
Increasing the Scalability of the Fitting of
Generalised Block Models for Social Networks

Jeffrey Chan, Samantha Lam, Conor Hayes

Digital Enterprise Research Institute
NUI Galway, Ireland

{jkc.chan, samantha.lam, conor.hayes}@deri.org

Abstract

In recent years, the summarisation and decompo-
sition of social networks has become increasingly
popular, from community finding to role equiva-
lence. However, these approaches concentrate on
one type of model only. Generalised blockmod-
elling decomposes a network into independent, in-
terpretable, labeled blocks, where the block labels
summarise the relationship between two sets of
users. Existing algorithms for fitting generalised
blockmodels do not scale beyond networks of 100
vertices. In this paper, we introduce two new al-
gorithms, one based on genetic algorithms and the
other on simulated annealing, that is at least two
orders of magnitude faster than existing algorithms
and obtaining similar accuracy. Using synthetic
and real datasets, we demonstrate their efficiency
and accuracy and show how generalised block-
modelling and our new approaches enable tractable
network summarisation and modelling of medium
sized networks.

1 Introduction

As social network and media data becomes increasingly pop-
ular, there is an growing need to analyse and model them
in a scalable manner. To understand these large networks,
we need to reduce and summarise them to their underlying
structure. Popular approaches, including community finding
[Clauset et al., 2004] and blockmodelling [Wasserman and
Faust, 1994], aims to group the strongly associated vertices
together. However, in some networks, not all the interesting
groupings involve strongly associated vertices.

Consider the example of Figure 1, which represents the
grooming behavior of a group of baboons [Doreian et al.,
2005]. Figure 1a is the adjacency matrix of the baboon
grooming network, arranged into the two known groups – fe-
male baboons (a,c,d,f,h) who groom each other and the other
baboons, and female and male baboons (j,k,b,e,g,i,l) who do
not groom themselves but are groomed by the first group.
Using a state of the art community finding algorithm [Ros-
vall and Bergstrom, 2008], we obtained only one partition,
clearly illustrating the need to generalise to other definitions

P1 P2
a c d f h j k b e g i l

P1

a 0 0 1 0 0 0 1 1 1 0 0 1
c 0 0 1 1 0 1 1 0 1 1 0 1
d 1 1 0 1 0 1 0 0 1 1 0 1
f 0 1 1 0 0 1 0 0 1 0 0 1
h 0 0 0 0 0 1 0 0 1 1 1 0

P2

j 0 1 1 1 1 0 0 0 0 0 0 0
k 1 1 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0
e 1 1 1 1 1 0 0 0 0 0 0 0
g 0 1 1 0 1 0 0 0 0 0 0 0
i 0 0 0 0 1 0 0 0 0 0 0 0
l 1 1 1 1 0 0 0 0 0 0 0 0

(a) Rearranged adjacency matrix of the baboon network.

P1 P2
P1 Complete Regular
P2 Regular Null

(b) Image matrix. (c) Image diagram.

Figure 1: Adjacency matrix and image matrix and diagram
for the Baboon grooming network.

of network summarisation. This type of modelling is called
generalised blockmodelling.

Generalised blockmodelling [Doreian et al., 2005] decom-
poses a network into partitions (groups of users) and assigns a
relation type to each pair of partitions (called a block), which
describe the relationship between them. Each block can have
a different relation, making this a general modeling approach.
Reconsider the baboon grooming network example of Fig-
ure 1. The blockmodel divides the grooming network into
two partitions - P1 and P2. There are four possible relation-
ships/blocks, illustrated as an image matrix in Figure 1b. On
the diagonals, the complete type specifies that the baboons in
the two partitions groom everyone else, while the null type
specifies that the baboons do not groom anyone one else in
the other partition. On the non-diagonal blocks, the regular
type specifies that each baboon will at least groom one other
in the other partition, and each baboon is at least groomed by
someone else. The partitions with the relation types clearly
shows and summarises the overall social structure of the ba-
boon grooming behavior. The aim of generalised blockmod-
elling is to fit generalised blockmodels that summarizes the
data into these interpretable blockmodels.

There are additional benefits of having multiple block types
and directly incorporating block type labels into the model.

