = [pq, ∅] and
[φ] = {p, q}. It follows from p ∩ q = ∅ and ∅ �∈ [φ] that
[φ] �= Cl∩([φ]) which implies φ �∈ LH . Thus there is no
Horn formula φ with respect to which X and Z are the only
weak remainder sets of H .

4.4 Maximisingly TRPMHC

As a fundamental principle of the AGM framework, loss
of previous beliefs should be kept to a minimum when-
ever possible. Therefore, preference relations such as those
used in TRPMHC should put more value on a set than
any of its proper subsets. We then say that a relation �
for K is maximised if for all remainder sets X,Y of K,
X ⊂ Y implies X < Y ; it is weak maximised if X ⊂
Y implies X � Y [Hansson, 1999]. A selection function
is called maximisingly relational (weak maximisingly rela-
tional) iff it is generated from a maximised (weak maximised)
relation via the marking off identity. Under propositional
logic, if X,Y are remainder sets of K, then neither X ⊆ Y
nor Y ⊆ X . Therefore the relation over remainder sets of K
is always maximised, leaving (weak) maximality as a vacuous
requirement on TRPMCs. We no longer have this neat prop-
erty with weak remainder sets. As illustrated in Example 1,
weak remainder sets can be proper subsets of one another.
The relation over weak remainder sets may not be maximised.

It is easy to see that for any selection function that is not
weak maximised, its completion is weak maximised. By
Lemma 3, we have, for each pair of selection function and
its completion, that the PMHCs they determine are identi-
cal. So for any selection function γ that is not weak max-
imised there is a weak maximised one that determines the
same PMHC as γ does, and vice versa. Thus weak maximal-
ity is redundant for TRPMHC as well. Unlike weak maxi-
mality, maximality does have some effect on TRPMHC. In
Example 1, if the non-maximised selection function γ is such
that γ(H ↓w (a ∧ b)) = {X1}, then due to the fact that
X1 ⊂ X2, there is no maximised selection function that de-
termines an identical PMHC as γ does. A PMHC determined
by a maximisingly and transitively relational selection func-
tion is abbreviated as MTRPMHC. A MTRPMHC satisfies
the Horn analogue of the relevance postulate, which implies
(H

.−wr).
Theorem 4 Let H be a Horn belief set. .− is a maximised
TRPMHC for H iff .− satisfies (H

.−1)–(H .−4), (H
.−f),

(H
.−6), (H .−pa), (H .−8), and the following postulate:

(H
.−r) If ψ ∈ H \ (H .−φ), then there is some H

′
such that

H
.−φ ⊆ H

′ ⊆ H and φ �∈ Cnh(H
′
) but φ ∈ Cnh(H

′ ∪
{ψ}).
Sketch of proof: By maximality of selection function, weak
remainder sets selected have the maximal property such that
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for φ, ψ in H , if X ∈ γ(H ↓w φ) and ψ �∈ Cnh(X), then
φ ∈ Cnh(X ∪ {ψ}), which handles satisfaction of (H .−r).
In turn (H

.−r) implies maximality of the selection function.
Clearly, if .− is a MTRPMHC, then it is a TRPMHC, but the
converse is not true.

4.5 Connections with AGM Contraction

Given a transitive and connected relation � for a Horn be-
lief set H , we define a relation �� for belief set Cn(H) as
X �� Y iff Horn(X) � Horn(Y ) for X,Y remainder sets
ofCn(H). By Part 1 of Lemma 1,X,Y are remainder sets of
Cn(H) iff Horn(X) and Horn(Y ) are weak remainder sets
of H , so that �� is well defined. Clearly, �� is a relation
over remainder sets of belief set Cn(H). As � is transitive
and connected, so is ��. We require � to be connected as all
selection functions for determining TRPMCs are connected.

