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Abstract

Selecting a clustering algorithm is a perplexing
task. Yet since different algorithms may yield dra-
matically different outputs on the same data, the
choice of algorithm is crucial. When selecting a
clustering algorithm, users tend to focus on cost-
related considerations (software purchasing costs,
running times, etc). Differences concerning the
output of the algorithms are not usually considered.
Recently, a formal approach for selecting a cluster-
ing algorithm has been proposed [2]. The approach
involves distilling abstract properties of the input-
output behavior of different clustering paradigms
and classifying algorithms based on these proper-
ties.
In this paper, we extend the approach in [2] into
the hierarchical setting. The class of linkage-based
algorithms is perhaps the most popular class of hi-
erarchical algorithms. We identify two properties
of hierarchical algorithms, and prove that linkage-
based algorithms are the only ones that satisfy both
of these properties.
Our characterization clearly delineates the differ-
ence between linkage-based algorithms and other
hierarchical algorithms. We formulate an intuitive
notion of locality of a hierarchical algorithm that
distinguishes between linkage-based and “global”
hierarchical algorithms like bisecting k-means, and
prove that popular divisive hierarchical algorithms
produce clusterings that cannot be produced by any
linkage-based algorithm.

1 Introduction

Clustering is a fundamental and immensely useful task, with
many important applications. There are many clustering al-
gorithms, and these algorithms often produce different results
on the same data. Faced with a concrete clustering task, a user
needs to choose an appropriate algorithm. Currently, such
decisions are often made in a very ad hoc, if not completely
random, manner. Users are aware of the costs involved in
employing different clustering algorithms, such as running
times, memory requirements, and software purchasing costs.

However, there is very little understanding of the differences
in the outcomes that these algorithms may produce.

Recently, a new approach for selecting a clustering algo-
rithm has been proposed [2]. The approach involves identi-
fying significant properties that distinguish between different
clustering paradigms. By focusing on the input-output be-
haviour of algorithms, these properties shed light on essential
differences between them. Users could then choose desirable
properties based on domain expertise, and select an algorithm
that satisfies these properties.

The study of properties of clustering algorithms has so far
been focused on partitional algorithms ([2], [1], [3], [4]). Par-
titional algorithms produce a single partition of the data.

In this paper, we study the other prominent class of cluster-
ing algorithms, namely hierarchical algorithms. These algo-
rithms output dendrograms, which the user can then traverse
to obtain the desired clustering. Dendrograms provide a con-
venient method for exploring multiple clusterings of the data.
Notably, for some applications the dendrogram itself, not any
clustering found in it, is the desired final outcome. One such
application is found in the field of phylogeny, which aims to
reconstruct the tree of life.

One popular class of hierarchical algorithms is linkage-
based algorithms. These algorithms start with singleton clus-
ters, and repeatedly merge pairs of clusters until a dendro-
gram is formed. This class includes commonly-used al-
gorithms such as single-linkage, average-linkage, complete-
linkage, and Ward’s method.

In this paper, we provide a property-based characterization
of hierarchical linkage-based algorithms. We identify two
properties of hierarchical algorithms that are satisfied by all
linkage-based algorithms, and prove that at the same time no
algorithm that is not linkage-based can satisfy both of these
properties.

The popularity of linkage-based algorithms lead to a com-
mon misconception that linkage-based algorithms are syn-
onymous with hierarchical algorithms. We show that even
when the internal workings of algorithms are ignored, and
the focus is placed solely on their input-output behaviour,
there are natural hierarchical algorithms that are not linkage-
based. We define a large class of divisive algorithms that
includes the popular bisecting k-means algorithm, and show
that no linkage-based algorithm can simulate the input-output
behaviour of any algorithm in this class.
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2 Previous Work

There is some previous work on distinguishing linkage-based
algorithms based on their properties in the partitional set-
ting. The k-stopping criterion is used to formulate linkage-
based algorithms in the partitional setting, where instead of
constructing a dendrogram, clusters are merged until a given
number of clusters is formed. Ben-David and Bogah-Zedah
[3] provide three properties that uniquely identify single-
linkage with the k-stopping criterion. More recently, Acker-
man, Ben-David and Loker [1] characterize linkage-based al-
gorithms with this stopping criterion in terms of three natural
properties. These results enable a comparison of the input-
output behaviour of (a partitional variant of) linkage-based
algorithms with other partitional algorithms.

