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Abstract

Sequence classification is central to many
practical problems within machine learning.
Distances metrics between arbitrary pairs of
sequences can be hard to define because se-
quences can vary in length and the information
contained in the order of sequence elements is
lost when standard metrics such as Euclidean
distance are applied. We present a scheme that
employs a Hidden Markov Model variant to
produce a set of fixed-length description vec-
tors from a set of sequences. We then de-
fine three inference algorithms, a Baum-Welch
variant, a Gibbs Sampling algorithm, and a
variational algorithm, to infer model parame-
ters. Finally, we show experimentally that the
fixed length representation produced by these
inference methods is useful for classifying se-
quences of amino acids into structural classes.

1 Introduction

The need to operate on sequence data is prevalent in
a variety of real world applications ranging from pro-
tein/DNA classification, speech recognition, intrusion
detection and text classification. Sequence data can be
distinguished from the more-typical vector representa-
tion in that the length of sequences within a dataset can
vary and that the order of symbols within a sequence car-
ries meaning.

For sequence classification, a variety of strategies, de-
pending on the problem type, can be used to map se-
quences to a representation that can be handled by tradi-
tional classifiers. A simple technique involves selecting a
fixed number of elements from the sequence and then us-
ing those elements as a fixed-length vector in the classifi-
cation engine. In another technique, a small subsequence
length, �, is selected, and a size M � vector is constructed
containing the counts of all length � subsequences from
the original sequence. This vector can then be used for
classification [Leslie et al., 2002]. A third method for
classifying sequence data requires only a positive definite
mapping defined over pairs of sequences rather than any
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direct mapping of sequences to vectors. This strategy,
known as the kernel trick, is often used in conjunction
with support vector machines (SVMs) and allows for a
wide variety of sequence similarity measurements to be
employed.

Hidden Markov Models (HMM) [Rabiner and Juang,
1986; Eddy, 1998] have a rich history in sequence data
modeling (in speech recognition and bioinformatics ap-
plications) for the purposes of classification, segmenta-
tion, and clustering. HMMs’ success is based on the
convenience of their simplifying assumptions. The space
of probable sequences is constrained by assuming only
pairwise dependencies over hidden states. Pairwise de-
pendencies also allow for a class of efficient inference
algorithms whose critical steps build on the Forward-
Backward algorithm [Rabiner and Juang, 1986].

We present an HMM variant over a set of sequences,
with one transition matrix per sequence, as a novel al-
ternative for handling sequence data. After training, the
per-sequence transition matrices of the HMM variant are
used as fixed-length vector representations for each as-
sociated sequence. The HMM variant is also similar to a
number of topic models, and we describe it in the con-
text of Latent Dirichlet Allocation [Blei et al., 2003].
We then describe three methods to infer the parameters
of our HMM variant, explore connections between these
methods, and provide rationale for the classification be-
havior of the parameters derived through each.

We perform a comprehensive set of experiments, eval-
uating the performance of our method in conjunction
with support vector machines, to classify sequences
of amino acids into structural classes (fold recognition
and remote homology detection problem [Rangwala and
Karypis, 2006]). The combination of these methods,
their interpretations, and their connections to prior work
constitutes a new twist on classic ways of understand-
ing sequence data that we believe is valuable to anyone
approaching a sequence classification task.

2 Problem Statement

Given a set of N sequences, we would like to find a set of
fixed-length vectors, A1...N , that, when used as input to a
function f(A), maximize the probability of reconstruct-
ing the original set of sequences. Under our scheme,
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f(A) is a Hidden Markov Model variant with one tran-
sition matrix, An, assigned to each sequence, and a sin-
gle emissions matrix, B, and start probability vector, a,
for the entire set of sequences. By maximizing the like-
lihood of the set of sequences under the HMM variant
model, we will also find the set of transition matrices that
best represent our set of sequences. We further postulate
that this maximum likelihood representation will achieve
good classification results if each sequence is later asso-
ciated with a meaningful label.
2.1 Model Description

We define a Hidden Markov Model variant that repre-
sents a set of sequences. Each sequence is associated
with a separate transition matrix, while the emission ma-
trix and initial state transition vector are shared across all
sequences. We use the value of each transition matrix as
a fixed-length representation of the sequence. We define
the parameters and notation for the model in Table 1.

