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Abstract

In this paper, we study the problem of learning a
metric and propose a loss function based metric
learning framework, in which the metric is esti-
mated by minimizing an empirical risk over a train-
ing set. With mild conditions on the instance dis-
tribution and the used loss function, we prove that
the empirical risk converges to its expected coun-
terpart at rate of root-n. In addition, with the as-
sumption that the best metric that minimizes the
expected risk is bounded, we prove that the learned
metric is consistent. Two example algorithms are
presented by using the proposed loss function based
metric learning framework, each of which uses a
log loss function and a smoothed hinge loss func-
tion, respectively. Experimental results suggest the
effectiveness of the proposed algorithms.

1 Introduction

It is essential to choose a suitable metric for learning ma-
chines, e.g., k-means based clustering and nearest-neighbor
based classification. A good metric helps to encode the
geometry information of the instance distribution, and thus
improves the performance of learning algorithms. In re-
cent years, several metric learning algorithms have been pro-
posed, e.g., neighbourhood component analysis [Goldberger
et al., 2004], metric learning via large margin nearest neigh-
bor [Weinberger et al., 2006], information-theoretic metric
learning method [Davis et al., 2007], robust metric learn-
ing [Zha et al., 2009] and semisupervised metric learning
[Baghshah and Shouraki, 2009]. They share a similar in-
trinsic idea that a good metric keeps the similar instances
close and dissimilar ones apart, and show promising perfor-
mances empirically. However,it is not easy to study their sta-
tistical properties, e.g., the consistency of the learned met-
ric. Closely related to metric learning, several algorithms
were developed for subspace learning [Bian and Tao, 2008;
2011], with various intuitions. Again, theoretical analyses
are omitted.

In this paper, we propose a new metric learning framework,
i.e., loss function based metric learning, in which the metric
is estimated by minimizing an empirical risk over a training
set. This framework enjoys one important advantage that the

learned metric is consistent when the cardinality of the train-
ing set goes infinite. On the contrary, it is difficult to prove the
consistency of existing metric learning algorithms and there is
no results show that these algorithms are consistent. To prove
the consistency of the loss function based metric learning, we
first show that the empirical risk converges to its expected
counterpart at rate O(1/

√
n), and then we show the learned

metric that minimizes the empirical risk converges (at least
equivalently) to the best metric that minimizes the expected
risk, given the assumption that the best metric is bounded.

We then develop two example algorithms by using the pro-
posed loss function based metric learning framework. The
first one uses the log loss for calculating the empirical risk,
while the second one is based on the hinge loss but in a
smoothed form (to achieve the computational efficiency). In
both algorithms, we show that their objective functions are
convex and each has a Lipschitz gradient. Therefore, we can
optimize both objective functions iteratively based on a fast
gradient method, which has the optimal convergence rate at
O(1/k2), wherein k is the number of iteration steps.

To evaluate the effectiveness of the proposed metric learn-
ing algorithms, we compare them against popular metric
learning algorithms, e.g., NCA [Goldberger et al., 2004],
LMNN [Weinberger et al., 2006], RCA [Shental et al., 2002],
and [Xing et al., 2002]. On six data sets from the UCI ma-
chine learning repository [Asuncion and Newman, 2007], the
nearest neighbor based classification shows that the proposed
log loss and smoothed hinge loss based metric learning algo-
rithms achieve competitive performance on all experiments.

2 Loss Function based Metric Learning

We observe a set of independent and identically-distributed
(i.i.d.) instances Z = { (xi, yi) | i = 1, 2, ..., n} that are
drawn from an unknown joint distribution P (x, y), which is
defined on X ×Y , wherein X is a measurable space and Y is
a finite discrete set. Define similar and dissimilar sets

S : (xi, xi′ ) ∈ S if yi = yi′ ,

D : (xi, xi′ ) ∈ D if yi �= yi′ .