In this paper, we characterize hierarchical linkage-based
algorithms, which map data sets to dendrograms. Our charac-
terization is independent of any stopping criterion. It enables
the comparison of linkage-based algorithms to other hierar-
chical algorithms, and clearly delineates the differences be-
tween the input/output behaviour of linkage-based algorithms
from all other hierarchical algorithms.

3 Definitions

A distance function is a symmetric function d : X × X →
R+, such that d(x, x) = 0 for all x ∈ X . The data sets that
we consider are pairs (X, d), where X is some finite domain
set and d is a distance function over X . We say that a distance
function d over X extends distance function d′ over X ′ ⊆ X
if d′ ⊆ d.

A k-clustering C = {C1, C2, . . . , Ck} of a data set X is
a partition of X into k non-empty disjoint subsets of X (so,
∪iCi = X). A clustering of X is a k-clustering of X for
some 1 � k � |X|. For a clustering C, let |C| denote the
number of clusters in C. For x, y ∈ X and clustering C of
X , we write x ∼C y if x and y belong to the same cluster in
C and x �∼C y, otherwise.

Given a rooted tree T where the edges are oriented away
from the root, let V (T ) denote the set of vertices in T , and
E(T ) denote the set of edges in T . We use the standard inter-
pretation of the terms leaf, descendent, parent, and child.

A dendrogram over a data set X is a binary rooted tree
where the leaves correspond to elements of X . In addition,
every node is assigned a level, using a level function (η);
leaves are placed at level 0, parents have higher levels than
their children, and no level is empty. This definition repre-
sents the common graphical depiction of a dendrogram. For-
mally,

Definition 1 (dendrogram). A dendrogram over (X, d) is
a triple (T,M, η) where T is a binary rooted tree, M :
leaves(T ) → X is a bijection, and η : V (T ) → {0, . . . , h}
is onto (for some h ∈ Z

+ ∪ {0}) such that

1. For every leaf node x ∈ V (T ), η(x) = 0.

2. If (x, y) ∈ E(T ), then η(x) > η(y).

Given a dendrogram D = (T,M, η) of X , we define a
mapping from nodes to clusters C : V (T ) → 2X by C(x) =
{M(y) | y is a leaf and a descendent of x}. If C(x) = A,

then we write v(A) = x. We think of v(A) as the vertex (or
node) in the tree that represents cluster A.

We say that A ⊆ X is a cluster in D if there exists a node
x ∈ V (T ) so that C(x) = A. We say that a clustering C =
{C1, . . . , Ck} of X ′ ⊆ X is in D if Ci is in D for all 1 �
i � k. Note that a dendrogram may contain clusterings that
do not partition the entire domain, and ∀i �= j, v(Ci) is not a
descendent of v(Cj), since Ci ∩ Cj = ∅.
Definition 2 (sub-dendrogram). A sub-dendrogram of
(T,M, η) rooted at x ∈ V (T ) is a dendrogram (T ′,M ′, η′)
where

1. T ′ is the subtree of T rooted at x

2. For every y ∈ leaves(T ′), M ′(y) = M(y).

3. For all y, z ∈ V (T ′), η′(y) < η′(z) if and only if η(y) <
η(z).

Definition 3 (Isomorphisms). A few notions of isomor-
phisms of structures are relevant to our discussion.

1. We say that (X, d) and (X ′, d′) are isomorphic domains,
denoted (X, d) ∼=X (X ′, d′), if there exists a bijection
φ : X → X ′ so that d(x, y) = d′(φ(x), φ(y)) for all
x, y ∈ X .