1218

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



For example, in [Brendel and Krawczyk, 2009], the authors
used a generalised blockmodel to distinguish between normal
email communication patterns among communities and the
abnormal patterns of external spammers by introducing new
block types to represent the communications between com-
munities and abnormal, external actors. Furthermore, directly
incorporating block types into the problem allows confirma-
tory analysis to be easily performed, particularly important in
social network analysis. E.g., to test relationship hypotheses,
users can pre-specify block labels to parts of the blockmodel
they want to test and as the labels are directly incorporated
into the search process, the resulting blockmodels will reflect
the initial hypotheses.

Up to now, the generalised blockmodel analysis of social
networks has not received much attention, partly due to the
computational demands of the existing algorithms. There-
fore, we have designed approaches based on genetic algo-
rithms and simulated annealing to fit generalised blockmod-
els. We have found both approaches are at least two orders
of magnitude faster than the existing method. Using the in-
creased scalability, we have fitted generalised blockmodels to
the Enron email dataset that was previously too computation-
ally difficult for the existing approach.

To summarize, the contributions of this paper are:

• We have designed two new algorithms that are at least
100 times more scalable than the existing method while
matching its accuracy;

• As a demonstration, we have been able to fit generalised
blockmodels to the Enron email dataset, previously too
large to be fitted.

The rest of the paper is organized as follows. In Section 2,
we introduce related work. Section 3 introduces our nota-
tion and formal concepts of generalised blockmodelling. We
describe the existing and new blockmodelling approaches in
Section 4, and present our results in Section 5. Finally, we
conclude and present possible future work in Section 6.

2 Related Work

The summarisation of networks has been studied in a number
of related areas. These include community finding, structural
roles and blockmodelling. We discuss work in each of these
areas and explain why generalised blockmodelling is different
from each of them.

Community finding methods seek to find groups of vertices
with more edges between its members than between its mem-
bers and the rest of the network [Clauset et al., 2004]. These
approaches are able to find communities accurately, but com-
munity finding is a specialised problem of generalised block-
modelling. Community finding algorithms only fit blockmod-
els of complete block types along the diagonal of the image
matrix and null types for all non-diagonal entries. It does not
allow for other blockmodels to be explored.

Another method to group and classify vertices is by
their structural position or roles [Borgatti and Everett,
1992][Lerner, 2004]. Vertices play the same structural role
if they are linked to the same set of roles. Structural roles are
intuitive, but are difficult to find in real life [Lerner, 2004].

Moreover, they only define one type of equivalence/block
type on the whole network. One of the advantages of gen-
eralised blockmodelling is that it allows multiple definitions
of equivalence throughout the network.

A similar approach to community finding is stochastic
blockmodelling [Airoldi et al., 2008]. It attempts to group
vertices into groups by using statistical models to explain and
learn the groupings [Airoldi et al., 2008][Nowicki and Sni-
jders, 2001]. These approaches are very powerful, but they
are limited to dense and sparse block types, and do not allow
pre-specification of block types and relationships, which is
necessary for confirmatory analysis.

The closest work to ours is [James, 2010]. The authors pro-
posed to use genetic algorithms to find blockmodels, via op-
timising an objective function that consists of maximising the
diagonal block size, while satisfying hard density constraints.
However, their definition of a blockmodel is basically dense
diagonal blocks, while ignoring the density of non-diagonal
blocks. We are able to map their hard density constraint to
a soft (penalty) constraint. But we do not know how to treat
the non-diagonal blocks adequately to fairly evaluate the ob-
jective of [James, 2010], hence we cannot directly compare
their approach with ours and incorporate their formulation
into our framework. We will describe the representation be-
hind [James, 2010] in more detail in Section 4.3, as it is sim-
ilar to the representation we are proposing.

3 Background

In this section, we formally define the generalised blockmod-
elling problem and introduce the notation we will use. A
generalised blockmodel consists of grouping the vertices into
partitions and an assignment of the types between all pairs of
partitions. We use the nine standard ones provided by [Dor-
eian et al., 2005], but we only describe the five types illus-
trated in this paper in Section 3.1. We stress that the set of
permitted block types can be extended or modified as needed.
To fit a blockmodel to describe a given network, we formu-
late it as an optimisation problem, following the approach of
[Doreian et al., 2005].

A network G(V ,E ) consists of a set of vertices V , and
a set of edges E (E :V×V ). The edge relation can be rep-
resented by an adjacency matrix A = A(G). Let the set
of partitions, be denoted by P = {P1, P2, . . . , Pk}, where
P1 ⊆ V , Pi ∩ Pj = ∅, i �= j and ∪iPi = V . Let T denote
the set of possible block types, B(Pi ,Pj ) to denote the block
type between two partitions and B to denote the image matrix
that represents all pairwise block assignments. A generalised
blockmodel is then defined as S(P,B).