By defining a metric M , which is a positive semidefinite ma-
trix, the distance between two instances xi and xi′ is given
by

d(xi, xi′ ) =
√
(xi − xi′)TM(xi − xi′ ). (1)
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Metric learning finds a metric M that encodes the side in-
formation defined by instance pairs in S and D. In particular,
we expect that the learned metric M makes distances between
samples of pairs in S small and distances between samples of
pairs in D large.

2.1 Empirical Risk

Introducing random variable r such that r = 1 if (x, x′) ∈ S
and r = −1 if (x, x′) ∈ D, then we can use the following
risk for metric learning

R�(f) =

∫
�(rf(x, x′))dP (x, x′, r), (2)

where the unknown distribution P (x, x′, r) is defined on the
space X 2 × {−1, 1} and f(x, x′, r) is a decision function.

Given the training data sampled from a joint unknown dis-
tribution P (x, y), but not directly from P (x, x′, r). It is nec-
essary to consider P (x, x′, r) being induced from P (x, y): to
obtain a triplet (x, x′, r) sampled from P (x, y), we first inde-
pendently sample (x, y) and (x′, y′), and then determine r by
checking values of y and y′. Thus, based on the training set
Z , we can construct a corresponding set Z ′ for P (x, x′, r),
i.e., Z ′ = {(xi, xi′ , rii′ )| 1 ≤ i < i′ ≤ n}. It is worth em-
phasizing that Z ′ is not i.i.d. for P (x, x′, r). For example,
even two triplets (xi, xi′ , rii′ ) and (xj , xj′ , rjj′ ) can be de-
pendent if any two indeces in a quadruple (i, i′, j, j′) are the
same. This example shows that data directly sampled from
P (x, x′, r) are not i.i.d. either.

Therefore, given the empirical risk defined by

R̂�(f,Z ′) =
2

(n− 1)n

∑
i<i′

�(rii′f(xi, xi′)), (3)

it is theoretically necessary to answer the following two ques-
tions: 1) does this empirical risk converge to the expected risk
(2)? and 2) if so, how can we use this empirical risk to obtain
a consistent estimation of a metric?

2.2 Metric Estimation

To estimate the metric by minimizing the empirical risk, it
is necessary to specify the decision function f and the loss
function �. According to [Maurer, 2005], one possible choice
of f is

f(x, x′; c,M) = c− (x− x′)TM(x− x′), (4)

where M is a metric and c is a positive variable denoting the
decision threshold, i.e., we predict r = 1 if f > 0, or r = −1
otherwise. The choice of f implies an essential difference be-
tween metric learning and classification: the former predicts
on an instance pair (x, x′) while the later predicts on a sin-
gle instance x. Regarding the loss function �, there are many
choices, e.g., the log loss and the hinge loss. We develop two
example algorithms in Section 4, and consider a general loss
function for subsequent theoretical analyses.

By combining the decision function (4) and a general loss
function �, the best metric M� associated with the decision
threshold c� that minimizes the expected risk (2) are given by

(M�, c�) = argmin
M,c

R�(f). (5)

Property 2.1. If the second order moment of the marginal
distribution P (x) is finite, i.e., E‖x‖2 < ∞, then for any
convex loss function �(u) that is upper bounded by a0|u| +
b0, (both a0 and b0 are positive constants), the expected risk
R�(f) is convex and well defined on {M, c|M � 0, c ≥ 0}.

Proof. For any fixed (M, c), we have

�(rf) ≤ a0|rf |+ b0

= a0
∣∣c− (x− x′)TM(x− x′)

∣∣+ b0

≤ 2a0x
TMx+ 2a0x

′TMx′ + a0c+ b0.

(6)

Because x and x′ are independent, and E‖x‖2 < ∞, we
have R�(f) = E�(rf) < ∞, i.e., it is well defined on
{M, c|M � 0, c ≥ 0}. In additoin, f is linear in (M, c) and
�(u) is convex, so �(rf) is convex jointly on (M, c). Finally,
since the expectation operation is linear, R�(f) = E�(rf) is
also convex. This completes the proof.