2. We say that two clusterings (or partitions) C of some do-
main (X, d) and C ′ of some domain (X ′, d′) are isomor-
phic clusterings, denoted (C, d) ∼=C (C ′, d′), if there ex-
ists a domain isomorphism φ : X → X ′ so that x ∼C y
if and only if φ(x) ∼C′ φ(y).

3. We say that (T1, η1) and (T2, η2) are isomorphic trees,
denoted (T1, η1) ∼=T (T1, η1), if there exists a bijection
H : V (T1) → V (T2) so that

(a) for all x, y ∈ V (T1), (x, y) ∈ E(T1) if and only if
(H(x), H(y)) ∈ E(T2), and

(b) for all x ∈ V (T1), η1(x) = η2(H(x)).

4. We say that D1 = (T1,M1, η1) of (X, d) and D2 =
(T2,M2, η2) of (X ′, d′) are isomorphic dendrograms,
denoted D1

∼=D D2, if there exists a domain isomor-
phism φ : X → X ′ and a tree isomorphism H :
(T1, η1) → (T2, η2) so that for all x ∈ leaves(T1),
φ(M1(x)) = M2(H(x)).

4 Hierarchical and Linkage-Based

Algorithms

Hierarchical algorithms are those that output dendrograms,
while linkage-based algorithms are hierarchical algorithms
that can be simulated by repeatedly merging close clusters.
In this section, we formally define these two types of algo-
rithms.

4.1 Hierarchical algorithms

In addition to outputing a dendrogram, we require that hier-
archical clustering functions satisfy a few natural properties.
Definition 4 (Hierarchical clustering function). A hierar-
chical clustering function F is a function that takes as input a
pair (X, d) and outputs a dendrogram (T,M, η). We require
such a function, F , to satisfy the following:
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1. Representation Independence: Whenever (X, d) ∼=X

(X ′, d′), then F (X, d) ∼=D F (X ′, d′).
2. Scale Invariance: For any domain set X and any pair of

distance functions d, d′ over X , if there exists c ∈ R+

such that d(a, b) = c · d′(a, b) for all a, b ∈ X , then
F (X, d) = F (X, d′).

3. Richness: For all data sets {(X1, d1), . . . (Xk, dk)}
where Xi ∩ Xj = ∅ for all i �= j, there exists a dis-
tance function d̂ over

⋃k
i=1 Xi that extends each of the

di’s (for i � k), so that the clustering {C1, . . . , Ck} is
in F (

⋃k
i=1 Xi, d̂).

The last condition, richness, requires that by manipulating
between-cluster distances every clustering can be produced
by the algorithm. Intuitively, if we place clusters sufficiently
far apart, then the resulting clustering should be in the den-
drogram.

In this work we focus on distinguishing linkage-based al-
gorithms from among hierarchical algorithms.

4.2 Linkage-based algorithms

The class of linkage-base algorithms includes some of the
most popular hierarchical algorithms, such as single-linkage,
average-linkage, complete-linkage, and Ward’s method.

Every linkage-based algorithm has a linkage function that
can be used to determine which clusters to merge at every
step of the algorithm.
Definition 5 (Linkage function). A linkage function is a
function

� : {(X1, X2, d) | d over X1 ∪X2} → R
+

such that,
1. � is representation independent: For all (X1, X2) and

(X ′
1, X

′
2), if ({X1, X2}, d) ∼=C ({X ′

1, X
′
2}, d′) then

�(X1, X2, d) = �(X ′
1, X

′
2, d

′).
2. � is monotonic: For all (X1, X2, d) if d′ is a distance

function over X1 ∪ X2 such that for all x ∼{X1,X2} y,
d(x, y) = d′(x, y) and for all x �∼{X1,X2} y, d(x, y) �
d′(x, y) then �(X1, X2, d

′) � �(X1, X2, d).
For technical reasons, we shall assume that a linkage function
has a countable range. Say, the set of non-negative algebraic
real numbers1.

For example, the single-linkage linkage function is
�SL(A,B, d) = mina∈A,b∈B d(a, b) and the average-linkage

linkage function is �AL(A,B, d) =
∑

a∈A,b∈B d(a,b)

|A|·|B| .
For a dendrogram D and clusters A and B in D, if

parent(v(A)) = parent(v(B)) = x, then let parent(A,B) =
x, otherwise parent(A,B) = ∅.