Parameter Description

N the number of sequences
Tn the length of sequence n
K the number of hidden symbols
M the number of observed symbols
ai start state probabilities, where i is indexed by the value

of the first hidden state
Anij transition probabilities, where n is an index of a training

sequence, i the originating hidden state, and j the
destination hidden state

Bim emission probabilities, where i indicates the hidden
state and m the observed symbol associated with the
hidden state

znt the hidden state at position t in sequence n
xnt the observed symbol at position t in sequence n

Table 1: HMM Variant model parameters

The joint probability of the model is shown below:
(1) p(x, z|a,A,B) =

N∏
n=1

⎛
⎝azn1

⎛
⎝Tn∏

t=2

An znt−1 znt

⎞
⎠

⎛
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t=1

Bznt xnt

⎞
⎠

⎞
⎠

This differs from the standard hidden Markov model
only in the addition of a transition matrix, An (high-
lighted in bold in Equation 1), for each sequence, where
the index n indicates a sequence in the training set. Un-
der the standard HMM, a single transition matrix, A,
would be used for all sequences.

To regularize the model, we further augment the ba-
sic HMM by placing Dirichlet priors on a, each row of
A, and each row of B. The prior parameters are the
uniform Dirichlet parameters γ, α, and β for a, A, and
B respectively. The probability of the model with pri-
ors is shown below, where the prior probabilities are the
first three terms in the product below and take the form
Dir(x; a,K) =

Γ(Ka)

Γ(a)K

∏
i x

a−1
i :

(2) p(x, z, a, A,B|α, β, γ) =(
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⎠
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⎠

One potential difficulty that could be expected in
classifying simple HMMs by transition matrix is that
the probability of a sequence under an HMM does not
change under a permutation of the hidden states. This
problem is avoided when we force each sequence to
share an emissions matrix, which locks the meaning of
each transition matrix row to a particular emission distri-
bution. If the emission matrix were not shared, then two
HMMs with permuted hidden states could have transi-
tion matrices that with large Euclidean distances. For
instance, the following HMMs have different transition
matrices, but the probability of an observed sequence is
the same under each:

HMM1: A1 =

[
.9 .1
.9 .1

]
, B1 =

[
.9 .1
.1 .9

]

HMM2: A2 =

[
.1 .9
.1 .9

]
, B2 =

[
.1 .9
.9 .1

]
However, a Euclidean distance between their two tran-

sition matrices, A1 and A2 is large.

3 Background

3.1 Mixtures of HMMs

Smyth introduces a mixture of HMMs in [Smyth, 1997]
and presents an initialization technique that is similar to
our model in that an individual HMM is learned for each
sequence, but differs from our model in that the emis-
sion matrices are not shared between HMMs. In [Smyth,
1997], these initial N models are used to compute the
set of all pairwise distances between sequences, defined
as the symmetrized log likelihood of each element of the
pair under the other’s respective model. Clusters are then
computed from this distance matrix, which are used to
initialize a set of K < N HMMs where each sequence is
associated with one of K labels. Smyth notes that while
the log probability of a sequence under an HMM is an
intuitive distance measure between sequences, it is not
intuitive how the parameters of the model are meaningful
in terms of defining a distance between sequences. In this
research, we demonstrate experimentally that the transi-
tion matrix of our model is useful for sequence classifica-
tion when combined with standard distance metrics and
tools.

3.2 Topic Models

Simpler precursors of LDA [Blei et al., 2003] and pLSI
[Hofmann, 1999], which represent an entire corpus of
documents with a single topic distribution vector, are
very similar to the basic Hidden Markov Model, which
assigns a single transition matrix to the entire set of se-
quences that are being modeled. To extend the HMM to
a pLSI analogue, all that is needed is to split the single
transition matrix into a per-sequence transition matrix.
To extend this model to an LDA analogue, we must go
a step further and attach Dirichlet priors to the transition
matrices, as in our model.