The theoretical analyses in the rest of the paper are based
on the following assumption.

Assumption 2.2. The best metric M� and the decision
threshold c� are bounded, i.e., 0 
 M� 
 αI and 0 ≤ c ≤ α,
wherein α is a sufficiently large positive constant.

This assumption is natural for metric learning, because a
well-posed problem should have a bounded metric with a
bounded decision threshold. Let Q = { (M, c) |0 
 M� 

αI, 0 ≤ c ≤ α}, and then the empirical estimation for (5) can
be redefined by

(M̂, ĉ) = arg min
(M,c)∈Q

R̂�(f,Z ′). (7)

Similar to the proof for Property 2.1., we can show that

R̂�(f,Z ′) is convex, and thus (7) has the global optimal solu-
tion. In the rest of the paper, we refer to (7) as the loss func-
tion based metric learning framework. According to Property
2.1., any loss function � that satisfies the condition

�(u) < a0|u|+ b0 (8)

can be used in this framework. Section 4 shows two examples
based on the log loss and a smoothed hinge loss, respectively.

3 Consistency

In this section, we study the consistency of the proposed loss
function based metric learning framework. We first prove that
the empirical risk (3) converges to the expected risk (2) at rate
O(1/

√
n) under Assumption 2.2, wherein n is the cardinality

of the training set. We then prove that the metric M̂ learned
by minimizing the empirical risk (3) is consistent.

3.1 Convergence of the Empirical Risk

According to discussions above, the empirical risk (3) is not
an independent sum over the training set Z ′. Thus, the proof
for its convergence to the expected risk is nontrivial. In this

subsection, we prove that the empirical risk R̂�(f,Z ′) con-
verges to R�(f) in probability at rate O(1/

√
n). First, we

have the following theorem.
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Theorem 3.1. Given the loss function � that satisfies the con-
dition (8), and the fourth order moment of the marginal dis-
tribution P (x) is finite, i.e., E‖x‖4 < ∞, then

max
(M,c)∈Q

E[R̂�(f,Z ′)−R�(f)]
2 = O(n−1), n → ∞ (9)

Proof. In the rest of the proof, we denote �(rii′f(xi, x
′
i)) by

�ii′ .
First, since the expectation operation is linear, we have

EP (x,x′,r)R̂�(f,Z ′) = R�(f). (10)

Then, the second moment of the empirical risk is given by

EP (x,x′,r)[R̂�(f,Z ′)]2

= E

[
2

(n− 1)n

∑
i<i′

�ii′

]2

= E

⎡
⎣ 4

(n− 1)2n2

∑
i<i′, j<j′

�ii′�jj′

⎤
⎦ .

(11)

Define three index sets, I0 = {(i, i′, j, j′)|1 ≤ i < i′ ≤
n, 1 ≤ j < j′ ≤ n, )}, I1 = {(i, i′, j, j′)|(i, i′, j, j′) ∈
I0, and i, i′, j, j′are different from each other}, and I2 =
I0 − I1. It can be calculated that the cardinalities of I1 and
I2 are n(n − 1)(n − 2)(n − 3)/4 and n(n − 1)(4n − 6)/4,
respectively.

Next, we split the summation in (11) into two terms T1 and
T2, i.e.,

T1 =
4

(n− 1)2n2

∑
(i,i′,j,j′)∈I1

E [�ii′�jj′ ] , (12)

T2 =
4

(n− 1)2n2

∑
(i,i′,j,j′)∈I2

E [�ii′�jj′ ] . (13)

For T1, the independence between �ii′ and �jj′ leads to

T1 =
4

(n− 1)2n2

∑
(i,i′,j,j′)∈I1

[E�]
2

=
4

(n− 1)2n2

n(n− 1)(n− 2)(n− 3)

4
[R�(f)]

2

= [R�(f)]
2 +O(K1n

−1),

(14)

where K1 = max(M,c)∈QR�(f). The existence of K1 is

guaranteed by the fact that R�(f) is convex and non-negative
function and Q = { (M, c) |0 
 M 
 αI, 0 ≤ c ≤ α} is a
closed set.