We now define linkage-based functions.
Definition 6 (linkage-based function). A hierarchical clus-
tering function F is linkage-based if there exists a linkage
function � so that for all (X, d), F (X, d) = (T,M, η) where

1Imposing this restriction simplifies our main proof, while not
having any meaningful impact on the scope of clusterings consid-
ered.

η(parent(A,B)) = m if and only if �(A,B) is minimal in
{�(S, T ) : S ∩ T = ∅, η(parent(S)) � m, η(parent(T )) �
m}.

Note that the above definition implies that there exists a
linkage function that can be used to simulate the output of
F . We start by assigning every element of the domain to a
leaf node. We then use the linkage function to identify the
closest pair of nodes (wrt the clusters that they represent),
and repeatedly merge the closest pairs of nodes that do yet
have parents, until only one such node remains.

4.3 Locality

We introduce a new property of hierarchical algorithms. Lo-
cality states that if we select a clustering from a dendrogram
(a union of clusters that appear in the dendrogram), and run
the hierarchical algorithm on the data underlying this clus-
tering, we obtain a result that is consistent with the original
dendrogram.

Definition 7 (Locality). A hierarchical function F is local
if for all X , d, and X ′ ⊆ X , whenever clustering C =
{C1, C2, . . . , Ck} of X ′ is in F (X, d) = (T,M, η), then for
all 1 � i � k

1. Cluster Ci is in F (X ′, d/X ′) = (T ′,M ′, η′), and the
sub-dendrogram of F (X, d) rooted at v(Ci) is also a
sub-dendrogram of F (X ′, d/X ′) rooted at v(Ci).

2. For all x, y ∈ X ′, η′(x) < η′(y) if and only if η(x) <
η(y).

Locality is often a desirable property. Consider for exam-
ple the field of phylogeny, which aims to reconstruct the tree
of life. If an algorithm clusters phylogenetic data correctly,
then if we cluster any subset of the data, we should get results
that are consistent with the original dendrogram.

4.4 Outer consistency

A basic requirement from a good clustering is that it sepa-
rate dissimilar elements. Given successfully clustered data, if
points that are already assigned to different clusters are drawn
even further apart (or become even less similar), then it is nat-
ural to expect that, when clustering the resulting new data set,
such points will not share the same cluster.

Given a dendrogram produced by a hierarchical algorithm,
we select a clustering C from a dendrogram and pull apart
the clusters in C (thus making the clustering C more pro-
nounced). If we then run the algorithm on the resulting data,
we can expect that the clustering C will occur in the new den-
drogram.

Outer consistency is a relaxation of the above property,
making this requirement only on a subset of clusterings.

For a cluster A in a dendrogram D, the A-cut of D is a
clustering in D represented by nodes on the same level as
v(A) or directly below v(A). Formally,

Definition 8 (A-cut). Given a cluster A in a dendrogram
D = (T,M, η), the A-cut of D is cutA(D) = {C(u) | u ∈
V (T ), η(parent(u)) > η(v(A)) and η(u) � η(v(A)).}.

Note that for any cluster A in D of (X, d), the A-cut is a
clustering of X , and A is one of the clusters in that clustering.
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A distance function d′ over X is (C, d)-outer consistent if
d′(x, y) = d(x, y) whenever x ∼C y, and d′(x, y) � d(x, y)
whenever x �∼C y.

Definition 9 (Outer-Consistency). A hierarchical function
F is outer-consistent if for all (X, d) and any cluster A in
F (X, d), if d′ is a (cutA(F (X, d)), d)-outer-consistent vari-
ant then cutA(F (X, d)) = cutA(F (X, d′)).

5 Main result

The following is our characterization of linkage-based hierar-
chical algorithms.

Theorem 1. A hierarchical function F is linkage-based if
and only if F is outer-consistent and local.

The proof comprises the rest of this section.