Inference of the LDA model (Figure 1a) on a corpus
of documents learns a matrix of document-topic proba-
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(a)

(b)

Figure 1: Plate diagrams of the (a) LDA model, expanded to show each word

separately and the (b) HMM variant. The model parameters in the LDA model

are defined as follows: K - number of topics, φk - a vector of word probabilities

given topic k, β - parameters of the Dirichlet prior of φk , θn - a vector of topic

probabilities in document n, α - parameters of the Dirichlet prior of θn. A row of

the matrix B in the HMM variant has exactly the same meaning as a topic-word

vector, φk , in the LDA model.

bilities. A row of this matrix, sometimes described as a
mixed-membership vector, can be viewed as a measure-
ment of how a given document is composed from the
set of topics. In our HMM variant (Figure 1b), a single
transition matrix, An, can be thought of as the analogue
to a document-topic matrix row and can be viewed as
a measurement of how a sequence is composed of pairs
of adjacent symbols. The LDA model also includes a
“topic-word” matrix, which indicates the probability of
a word given a topic assignment. This matrix has the
same meaning as the emissions matrix, B, in the HMM
variant.

The Fisher kernel [Jaakkola and Haussler, 1999] and
the Probabilistic Product Kernel [Jebara et al., 2004]
(PPK), are principled methods that allow probabilistic
models to be incorporated into SVM kernels. The HMM
variant is similar to these methods in that it uses latent in-
formation from a generative model as input to a discrim-
inative classifier. It differs from these methods, however,
both in which portions of the generative model that are
incorporated into the discriminative classifier and in the
assumptions about how differences in generating distri-
butions comparisons between training examples.

4 Learning the model parameters

4.1 Baum-Welch

A well-known method for learning HMM model param-
eters is the Baum-Welch algorithm. The Baum-Welch
algorithm is an expectation maximization algorithm for
the standard HMM model, and the basic algorithm is eas-

ily modified to learn the multiple transition matrices of
our variant. The parameter updates shown below con-
verges to a maximum a posteriori (MAP) estimate of
p(z, a,A,B|x, γ, α, β) [Rabiner and Juang, 1986]:

ai ∝
∑
n

fni(1)bni(1) + γ − 1(3)

A
(new)
nij ∝

Tn∑
t=2

fni(t − 1)AnijBjxtbnj(t) + α − 1(4)

B
(new)
im ∝

∑
n

∑
t:xt=m

fni(t)bnj(t) + β − 1(5)

where f and b are the forward and backward recur-
sions defined below:

fni(t) =

{∑
j fnj(t − 1)AnjiBixt , t > 1

aiBix1 , t = 1
(6)

bni(t) =

{∑
j AnijBjxt+1

bnj(t + 1), t < Tn

1
K , t = Tn

(7)

The complexity of the Baum-Welch-like algorithm for
our variant is identical to the complexity of Baum-Welch
for the standard HMM. The update for Aij in the original
HMM involves summing over

∑
n Tn terms, while the

update for a single Anij is a sum over Tn terms, making
the total number of terms over all the An’s in our variant,∑

n Tn, the same number as the original algorithm.

4.2 Gibbs Sampling

Two Gibbs sampling schemes are commonly used to in-
fer Hidden Markov Model parameters [Scott, 2002]. Un-
like the Baum-Welch algorithm which returns a MAP es-
timate of the parameters, these sampling schemes allow
the expectation of the parameters to be computed over
the posterior distribution p(z, a,A,B|x, γ, α, β).

In the Direct Gibbs sampler (DG), hidden states and
parameters are initially chosen at random, then new hid-
den states are sampled using the current set of parame-
ters:

p(z
(new)
ti |zt−1, zt+1) ∝ Azt−1iBixtAizt+1

(8)

In the Forward Backward sampler (FB), the initial set-
tings and parameter updates are the same as the DG
scheme, but the hidden states are sampled in order from
Tn down to 1 using values from the forward recur-
sion. Specifically, each hidden state znt is sampled given
znt+1 = j from a multinomial with parameters

p(z
(new)
nTn

|xn1:Tn ) ∝ fni(Tn)(9)

p(z
(new)
nt |xn1:Tn , z

(new)
nt+1 ) = p(z

(new)
nt |xn1:t, z

(new)
nt+1 )

∝ fni(t)Anij , t < Tn(10)

In both algorithms, after the hidden states are sampled,
parameters are sampled from Dirichlet conditional distri-
butions, shown for A below, where I(ω) = 1 if ω is true
and 0 otherwise:

p(Anij |zn, α) = Dir(
Tn∑
t=2

I(znt−1 = i)I(znt = j) + α)(11)