According to (6), on Q = { (M, c) |0 
 M 
 αI, 0 ≤
c ≤ α}, we have

� ≤ 2a0x
TMx+ 2a0x

′TMx′ + a0c+ b0

≤ 2a0αx
Tx+ 2a0αx

′Tx+ a0α+ b0.
(15)

Furthermore, since E‖x‖4 < ∞, E(�2) can then be upper
bounded by a sufficiently large constant K2,

E(�2) ≤ E(2a0αx
Tx+ 2a0αx

′Tx+ a0α+ b0)
2 < K2.

(16)

Thus, we have

|T2| = 4

(n− 1)2n2

∣∣∣∣∣∣
∑

(i,i′,j,j′)∈I2

E [�ii′�jj′ ]

∣∣∣∣∣∣
≤ 4

(n− 1)2n2

∑
(i,i′,j,j′)∈I2

E

[
�2ii′ + �2jj′

2

]

≤ 4

(n− 1)2n2

n(n− 1)(4n− 6)

4
E�2

= O(K2n
−1).

(17)

Combining (10), (14) and (17), we have

E[R̂�(f,Z ′)−R�(f)]
2 = O((K1 +K2)n

−1). (18)

Since K1 and K2 are constants and do not depend on (M, c),
we have (9). This completes the proof.

By Chebyshev’s inequality, (9) immediately gives the fol-
lowing Corollary.

Corollary 3.2. The empirical risk converges to the expected
risk at rate root-n, i.e.,

R̂�(f,Z ′)−R�(f) = Op(1/
√
n), ∀(M, c) ∈ Q (19)

3.2 Consistency of the Learned Metric

We have proved that for any function f specified by (M, c),
the empirical risk (3) converges to the expected risk (2). Next,
the following proof for Theorem 3.3 shows that the learned

distance metric M̂ by minimizing the empirical risk con-
verges to the best distance metric M� that minimizes the ex-
pected risk.

Theorem 3.3. Given the conditions in Theorem 3.1, the
learned (M̂, ĉ) by minimizing the empirical risk (7) is con-
sistent, i.e.,

(M̂, ĉ)
P−→ (M�, c�). (20)

Proof. According to (7), (M̂, ĉ) minimizes the empirical risk

R̂�(f,R), and thus we have

R̂�(M̂, ĉ) ≤ R̂�(M
�, c�) (21)

Similarly, (M�, c�) minimizes the expected risk R�(f), and
thus it gives

R�(M
�, c�) ≤ R�(M̂, ĉ) (22)

Combining (21) and (22), we have

0 ≤R�(M̂, ĉ)−R�(M
�, c�)

=R�(M̂, ĉ)− R̂�(M̂, ĉ) + R̂�(M̂, ĉ)−R�(M
�, c�)

≤R�(M̂, ĉ)− R̂�(M̂, ĉ) + R̂�(M
�, c�)−R�(M

�, c�)
(23)

Therefore,

E[R�(M̂, ĉ)−R�(M
�, c�)]2

≤ 2E[R�(M̂, ĉ)− R̂�(M̂, ĉ)]2

+ 2E[R̂�(M̂
�, ĉ�)−R�(M

�, c�)]2

≤ 4 max
(M,c)∈Q

E[R̂�(M, c)−R�(M, c)]2

(24)
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By (9) and Chebyshev’s inequality, we have

R�(M̂, ĉ)
P−→ R�(M

�, c�) (25)

When R�(M, c) is strongly convex, (25) implies (20). When
R�(M, c) is weakly convex, (M�, c�) is an equivalent solu-

tion set, and thus (25) implies that (M̂, ĉ) converges to this
equivalent solutions set. This completes the proof.