Proof. We begin by showing that every local, outer-
consistent hierarchical function F is linkage-based. To prove
this direction, we show that there exists a linkage function �
so that when � is used in Definition 6 then for all (X, d) the
output is F (X, d). Due to the representation independence of
F , one can assume w.l.o.g., that the domain sets over which
F is defined are (finite) subsets of the set of natural numbers,
N.

Definition 10 (The (pseudo-) partial ordering <F ). We
consider triples of the form (A,B, d), where A ∩ B =
∅ and d is a distance function over A ∪ B. Two
triples, (A,B, d) and (A′, B′, d′) are equivalent, denoted
(A,B, d) ∼= (A′, B′, d′) if they are isomorphic as clusterings,
namely, if ({A,B}, d) ∼=C ({A′, B′}, d′).

<F is a binary relation over equivalence classes of such
triples, indicating that F merges a pair of clusters ear-
lier than another pair of clusters. Formally, denoting ∼=-
equivalence classes by square brackets, we define it by:
[(A,B, d)] <F [(A′, B′, d′)] if there exists a distance func-
tion d∗ over X = A ∪ B ∪ A′ ∪ B′ so that F (X, d∗) =
(T,M, η) such that

1. d∗ extends both d and d′ (namely, d ⊆ d∗ and d′ ⊆ d∗),

2. There exist (x, y), (x, z) ∈ E(T ) such that C(x) = A ∪
B, C(y) = A, and C(z) = B

3. For all D ∈ {A′, B′}, either D ⊆ A ∪ B, or D ∈
cutA∪BF (X, d∗).

4. η(v(A′)) < η(v(A∪B)) and η(v(B′)) < η(v(A∪B)).

For the sake of simplifying notation, we will omit the
square brackets in the following discussion.

In the following lemma we show that if (A,B, d) <F

(A′, B′, d′), then A∪B cannot have a lower level than A′∪B′.

Lemma 1. Given a local and outer-consistent hierarchial
function F , whenever (A,B, d) <F (A′, B′, d′), then there
is no data set (X, d) so that η(v(A′ ∪ B′) � η(v(A ∪ B)),
where F (X, d) = (T,M, η).

Proof. By way of contradiction, assume that such (X, d) ex-
ists. Let X ′ = A ∪ B ∪ A′ ∪ B′. Since (A,B, d) <F

(A′, B′, d′), there exists d′ that satisfies the conditions of Def-
inition 10.

Consider F (X ′, d/X ′). By locality, the sub-dendrogram
rooted at v(A ∪ B) contains the same nodes in both
F (X ′, d/X ′) and F (X, d), and similarly for the sub-
dendrogram rooted at v(A′ ∪ B′). In addition, the relative
level of nodes in these subtrees is the same.

By pushing A away from B, and A′ away from B′ it is
easy to see that there exists a d∗ over X ′ that is both an
({A ∪ B,A′ ∪ B′}, d/X ′)-outer consistent variant and an
({A∪B,A′, B′}, d′)-outer consistent variant. Note that {A∪
B,A′∪B′} is an (A∪B)-cut of F (X ′, d/X ′). Therefore, by
outer-consistency, cutA∪B(F (X ′, d∗)) = {A′ ∪B′, A∪B}.

Since d′ satisfies the conditions in Definition 10,
cutA∪BF (X, d′) = {A ∪ B,A′, B′}. By outer-consistency
we get that cutA∪B(F (X ′, d∗)) = {A′ ∪ B′, A,B}. Since
these sets are all non-empty, this is a contradiction.

We now define equivalence with respect to <F .

Definition 11 (∼=F ). [(A,B, d)] and [(A′, B′, d′)] are F -
equivalent, denoted [(A,B, d)] ∼=F [(A′, B′, d′)], if there ex-
ists a distance function d∗ over X = A∪B ∪A′ ∪B′ so that
F (A ∪B ∪A′ ∪B′, d∗) = (T, η) where

1. d∗ extends both d and d′,
2. There exist (x, y), (x, z) ∈ E(T ) such that C(x) = A ∪

B, and C(y) = A, and C(z) = B,

3. There exist (x′, y′), (x′, z′) ∈ E(T ) such that C(x′) =
A′ ∪B′, and C(y′) = A′, and C(z′) = B′, and

4. η(x) = η(x′)

(A,B, d) is comparable with (C,D, d′) if they are <F

comparable or (A,B, d) ∼=F (C,D, d′).
Whenever two triple are F -equivalent, then they have the

same <F or ∼=F relationship with all other triples.