Now we establish the explicit relationship between
TRPMHCs and AGM contraction, in particular TRPMC.
Theorem 5 Let .− be a connected TRPMHC for a Horn belief
set H based on �. Let ∼ be a TRPMC for Cn(H) based on
��. Then H .−φ = (Cn(H) ∼ φ) ∩H .
Proof: By the construction of ∼, we have Cn(H) ∼
φ =

⋂
(X1, . . . , Xn) for X1, . . . , Xn ∈ Cn(H) ↓ φ. It

then follows from Part 3 of Lemma 1 and the definition
of �� that H .−φ =

⋂
(Horn(X1), . . . , Horn(Xn)) =

Horn(
⋂
(X1, . . . , Xn)) = Horn(Cn(H) ∼ φ) =

(Cn(H) ∼ φ) ∩H .
�

The theorem highlights the appropriateness of the Horn con-
traction constructed as a connected TRPMHC. A formula is
retained in the Horn contraction iff it is an element of the
Horn belief set and it is retained in the corresponding AGM
contraction. As clarified earlier, for each non-connected
TRPMHC .− there is a connected TRPMHC that performs
identically to .−. Thus we can omit the connectivity require-
ment in Theorem 5, and conclude that TRPMHC retains as
many Horn formulas as its corresponding TRPMC does.

4.6 Loss of Uniqueness

It is shown in [Alchourrón et al., 1985] that all selection func-
tions for determining PMC are completed. Firstly, due to the
following lemma, different selection functions determine dif-
ferent PMCs.

Lemma 5 [Alchourrón et al., 1985] Let K be any belief set
finite modulo Cn, and let γ and γ

′
be selection functions for

K. If γ(K ↓ φ) �= γ
′
(K ↓ φ), then

⋂
γ(K ↓ φ) �= ⋂

γ
′
(K ↓

φ).

But we know a selection function determines the same PMC
as its completion does, so, for this to hold it must be that
the selection function is identical to its completion, that is
it is itself completed. As shown in the following example,
Lemma 5 no longer holds for selection functions that deter-
mine PMHCs, so that, they may not be completed.

Example 3 Continuing with Example 1, let a selection func-
tion γ for H be such that γ(H ↓w (a ∧ b)) = {X1, X5}.
Then

⋂
γ(H ↓w (a ∧ b)) = X1 ∩ X5. Since X1 ⊂ X2

and X5 ⊂ X6, we have
⋂
γ(H ↓w (a ∧ b)) ⊆ X2 and

⋂
γ(H ↓w (a ∧ b)) ⊆ X6. Thus the completion γ̂ is such

that γ̂(H ↓w (a ∧ b)) = {X1, X2, X5, X6} and
⋂
γ̂(H ↓w

(a ∧ b)) = X1 ∩ X5. Note that γ is different from γ̂, yet⋂
γ(H ↓w (a ∧ b)) = ⋂

γ̂(H ↓w (a ∧ b)).
The observation implies that different selection functions

may yield identical TRPMHCs. This is counterintuitive. As
the relation � (and the selection function generated from �)
of a belief set represents an agent’s perspective on what be-
liefs are more plausible, ideally each perspective would have
different effects on the way the contraction is performed.
That is, each relation yields a unique contraction. This
uniqueness property is lost by turning to Horn logic. This is
also evidenced by connectively and maximisingly relational
TRPMHCs since for each non-connected (non-maximised)
selection selection function, there exists a connected (max-
imised) one that determines an identical TRPMHC as the
non-connected (non-maixmised) one does, and vice versa.

5 Related Work

Existing work on Horn contraction falls roughly into two
groups: those focussing on the basic postulates [Booth et
al., 2009; 2010; Delgrande and Wassermann, 2010] and
those focussing on the full set of postulates by taking into
account preference information over remainder sets [Del-
grande, 2008; Zhuang and Pagnucco, 2010b] or over formulas
[Zhuang and Pagnucco, 2010a]. Contractions of the second
group are more sophisticated as we can now make use of the
preference information when they have been made available
in certain forms.

The construction of PMHC does not assume any explicit
preference information. In this respect, PMHC is similar
to the Horn e-Contraction (HEC) studied in [Booth et al.,
2009]. Instead of weak remainder sets, HEC is based on
infra remainder sets. Both notions of Horn remainder set
try to stick to the behaviour of standard remainder sets but
they have different emphases. Weak remainder sets unify
their model theoretic behaviour to that of standard remain-
der sets. Infra remainder sets unify themselves to the con-
vexity property of PMC. This property states that every belief
set that is, by set inclusion, in between the ones obtained by
the two limiting cases of PMC—maxichoice contraction and
full meet contraction—is obtainable by intersection of some
of the remainder sets. As shown in [Delgrande and Wasser-
mann, 2010] neither notion is more expressive or more suit-
able than the other in terms of constructing Horn contrac-
tions. However we find that the notion of weak remainder
set is more adaptable for including preference information to
the construction of Horn contraction. In order to characterise
HEC, we need (H