Let A(Pi ,Pj ) be a submatrix of the adjacency matrix A,
where Pi, Pj ∈ P , and let d(A(Pi ,Pj ), I(t)) denote the er-
ror or distance between the block A(Pi ,Pj ) and the ideal
submatrix structure of block type t ∈ T . The objective cost
of blockmodel S(P,B) is defined as

C(S(P,B)) =
∑

Pi,Pj∈P
min
t∈T

d(A(Pi ,Pj ), I(t)).

It measures the difference between an ideal blockmodel, with
all blocks conforming to an ideal block structure, and the

1219



blockmodel S(P,B). We use the ideal block types described
in Section 3.1 and block distance function defined in [Doreian
et al., 2005]; please refer to that reference for more details.

The generalised blockmodelling fitting problem is to find a
set of partitions P and a block type assignment B that mini-
mizes C(S(P,B)).

3.1 Block Types

Each block type defines a relationship pattern/class between
the interactions of two partitions. We describe five of the nine
block types defined in [Doreian et al., 2005], and illustrate
three of them in Figure 2.

Let Pi = {vi1, vi2, . . . , vin} and Pj = {vj1, vj2, . . . , vjm}
represent the two partitions. For each block type, there are
two types of relationships: diagonal blocks (Pi = Pj) and
non-diagonal blocks (Pi �= Pj). In Figure 2, the first row is
the ideal adjacency submatrix of the block, the second row
is the corresponding graph structure for diagonal blocks, and
the third row is the corresponding graph structure for non-
diagonal blocks.

A complete block (first column of Figure 2) has an edge be-
tween all pairs of vertices in the two partitions, and represent
complete connectivity. A null block (second column of Fig-
ure 2) has no edges between the partitions, and represent ab-
sence of connectivity. Finally, a regular block (third column
of Figure 2) has two conditions: a) at least an edge originat-
ing from every vertex in the row partition Pi, and b) at least
one edge coming into every vertex in the column partition
Pj . Unlike the other two types, there are several substruc-
tures that can satisfy regular type and Figure 2 only shows
one example. Row regular and column regular block types
are not illustrated, but they are relaxation of the regular block
type. Row regular only requires condition a) of regularity and
column regular only condition b).

4 Algorithm

We describe three different approaches to fit generalised
blockmodels. The first method, the KL-based approach, is
a greedy method based on the well-known Kerninghan-Lin
graph partitioning algorithm [Kernighan and Lin, 1970]. This
KL-based approach is currently the only approach proposed
to fit generalised blockmodels. In this paper, we propose two
new approaches: one is based on simulated annealing, while
the other is based on genetic algorithms.

4.1 KL-Based Algorithm

In [Doreian et al., 2005], Doreian et al. proposed the greedy
KL-based approach to fit blockmodels. The algorithm con-
siders the solution neighborhood of each vertex, and greedily
makes a move that reduces the objective cost the most. A
neighborhood move is either a) a vertex moving from one
partition to another, and b) the swapping of two vertices in
different partitions. The authors did not describe how to fit
the blocks types themselves. Therefore we introduce an ad-
ditional step, where the blocks types are greedily optimized
after the partitions are optimised.

The problem with this greedy approach is that the algo-
rithm often gets stuck in local minimums and there are many

vj1 vj2 vj3
vi1 1 1 1
vi2 1 1 1
vi3 1 1 1

(a) Complete.

vj1 vj2 vj3
vi1 0 0 0
vi2 0 0 0
vi3 0 0 0

(b) Null.

vj1 vj2 vj3
vi1 1 0 0
vi2 0 0 1
vi3 0 1 0

(c) Regular.

(d) Complete. (e) Null. (f) Regular.

(g) Complete. (h) Null. (i) Regular.

Figure 2: Three block types and their ideal adjacency and
block patterns. The example for the regular type is just
one possibility. First row is the adjacency matrix, second
and third row are the graph representation for diagonal and
non-diagonal blocks respectively.

expensive objective evaluation per run. And to get decent
results and allow the adequate search of the solution space,
the algorithm must be run many times – in fact, Doreian sug-
gested to run this algorithm 50,000 times when fitting a block-
model to a bi-partite 20 by 14 network [Doreian et al., 2005].