Lemma 2. Given a local, outer-consistent hierarchical
function F , if (A,B, d1) ∼=F (C,D, d2), then for any
(E,F, d3), if (E,F, d3) is comparable with both (A,B, d1)
and (C,D, d2) then

• if (A,B, d1) ∼=F (E,F, d3) then (C,D, d2) ∼=F

(E,F, d3)

• if (A,B, d1) <F (E,F, d3) then (C,D, d2) <F

(E,F, d3)

The proof is omitted to save space.
Note that <F is not transitive. To show that <F can be

extended to a partial ordering, we first prove the following
“anti-cycle” property.

Lemma 3. Given a hierarchical function F that is lo-
cal and outer-consistent, there exists no finite sequence
(A1, B1, d1) <F · · · <F (An, Bn, dn) <F (A1, B1, d1).

Proof. Without loss of generality, assume that such a se-
quence exists. By richness, there exists a distance function d
that extends each of the di where {A1∪B1, A1∪B2, . . . , An∪
Bn} is a clustering in F (

⋃
i Ai ∪Bi, d) = (T,M, η).

Let i0 be so that η(v(Ai0 ∪ Bi0) � η(v(Aj ∪ Bj)) for all
j �= i0. By the circular structure with respect to <F , there ex-
ists j0 so that (Aj0 , Bj0 , dj0) <F (Ai0 , Bi0 , di0). This con-
tradicts Lemma 1.
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The following is a well-known result.

Lemma 4. For any cycle-free, anti-symmetric relation P ( , )
over a finite or countable domain D there exists an embed-
ding h into R+ so that for all x, y ∈ D, if P (x, y) then
h(x) < h(y).

Finally, we define our linkage function by embedding the∼=F -equivalence classes into the positive real numbers in an
order preserving way, as implied by applying Lemma 4 to
<F . Namely, �F : {[(A,B, d)] : A ⊆ N, B ⊆ N, A ∩
B = ∅ and d is a distance function over A ∪ B} → R

+ so
that [(A,B, d)] <F [(A′, B′, d′)] implies �F [(A,B, d)] <
�F [(A,B, d)].

Lemma 5. The function �F is a linkage function for any
hierarchical function F that satisfies locality and outer-
consistency.

Proof. Since �F is defined on ∼=F -equivalence classes, repre-
sentation independence of hierarchical functions implies that
�F satisfies condition 1 of Definition 5. The function �F sat-
isfies condition 2 of Definition 5 by lemma 6.

Lemma 6. Consider d1 over X1 ∪ X2 and d2
an ({X1, X2}, d1)-outer-consistent variant, then
(X1, X2, d2) �<F (X1, X2, d1), whenever F is local
and outer-consistent.

Proof. Assume that there exist such d1 and d2 where
(X1, X2, d2) <F (X1, X2, d1). Let d3 over X1∪X2 be a dis-
tance function that is both an ({X1, X2}, d1)-outer-consistent
variant and d2 an ({X1, X2}, d3)-outer-consistent variant.

Set (X ′
1, X

′
2, d2) = (X1, X2, d2) and (X ′′

1 , X
′′
2 , d3) =

(X1, X2, d3).
Let X = X1∪X2∪X ′

1∪X ′
2∪X ′′

1 ∪X ′′
2 . By richness, there

exists a distance function d∗ that extends di for all 1 � i � 3
so that {X1 ∪ X2, X

′
1 ∪ X ′

2, X
′′
1 ∪ X ′′

2 } is a clustering in
F (X, d∗) = (T, η).