The FB sampler has been shown to mix more quickly
than the DG sampler, especially in cases where adjacent
hidden states are highly correlated [Scott, 2002]. We
therefore use the FB sampler in our implementation.
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4.3 Variational Algorithm

Another approach for inference of the HMM variant
parameters is through variational techniques. We em-
ploy a mean field variational algorithm that follows
a similar pattern as EM. When the variational update
steps are run until convergence, Kullback-Leibler diver-
gence between the variational distribution, q(z, a,A,B),
and the model’s conditional probability distribution,
p(z, a,A,B|x, γ, α, β), is minimized. The transition
matrices returned by the variational algorithm are the ex-
pectations of those matrices under the variational distri-
bution. Thus, like the Gibbs sampling algorithm, the pa-
rameters returned by the variational algorithm approxi-
mate the expectations of the parameters under the condi-
tional distribution.

Our mean field variational approximation is shown be-
low:

(12) q(z, a, A,B) = q(a)
N∏

n=1

K∏
i=1

q(Ani)
K∏

i=1

q(Bi)
∏
nt

q(znt)

=

(
Γ(

∑
i γ̃i)∏

i Γ(γ̃i)

∏
i

a
γ̃i−1
i

)⎛
⎝∏

ni

Γ(
∑

j α̃nij)∏
j Γ(α̃nij)

∏
j

A
α̃nij−1
nij

⎞
⎠

(∏
i

Γ(
∑

m β̃im)∏
m Γ(β̃im)

∏
m

B
β̃im−1
im

)∏
nti

h
znti
nti

with variational parameters hnti, which approximate
each znti, and α̃nij , β̃im, and γ̃i, which can be thought
of as Dirichlet parameters approximating α, β, and γ.

When we maximize the variational free energy with
respect to the variational parameters, we obtain the fol-
lowing update equations, where Ψ(x) = d log Γ(x)

dx :

(13) α̃nij =
∑
t

hnt−1ihntj + α

β̃im =
∑

nt:xt=m

hnti + β(14)

γ̃i =
∑
n

hn1i + γ(15)

(16) hnti ∝ exp

(∑
i′

hnt−1i′

⎛
⎝Ψ(α̃ni′i) − Ψ(

∑
j

α̃ni′j)

⎞
⎠+

∑
j

hn t+1 j

⎛
⎝Ψ(α̃nij)−Ψ(

∑
j′

α̃nij′ )

⎞
⎠+

(
Ψ(β̃ixnt )−Ψ(

∑
m

β̃im)

))
,

Notice that the update for hnti depends only on the
adjacent h’s, hnt−1i and hnt+1i as well as the expecta-
tions of the transition probabilities from the adjacent h’s
and the expectation of the emission probabilities from
the current hnti. This mean field algorithm can therefore
be understood as an equivalent of the Direct Gibbs sam-
pling method except that at subsequent time steps inter-
actions occur between variational parameters rather than
through the sampled values of z. A complete derivation
of the variational algorithm is included on the authors’
website1.

1http://www.cs.gmu.edu/~mlbio/ijcai11

7 Class categories, SCOP 1.67, 25%
Alg/K 5 10 15 20

Baum Welch 0.61 0.64 0.65 0.63
Gibbs Sampling 0.61 0.65 0.66 0.68

Variational 0.60 0.63 0.60 0.60
25 Fold categories, SCOP 1.67, 25%

Alg/K 5 10 15 20

Baum Welch 0.56 0.59 0.59 0.58
Gibbs Sampling 0.56 0.58 0.59 0.61

Variational 0.54 0.57 0.59 0.58
27 Fold categories, SCOP 1.67, 40%

Alg/K 5 10 15 20

Baum Welch 0.58 0.60 0.55 0.57
Gibbs Sampling 0.60 0.63 0.65 0.67

Variational 0.58 0.58 0.59 0.59
37 Superfamily categories, SCOP 1.67, 40%

Alg/K 5 10 15 20
Baum Welch 0.59 0.63 0.63 0.61

Gibbs Sampling 0.59 0.62 0.64 0.63

Variational 0.59 0.57 0.58 0.57

Table 2: AUC results from all of the multi-class SVM experiments are displayed. The

best performing algorithm, the best performing setting of K, and the best combination of K

and algorithm is marked in bold. The Gibbs-Sampling-derived representation most frequently

returned the best AUC score on the majority of the datasets.