4 Example Algorithms

We develop two example algorithms by using the proposed
loss function based metric learning framework. They use the
log loss and a smoothed hinge loss [Rennie, 2005], respec-
tively. For each example, we show that its empirical risk has
a Lipschitz gradient, and thus can be optimized by using a
fast algorithm with the optimal convergence rate at O(1/k2),
wherein k is the number of iteration steps.

To simplify formulations in following subsections, we in-
troduce a block-diagonal matrix X = diag(M, c), and thus
the decision function can be rewritten as

f(x, x′; c,M) = 〈A,X〉, (26)

where 〈A,B〉 = tr(ATB) and

A = diag
(−(x− x′)(x− x′)T , 1

)
. (27)

Furthermore, the training set Z ′ = {(xi, xi′ , rii′)| 1 ≤
i < i′ ≤ n} contains m = n(n − 1)/2 triplets. For
convenience, we replace the paired index (i, i′) with a sin-
gle index j, and thus Z ′ = {(xj , x

′
j , rj)| 1 ≤ j ≤ m}.

Each rj is associated with a block-diagonal matrix Aj =
diag

(−(xj − x′
j)(xj − x′

j)
T , 1

)
.

4.1 The Log Loss based Example

In this example, we use the log loss function

�(u) = ln (1 + exp(−u)) , (28)

which has a gradient |∇�(u)| ≤ 1 and satisfies the condition
(8), i.e., �(u) < |u|+ 1.

We replace the loss function in (7) with (28), and then the
empirical risk can be rewritten as

min
X∈Q

R̂(X) =
1

m

m∑
j=1

ln
(
1 + e−rj〈Aj ,X〉

)
. (29)

According to Property 4.1 shown below, we know that R̂(X)
in (29) has a Lipschitz gradient with the parameter L =
(1/4m)

∑m

j=1 ‖Aj‖2F .

Property 4.1. For any direction Δ ∈ S(p+1)×(p+1), where p
is the dimension of an instance x, we have

〈∇2R̂(X)Δ,Δ〉 ≤ L‖Δ‖2F , (30)

where L = (1/4m)
∑m

j=1 ‖Aj‖2F .

Proof. First, the gradient of R̂(X) is given by

∇R̂(X) =
1

m

m∑
j=1

−rAj

1 + er〈Aj,X〉
. (31)

Define function φ(ε) = 〈∇R̂(X + εΔ),Δ〉 with ε > 0, and
then we have

φ(ε)− φ(0) = 〈∇R̂(X + εΔ)−∇R̂(X),Δ〉

=
1

m

m∑
j=1

〈 −rAj

1 + er〈Aj,X+εΔ〉
− −rAj

1 + er〈Aj,X〉
,Δ

〉

=
1

m

m∑
j=1

〈
−rAj(1 − eεr〈Aj,Δ〉)(

1 + er〈Aj,X+εΔ〉
) (

1 + e−r〈Aj,X〉
) ,Δ

〉
.

(32)
Therefore,

〈∇2R̂(X)Δ,Δ〉 = φ′(0) = lim
ε→0

φ(ε)− φ(0)

ε

=
1

m

m∑
j=1

r2〈Aj ,Δ〉2(
1 + er〈Aj ,X〉

) (
1 + e−r〈Aj,X〉

)
≤ 1

m

m∑
j=1

r2〈Aj ,Δ〉2
4

≤ 1

4m

m∑
j=1

‖Aj‖2F ‖Δ‖2F .

(33)

This completes the proof.

The log loss based empirical risk R̂(X) is convex and has
a Lipschitz gradient, so we can obtain the optimal solution
of (29) by using the improved first-order method [Nesterov,
2004]. It has been proved that this method achieves the opti-
mal convergence rate at O(1/k2), wherein k is the number of
iteration steps. Below, we show the optimization procedure
for each iteration step in three stages.