Now, (X ′
1, X

′
2, d2) <F (X1, X2, d1), by locality and

outer-consistency, we get that η(v(X ′
1 ∪ X ′

2)) < η(v(X1 ∪
X2)). We consider the level (η value) of v(X ′′

1 ∪ X ′′
2 ) with

respect to the levels of v(X ′
1 ∪X ′

2) and v(X1 ∪X2).
The proof proceeds by analyzing the following three cases:

η(v(X ′′
1 ∪ X ′′

2 )) � η(v(X ′
1 ∪ X ′

2)), η(v(X ′′
1 ∪ X ′′

2 )) �
η(v(X1 ∪X2)) and η(X1 ∪X2) < η(X ′′

1 ∪X ′′
2 ) < η(X ′

1 ∪
X ′

2). The details of these cases are omitted for brevity.

The following Lemma concludes the proof that every local,
out-consistent hierarchical algorithm is linkage-based.

Lemma 7. Given any hierarchical function F that satisfies
locality and outer-consistency, let �F be the linkage function
defined above. Let L�F denote the linkage-based algorithm
that �F defines. Then L�F agrees with F on every input data
set.

Proof. Let (X, d) be any data set. We prove that at every level
s, the nodes at level s in F (X, d) represent the same clusters
as the nodes at level s in L�F (X, d). In both F (X, d) =

(T,M, η) and L�F (X, d) = (T ′,M ′, η′), level 0 consists of
|X| nodes each representing a unique elements of X .

Assume the result holds below level k. We show that pairs
of nodes that do not have parents below level k have minimal
�F value only if they are merged at level k in F (X, d).

Consider F (X, d) at level k. Since the dendrogram has no
empty levels, let x ∈ V (T ) where η(x) = k. Let x1 and x2 be
the children of x in F (X, d). Since η(x1), η(x2) < k, these
nodes also appear in L�F (X, d) below level k, and neither
node has a parent below level k.

If x is the only node in F (X, d) above level k − 1, then
it must also occur in L�F (X, d). Otherwise, there exists
a node y1 ∈ V (T ), y1 �∈ {x1, x2} so that η(y1) < k
and η(parent(y1)) � k. Let X ′ = C(x) ∪ C(y1). By
locality, cutC(x)F (X ′, d/X ′) = {C(x), C(y1)}, y1 is be-
low x, and x1 and x2 are the children of x. Therefore,
(x1, x2, d) <F (x1, y1, d) and �F (x1, x2, d) < �F (x1, y1, d).
Similarly, �F (x1, x2, d) < �F (x2, y1, d)

Assume that there exists y2 ∈ V (T ), y2 �∈ {x1, x2, y1} so
that η(y2) < k and η(parent(y2)) � k. If parent(y1) =
parent(y2) and η(parent(y1)) = k, then (x1, x2, d) ∼=F

(y1, y2, d) and so �F (x1, x2, d) = �F (y1, y2, d).
Otherwise, let X ′ = C(x) ∪ C(y1) ∪ C(y2). By rich-

ness, there exists a distance function d∗ that extends d/C(x)
and d/(C(y1) ∪ C(y1)), so that {C(x), C(y1) ∪ C(y2)} is in
F (X ′, d∗). Note that by locality, the node v(C(y1) ∪ C(y2))
has children v(C(y1)) and v(C(y2)) in F (X ′, d∗). We can
separate C(x) from C(y1) ∪ C(y2) in both F (X ′, d∗) and
F (X ′, d/X ′) until both are equal. Then by outer-consistency,
cutC(x)F (X ′, d/X ′) = {C(x), C(y1), C(y2)} and by locality
y1 and y2 are below x. Therefore, (x1, x2, d) <F (y1, y2, d)
and so �F (x1, x2) < �F (y1, y2).

The other direction of the proof is straight forward, and so
the proof of the following Lemma is omitted to save space.

Lemma 8. Every linkage-based hierarchical clustering func-
tion satisfies locality and outer-consistency.