5 Experimental Setup

5.1 Protocol

To evaluate our fixed-length representation scheme, for
each dataset (described in Section 5.2), we created three
sets of fixed-length representations per trial over ten tri-
als by running each of the three inference algorithms:
(i) Baum-Welch, (ii) Gibbs Sampling, and (iii) the mean
field variational algorithm, on the entire set of input data.
We varied the number of hidden states, K, from 5 to 20
in increments of 5. This procedure created a total of 120
(3×10×4) fixed-length representations for each dataset.

The fixed-length vector data was then used as input to
a support vector machine (SVM) classifier 2. We used
the SVM to either perform either multiway classifica-
tion on the dataset under the Crammer-Singer [Crammer
and Singer, 2002] construction or the one-versus-rest ap-
proach, where a binary classifier was trained for each of
the classes.

We compare classification results from our model with
results from the Spectrum(2) kernel for all experiments.
The Spectrum(�) kernel is a string kernel whose vector
representation is the set of counts of substrings of ob-
served symbols length � in a given string [Leslie et al.,
2002]. For the one-versus rest experiments, we compare
our results to more biologically sensitive kernels for pro-
tein classification, described in Rangwala et. al [Rang-
wala and Karypis, 2005].

5.2 Protein Datasets

The Structural Classification of Proteins (SCOP)
[Murzin et al., 1995] database categorizes proteins into
a multilevel hierarchy that captures commonalities be-
tween protein structure at different levels of detail. To
evaluate our representation, we ran sets of protein classi-

2We used SVM-light and SVM-struct for classification
(http://www.cs.cornell.edu/People/tj/svm_light/) [Joachims,
1999].
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fication experiments on the three top levels of the SCOP
taxonomy: class, fold, and superfamily. Our datasets,
which were obtained from previous studies [Rangwala
and Karypis, 2006; Kuang et al., 2004], were derived
from either the SCOP 1.67 or the SCOP 1.53 versions
and filtered at 25% and 40% pairwise sequence identi-
ties. A protein sequence dataset filtered at 25% iden-
tity will have no two sequences with more than 25% se-
quence identity.

We partitioned the data into a single test and train-
ing set for each category. At the class level, the orig-
inal dataset was split randomly in to training and test
sets. To eliminate high levels of similarity between se-
quences that could lead to trivially good classification
results, we imposed constraints on the training/test set
partitioning for classification in the fold and superfamily
experiments. For the fold level classification problem,
the training sets were partitioned so that no examples that
shared the fold and superfamily labels were included in
both the training and test sets. Similarly, for the super-
family level classification problem (referred to as the re-
mote homology detection problem [Leslie et al., 2002;
Rangwala and Karypis, 2005]), no examples that shared
the superfamily and family levels were included in both
the training and test sets.

5.3 Evaluation Metrics

We evaluated each classification experiment by comput-
ing the area under the ROC curve (AUC), a plot of the
true positive rate against the false positive rate, con-
structed by adjusting the SVM’s intercept parameter. We
also computed the AUC50 value, which is a normalized
computation of the area under the ROC curve until the
first 50 false positives have been detected. We were wor-
ried about variance over different Baum-Welch runs due
to convergence of the algorithm to different local optima.
To mitigate this concern, we ran both the Baum-Welch
algorithm and the other inference algorithms, for consis-
tency, 10 separate times on each dataset. The results pre-
sented for each inference method are averages over indi-
vidual results of the 10 trials across the different classes.

6 Results and Discussion

6.1 Protein Sequence Classification

Table 2 shows a comparison of results (average AUC
scores) across the inference algorithms in three taxo-
nomic categories (class, fold, and superfamily) using the
multiclass SVM. Although the AUC scores are close for
each algorithm, in most cases, the Gibbs sampling algo-
rithm outperforms the other algorithms.