Stage 1 We solve a standard first-order problem defined by

X1
k = arg min

X∈Q

L

2
‖X−Xk‖2F + 〈∇R̂(Xk), X−Xk〉, (34)

which utilizes the gradient of the solution Xk =

diag(Mk, ck) at the current iteration step. Note that ∇R̂(Xk)
can be calculated by using (31) and it is block-diagonal. The
problem (34) is equivalent to

X1
k = arg min

X∈Q

L

2
‖X − Y 1

k ‖2F , (35)

where Y 1
k is block-diagonal and it is given by

Y 1
k = diag

(
Mk − ∇R̂(Mk)

L
, ck − ∇R̂(ck)

L

)
. (36)

According to (35), we have 1) the two diagonal blocks M and
c in X are not coupled, so M1

k and c1k in X1
k can be obtained

independently; and 2) it is invariant to rotation, so it can be
reduced to an optimization on a diagonal matrix by rotating
it to the eigen-space of Y 1

k . This equivalent problem is easy
to deal with. We show the solution directly and omit details.
To obtain M1

k , we conduct eigen-decomposition on the first
block of Y 1

k and then we have(
Mk − ∇R̂(Mk)

L

)
=

∑
i

λiξiξ
T
i . (37)
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According to the constraint 0 
 M 
 αI in Q, we have

M1
k =

∑
i∈I

λiξiξ
T
i , (38)

where I = { i |0 ≤ λi ≤ α}. For c1k, since 0 ≤ c ≤ α, we
have

c1k = min
(
max

(
0, ck − L−1∇R̂(ck)

)
, α

)
. (39)

Stage 2 We solve another minimization that combines all the
gradients in the previous iterations and makes use of a prox-
function pp(X) for the primal feasible set Q

X2
k = arg min

X∈Q

L

σp

pp(X)+

k∑
i=0

αi〈∇R̂(Xi), X−Xi〉, (40)

where the weighting parameter αi = (i + 1)/2 according to
[Nesterov, 2004] and pp(X) is required to be strongly convex
with the parameter σp. We choose the prox-function as

pp(X) = ‖X‖2F , (41)

which vanishes at X0 = O and has the convexity parameter
σp = 2. Similar to the method used to solve (34), we can get

X2
k = diag(M2

k , c
2
k) by

M2
k =

∑
i∈I

σiζiζ
T
i , (42)

where I = { i |0 ≤ σi ≤ α} and {σi, ζi} are the correspond-
ing eigenvalues and eigenvectors of

−L−1
k∑

i=0

αi∇R̂(Xi) =
∑
i

σiζiζ
T
i , (43)

and

c2k = min

(
max

(
0,−L−1

k∑
i=0

αi∇R̂(ci)

)
, α

)
. (44)

Stage 3 Xk+1 = diag(Mk+1, ck+1) for the next iteration step
is given by the weighted combination

Xk+1 = τkX
1
k + (1− τk)X

2
k , (45)

where it is suggested that τk = (k + 1)/(k + 3) [Nesterov,
2004]. Algorithm 1 summarizes the above procedure.

4.2 The Smoothed Hinge Loss Case

In the second example, we utilize the smoothed hinge loss
(Rennie 2005), which is defined by

�sh(u) =

⎧⎪⎨
⎪⎩

0.5− u, u < 0

0.5(1− u)2, 0 ≤ u ≤ 1

0, u > 1.

(46)

Its gradient is given by

∇�sh(u) =

⎧⎨
⎩

− 1, u < 0

u− 1, 0 ≤ u ≤ 1

0, u > 1.

(47)

Algorithm 1 Loss function based metric learning

Input: The training set Z ′ = {(xj , x
′
j , rj)|1 ≤ j ≤ m}

Output: The metric M and decision threshold c
For k = 0, 1, 2, ...