6 Divisive algorithms

Our formalism provides a precise sense in which linkage-
based algorithms make only local considerations, while many
divisive algorithms inevitably take more global considera-
tions into account. This fundamental distinction between
these paradigms can be used to help select a suitable hier-
archical algorithm for specific applications.

This distinction also implies that divisive algorithms can-
not be simulated by any linkage-based algorithm, showing
that the class of hierarchical algorithms is strictly richer than
the class of linkage-based algorithm (even when focusing
only on the input-output behaviour of algorithms).

A 2-clustering function F maps a data set (X, d) to a 2-
partition of X . An F-Divisive algorithm is a divisive algo-
rithm that uses a 2-clustering function F to decide how to
split nodes. Formally,

Definition 12 (F-Divisive). A hierarchical clustering func-
tion is F-Divisive wrt a 2-clustering function F , if for
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all (X, d), F(X, d) = (T,M, η) such that for all x ∈
V (T )/leaves(T ) with children x1 and x2, F(C(x)) =
{C(x1), C(x2)}.

Note that Definition 12 does not place restrictions on the
level function. This allows for some flexibility in the levels.
Intuitively, it doesn’t force an order on splitting nodes.

The following property represents clustering functions that
utilize contextual information found in the remainder of the
data set when partitioning a subset of the domain.

Definition 13 (Context sensitive). F is context-sensitive
if there exist distance functions d ⊂ d′ such that
F({x, y, z}, d) = {{x}, {y, z}} and F({x, y, z, w}, d′) =
{{x, y}, {z, w}}.

Many 2-clustering functions, including k-means, min-sum,
and min-diameter are context-sensitive (see Corollary 2).
Natural divisive algorithms, such as bisecting k-means (k-
means-Divisive), rely on context-sensitive 2-clustering func-
tions.

Whenever a 2-clustering algorithm is context-sensitive,
then the F-divisive function is not local.

Theorem 2. If F is context-sensitive then the F-divisive
function is not local.

Proof. Since F is context-sensitive, there exists a distance
functions d ⊂ d′ so that {x} and {y, z} are the children
of the root in F({x, y, z}, d), while in F({x, y, z, w}, d′),
{x, y} and {z, w} are the children of the root and z and w
are the children of {z, w}. Therefore, {{x, y}, {z}} is clus-
tering in F({x, y, z, w}, d′). Then {{x, y}, {z}} is a cluster-
ing in F-divisive({x, y, z}, d). But cluster {x, y} is not in
F({x, y, z}, d) , therefore F-divisive is not local.

Applying Theorem 1, we get:

Corollary 1. If F is context-sensitive, then the F-divisive
function is not linkage-based.

We say that two hierarchical algorithms strongly disagree
if they may output dendrograms with different clusterings.
Formally,

Definition 14. Two hierarchical functions F0 and F1 strongly
disagree if there exists a data set (X, d) and a clustering C
of X so that C is in Fi(X, d) but not in F1−i(X, d), for some
i ∈ {0, 1}.

Theorem 3. If F is context-sensitive, then the F-divisive
function strongly disagrees with every linkage-based func-
tion.

Proof. Let L be any linkage-based function. Since
F is context-sensitive, there exists distance functions
d ⊂ d′ so that F({x, y, z}, d) = {{x}, {y, z}} and
F({x, y, z, w}, d′) = {{x, y}, {z, w}}.

Assume that L and F-divisive produce the same out-
put on ({x, y, z, w}, d′). Therefore, since {{x, y}, {z}}
is a clustering in F-divisive({x, y, z, w}, d′), it is also a
clustering in L({x, y, z, w}, d′). Since L is linkage-based,
by Theorem 1, L is local. Therefore, {{x, y}, {z}} is a
clustering in L({x, y, z}, d′). But it is not a clustering in
F-divisive({x, y, z}, d).

Corollary 2. The divisive algorithms that are based on the
following 2-clustering functions strongly disagree with every
linkage-based function: k-means, min-sum, min-diameter.

Proof. Set x = 1, y = 3, z = 4, and w = 6 to show that
these 2-clustering functions are context-sensitive. The result
follows by Theorem 3.
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