Table 3 shows a comparison of results over the in-
ference algorithms but only for the one-versus-rest su-
perfamily classification experiment on the SCOP 1.53
dataset. Similar to the multiclass experiments using the
linear kernel, the Gibbs sampling algorithm outperforms
the other inference methods in the one-versus-rest exper-
iments. Although the values of the best performing al-
gorithm’s AUC and AUC50 scores do not significantly
change from the linear to the Gaussian kernel, the vari-

Linear Kernel

Metric AUC AUC50

Alg/K 5 10 15 20 5 10 15 20

Baum Welch 0.58 0.55 0.52 0.57 0.18 0.17 0.15 0.24

Gibbs Sampling 0.64 0.67 0.69 0.69 0.18 0.37 0.32 0.29

Variational 0.63 0.59 0.54 0.58 0.17 0.11 0.19 0.17

Gaussian Kernel

Metric AUC AUC50

Alg/K 5 10 15 20 5 10 15 20

Baum Welch 0.61 0.60 0.58 0.59 0.26 0.19 0.15 0.30

Gibbs Sampling 0.63 0.63 0.63 0.63 0.20 0.11 0.11 0.11

Variational 0.67 0.60 0.70 0.68 0.23 0.16 0.14 0.16

Table 3: AUC and AUC50 results for protein superfamily classification AUC results on

the SCOP 1.53 with 25% Astral filtering over a selected set of 23 superfamilies using Gaussian

and linear kernels in one-versus-rest SVM classification.

ational algorithm shows a large improvement, ranging
from 6% to 30%.

6.2 Analysis of inference algorithms

The differences in AUC values resulting from the dif-
ferent training algorithms (Tables 2 and 3) can be ex-
plained, at least in part, by a high level overview of how
each algorithm operates. While the Baum-Welch algo-
rithm returns MAP parameters of the model, both the
Gibbs sampling method and the variational algorithm re-
turn expectations of the parameters under an approximate
of the posterior distribution. The MAP solution from the
Baum-Welch algorithm is likely to reach a local maxi-
mum of the posterior, while the other algorithms should
tend to average over posterior parameters.

The Gibbs sampling algorithm and the variational al-
gorithm each compute expectations of the parameters un-
der an approximate posterior distribution, but each uses
a different method to construct this approximation. The
variational algorithm will be less likely to converge to
a good approximation of the marginal distribution be-
cause the mean field variational approximation necessar-
ily does away with the direct coupling between adjacent
hidden states characteristic of the HMM.

6.3 Comparative Performance

Tables 4 and 5 show a comparison between the HMM
variant and common classification methods for the mul-
ticlass and one-versus rest experiments respectively. The
AUC and AUC50 scores indicate that our scheme pro-
duces a representation that is roughly equivalent in power
to the Spectrum kernel for protein classification. In de-
fense of the HMM variant, the size of the vector rep-
resentation produced by the spectrum kernel is signif-
icantly larger than the typical representations produced
by our HMM variant. The Mismatch(5,1) kernel, used
for SCOP 1.53 superfamily classification (Table 5), is
similar to the Spectrum(5) kernel but also counts sub-
strings of length 5 that differ by one amino acid residue
from those found in an observed sequence. The size
of the vector representation associated with this kernel
can be up to 205. This value is large compared to the
largest vector representation in our experiments, which is
400 for the HMM variant with 20 hidden states. Nearly
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Dataset/Kernel HMM Variant Spectrum

Class 0.68 0.66
Fold (25 Categories) 0.61 0.62
Fold (27 Categories) 0.67 0.67

Superfamily 0.66 0.64

Table 4: A comparison of results between the Spectrum kernel and the HMM

variant under experiments using the multiclass SVM formulation. The HMM

variant scores are the best performing from Table 2.

Algorithm AUC AUC50

HMM Variant (best) 0.67 0.37
Spectrum(2) [Leslie et al., 2002] 0.712 0.290

Mismatch(5,1) [Leslie et al., 2003] 0.870 0.416
Fisher [Jaakkola et al., 2000] 0.773 0.250

SW-PSSM [Rangwala and Karypis, 2005] 0.982 0.904

Table 5: A selection of AUC and AUC50 scores for the Remote Homol-

ogy Detection problem using a variety of SVM kernels on the SCOP 1.53, 25%

dataset using 1-vs-rest classification. The HMM variant scores are the best per-

forming from Table 3.

all of these high-performing kernel methods, unlike the
HMM variant, employ domain specific knowledge, such
as carefully tuned position-specific scoring matrices, to
aid classification. In contrast, the only parameter that
needs to be adjusted in the HMM variant is the number
of hidden states.