.−1)–(H .−4), (H .−f) and (H
.−cr):

If ψ ∈ H \ (H .−φ), then there is some H
′

such that
H

.−φ ⊆ H
′

and φ �∈ Cnh(H
′
) but φ ∈ Cnh(H

′ ∪ {ψ}).
(H

.−cr) is the Horn analogue of the core-retainment postu-
late [Hansson, 1999]. Clearly (H

.−cr) follows from (H
.−r),

and since MTRPMHC also satisfies the remaining charater-
ising postulates of HEC, if .− is a MTRPMHCs, then it is a
HEC.

The maxichoice e-contraction (MEC) studied in [Del-
grande, 2008] is essentailly the Horn analogue of a special
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case of TRPMC, in which the relation over remainder sets
(for generating a selection function which in turn determines
the TRPMC) is required to be, in addition to transitive, an-
tisymmetric. Such contractions might be regarded as orderly
maxichoice PMCs. The definition of the Horn remainder set
used in MEC is the same as standard remainder sets but re-
stricted to Horn formulas and Horn derivability. This notion
of Horn remainder set is not as expressive as that of weak re-
mainder set and infra remainder set [Delgrande and Wasser-
mann, 2010]. Every such Horn remainder set is a weak re-
mainder set as well as an infra remainder set, but the con-
verse is not true. Due to this nature of MEC, each MEC is a
PMHC as well as a HEC. In order to characterise MEC we
need (H

.−1)–(H .−4), (H .−f), and (H
.−8e):

If ψ �∈ H
.−(φ ∧ ψ) then H .−(φ ∧ ψ) = H

.−ψ.
The EEHC of [Zhuang and Pagnucco, 2010a] is the Horn

analogue of the epistemic entrenchment based contraction
[Gärdenfors and Makinson, 1988] which assumes an order-
ing over formulas of the belief set. Our TRPMHC super-
sedes EEHC in the sense that for each EEHC .−, there is a
TRPMHC that behaves identically to .− [Zhuang and Pag-
nucco, 2010b] implying that if .− is an EEHC, then it is a
TRPMHC. In order to characterise EEHC we need (H

.−1)–
(H

.−4), (H .−f), (H .−ct), (H .−9) and (H
.−10). The com-

bination of (H .−9) and (H
.−10) gives the Horn analogue of

the condition φ ∨ ψ ∈ K
.−φ iff ψ ∈ K

.−φ [Gärdenfors and
Makinson, 1988].

The representation results for Horn contractions are sum-
marised in Figure 1 where the arrows are pointing to the more
general contractions.

MEC

MTRPMHC

TRPMHC

EEHC

PMHC

HEC

Figure 1: Relationships between Horn contractions.

6 Conclusion and Future Work

In this paper we proposed a fully characterised construc-
tion of the contraction operation under Horn logic, namely
TRPMHC. TRPMHC extends the PMHC in [Delgrande
and Wassermann, 2010] by taking into account prefer-
ence information in the form of an ordering over remain-
der sets. Several variants of TRPMHC are studied, how-
ever, only the TRPMHCs constrained by maximality, that is
MTRPMHC, are distinguishable from TRPMHC. The plausi-
bility of TRPMHC is investigated against AGM contractions

where the results demonstrate that TRPMHCs perform iden-
tically to their corresponding AGM contractions in terms of
Horn formulas.

Existing work on constructing Horn contractions have
utilised preference information represented as orderings over
various notions of remainder sets as in TRPMHC and MEC,
and orderings over formulas as in EEHC. Another classic
approach in defining AGM contractions is based on prefer-
ence information as an ordering over possible worlds [Grove,
1988; Katsuno and Mendelzon, 1992]. So for future work,
we aim to give a model theoretic account of Horn contrac-
tion, in particular for TPMHC. Such model based Horn con-
traction would give a semantics for the TRPMHC in the
same way as the model based contraction in [Grove, 1988;
Katsuno and Mendelzon, 1992] does to TRPMC.
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