- Compute R̂(Xk) by (28) for log loss, or by (48) for the
smoothed hinge loss

- Compute ∇R̂(Xk) by (31) for the log loss, or by (49)
for the smoothed hinge loss

- Update X1
k = diag(M1

k , c
1
k) by (38) and (39)

- Update X2
k = diag(M2

k , c
2
k) by (42) and (44)

- Update Xk+1 = ((k+1)/(k+3))X1
k +(2/(k+3))X2

k

Until |R̂(Xk+1)− R̂(Xk)| < ε

The smoothed hinge loss satisfies the condition (8) by
|�(u)| ≤ |u| + 0.5. With the smoothed hinge loss, the em-
pirical risk is given by

R̂(X) =
1

m

m∑
j=1

�sh (rj〈Aj , X〉) , (48)

and its gradient is

∇R̂(X) =
1

m

m∑
j=1

∇�sh (rj〈Aj , X〉) rjAj . (49)

The following property shows that the empirical risk (48) has
a Lipschitz gradient (the proof is similar to the one for Prop-
erty 4.1).

Property 4.2. For any direction Δ ∈ S(p+1)×(p+1), where p
is the dimension of the instance x, we have

〈∇2R̂(X)Δ,Δ〉 ≤ L‖Δ‖2F , (50)

where L = (1/m)
∑m

j=1 ‖Aj‖2F .

Since (48) has a Lipschitz gradient with L =
(1/m)

∑m
j=1 ‖Aj‖2F , we can solve it by using the same it-

erative procedure and Algorithm 1 as for the log loss case.

5 Experiments

In this section, we evaluate the effectiveness of the pro-
posed example algorithms, i.e., the log loss based met-
ric learning algorism (LLML) and the smoothed hinge
loss based metric learning algorithm (sHLML), by compar-
ing them against three popular metric learning algorithms,
i.e., the distance metric learning method (DML) proposed
in [Xing et al., 2002], neighborhood component analysis
[Goldberger et al., 2004] (NCA), and large margin near-
est neighbor method [Weinberger et al., 2006] (LMNN).
We only consider the fully supervised learning case, in
which all labels of the instances in training set are known,
and thus we have the similarity or dissimilarity informa-
tion of all instance pairs from the training set. However,
it is worth emphasizing that the proposed example algo-
rithms can readily deal with the case that only side infor-
mation [Xing et al., 2002] on the training set is known,
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Figure 1: Performance evaluation on data sets from the UCI
machine learning repository. Each method is represented by
a box with whiskers. The box has lines at the lower quartile,
median, and upper quartile values of the classification error
rates on twenty independent experiments, and the error rate
outside 1.5 times of the interquartile range from the ends of
the box is regarded as whisker.

i.e., the labels of the instances in the training set are un-
known but only the similarity and the dissimilarity informa-
tion between (not necessarily all) instance pairs is known.
Six data sets from the UCI Machine Learning Repository
[Asuncion and Newman, 2007] are used in our experiments,
including ”BalanceScale”,“Flare”,“Glass”,“Iris”,“Soybean”
and “Wine”. On each data set, we randomly select 20 per-
cents data as the training set and use the rest as the test set. A
metric is learned by using different algorithms from the train-
ing data, and then the nearest neighbour classification with
the learned metric is conducted on the test data. Twenty in-
dependent experiments on each data set are conducted, and
the classification error rate of different metric learning algo-
rithms are shown in Figure 1 by using the boxplot. From the
results, one can see that the proposed loss function based al-
gorithms have competitive performances on all six data set.
In particular, significant improvements are achieved on the
“BalanceScale”, “Soybean”, and “Wine” data sets.

6 Conclusion

In this paper, we have proposed the loss function based metric
learning framework, in which the metric is estimated by min-
imizing an empirical risk. We proved that under natural as-
sumptions on the instance distribution and the used loss func-
tion, the learned metric is consistent. Based on this frame-
work, we have developed two example algorithms, which are
based on the log loss and a smoothed hinge loss, respectively.

Since the empirical risk of each algorithm has a Lipschitz gra-
dient, they can be optimized with the optimal convergence
rate. Sufficient experimental results on the data sets from
UCI machine learning repository confirmed their effective-
ness compared against popular metric learning algorithms.
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