7 Conclusions and Future Work

Our HMM variant is an extension of the standard HMM
that assigns individual transition matrices to each se-
quence in a dataset but keeps a single emissions matrix
for the entire dataset. We describe three inference al-
gorithms, two of which, a Baum-Welch-like algorithm
and a Gibbs sampling algorithm, are similar to standard
methods used to infer HMM parameters. A third, the
variational inference algorithm, is related to algorithms
used for inference on topic models and more complex
HMM extensions. We demonstrate, by comparing results
on protein sequence classification using our method in
conjunction with SVMs, that each of these algorithms in-
fers transition matrices that capture useful characteristics
of individual sequences. Because our model fits within
a large existing body of work on generative models, we
are especially interested in related models that perform
classification directly.

References

[Blei et al., 2003] D.M. Blei, A.Y. Ng, and M.I. Jordan.
Latent dirichlet allocation. The Journal of Machine
Learning Research, 3:993–1022, 2003.

[Crammer and Singer, 2002] K. Crammer and Y. Singer.
On the algorithmic implementation of multiclass
kernel-based vector machines. The Journal of Ma-
chine Learning Research, 2:265–292, 2002.

[Eddy, 1998] S. Eddy. Profile hidden markov models.
Bioinformatics, 14(9):755–763, 1998.

[Hofmann, 1999] T. Hofmann. Probabilistic latent se-
mantic indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research

and development in information retrieval, pages 50–
57. ACM, 1999.

[Jaakkola and Haussler, 1999] T.S. Jaakkola and
D. Haussler. Exploiting generative models in discrim-
inative classifiers. Advances in neural information
processing systems, pages 487–493, 1999.

[Jaakkola et al., 2000] T. Jaakkola, M. Diekhans, and
D. Haussler. A discriminative framework for detect-
ing remote protein homologies. Journal of Computa-
tional Biology, 7(1-2):95–114, 2000.

[Jebara et al., 2004] T. Jebara, R. Kondor, and
A. Howard. Probability product kernels. The
Journal of Machine Learning Research, 5:819–844,
2004.

[Joachims, 1999] T. Joachims. SVMLight: Support
Vector Machine. SVM-Light Support Vector Machine
http://svmlight. joachims. org/, University of Dort-
mund, 1999.

[Kuang et al., 2004] R. Kuang, E. Ie, K. Wang,
K. Wang, M. Siddiqi, Y. Freund, and C. Leslie.
Profile-based string kernels for remote homology de-
tection and motif extraction. Computational Systems
Bioinformatics, pages 152–160, 2004.

[Leslie et al., 2002] C. Leslie, E. Eskin, and W. S. No-
ble. The spectrum kernel: A string kernel for svm
protein classification. Proceedings of the Pacific Sym-
posium on Biocomputing, pages 564–575, 2002.

[Leslie et al., 2003] C. Leslie, E. Eskin, W. S. Noble,
and J. Weston. Mismatch string kernels for svm pro-
tein classification. Advances in Neural Information
Processing Systems, 20(4):467–476, 2003.

[Murzin et al., 1995] A.G. Murzin, S.E. Brenner,
T. Hubbard, and C. Chothia. SCOP: a structural clas-
sification of proteins database for the investigation
of sequences and structures. Journal of molecular
biology, 247(4):536–540, 1995.

[Rabiner and Juang, 1986] L. Rabiner and B. Juang. An
introduction to hidden Markov models. IEEE ASSp
Magazine, 3(1 Part 1):4–16, 1986.

[Rangwala and Karypis, 2005] H. Rangwala and
G. Karypis. Profile-based direct kernels for re-
mote homology detection and fold recognition.
Bioinformatics, 21(23):4239, 2005.

[Rangwala and Karypis, 2006] Huzefa Rangwala and
George Karypis. Building multiclass classifiers for re-
mote homology detection and fold recognition. BMC
Bioinformatics, 7:455, 2006.

[Scott, 2002] S.L. Scott. Bayesian methods for hidden
Markov models: Recursive computing in the 21st cen-
tury. Journal of the American Statistical Association,
97(457):337–351, 2002.

[Smyth, 1997] P. Smyth. Clustering sequences with hid-
den Markov models. Advances in neural information
processing systems, pages 648–654, 1997.

1197