4.2 Simulated Annealing

A successful approach to improving greedy searches by exit-
ing local minimums is simulated annealing (SA). We use the
standard SA approach [Johnson et al., 1991], but with prob-
lem specific differences in the generation of an initial random
solution, the objective cost function, and the generation of a
neighborhood. In our case, a neighborhood operation is either
a swap, move or block type change. We name this algorithm
saBM

4.3 Genetic Algorithm

Genetic algorithms (GA) are known to be able to tackle hard
combinatorial optimisation problems. There are some exist-
ing genetic algorithms work for partitioning problems [Bui
and Moon, 2002], but as far as we know, the closest work to
tackling generalised blockmodeling using genetic algorithms
is [James, 2010]. Although they used a similar representa-
tion to this work, our representation additionally encodes the
block types. Also in [James, 2010], mutation is not con-
sidered important, but for generalised blockmodelling it is
needed to escape local minima. Furthermore, although the
recombination of the partitioning of both approaches follow
a similar process, our approach also recombines the type as-
signments, which is not a trivial issue. Therefore, our work

1220



Parameter Description Default

popSize Population size. 200
maxGen Max no. of generations 1000
maxSteadyGen Max no. of generations with no improvement in objective. 10
CrossoverPts No. of crossover points 2
probCrossover Prob. of crossover 0.6
probMut Prob. of mutation 0.1

Table 1: Parameter settings of gaBM used in the fitting of
the datasets.

and [James, 2010] are related, but there are differences in the
problem solved and the solution.

Our genetic algorithm, named gaBM consists of four stan-
dard steps: selection, recombination, mutation and replace-
ment (see Algorithm 1 for an outline). Initially, a popula-
tion of popSize number of blockmodels are randomly gener-
ated (line 3 of Algorithm 1). Then probCrossover % of the
population is selected for recombination using a determinis-
tic tournament selection process of 2 chromosomes (line 6).
Next, probMut % of the population are randomly selected for
mutation (line 8). Finally, we use the plus replacement strat-
egy to choose the next generation from the starting and the
recombined and mutated population (line 9). We also employ
an elitism strategy to keep the best solution. This process is
repeated until either there is no improvement in the objective
cost for maxSteadyGen number of generations, or we have
iterated over maxGen number of generations.

After experimentation, we used the parameter settings out-
lined in Table 1. We describe the representation, crossover
and mutation operators in the following.

Algorithm 1 Outline of the gaBM
1: Input: A graph, parameters of Table 1.
2: Output: A population of blockmodels
3: Initialization: a population of popSize no. of blockmodel solu-

tions
4: gen = 0, steady = 0
5: while steady < maxSteadyGen or gen < maxGen do
6: Selection: Deterministic 2 chromosome tournament selection
7: Recombination: See section 4.3:Crossover Operator
8: Mutation: See section 4.3:Mutation Operators
9: Replacement: plus strategy + elitism (keep best solution)

10: gen++
11: steady = 0 if improvement in objective of best solution else

steady++
12: end while

Representation

In the literature, a solution representation (a chromosome)
called the grouping genetic algorithm (GGA) has been pro-
posed [Michalewicz, 1996]. Unlike the popular integer rep-
resentation [Michalewicz, 1996], which only stores the as-
signed partition of each vertex, the GGA representation ad-
ditionally stores explicit partition information. Consider
the blockmodel chromosomes for the baboon network aug-
mented with partition information, illustrated in Figure 3a.
Left of the vertical line of each chromosome (S1 and S2),
each element (called a gene) represent a vertex and its as-
signed partition. Right of the vertical line, the three partitions
represented in each chromosome are encoded as three extra

genes. The addition of the partition genes allows operators to
work on interchanging partitions explicitly, which avoids the
redundancy and isomorphism problems of the integer repre-
sentation (see [Michalewicz, 1996] for problems with the in-
teger representation).

In addition to the partitioning information, our represen-
tation also encodes the block type assignments. For k-
partitions, the assignments are represented by the k×k block
type matrix. Each matrix row/column is mapped to a parti-
tion. The whole chromosome representation of gaBM is il-
lustrated in Figure 3a.

Crossover Operator

There is an crossover operator defined for the GGA represen-
tation; however, it is designed for the partitioning problem
only, hence we extend and modify the operator to include
the block type matrix. Given two parent chromosomes for
crossover, the main idea is to choose a subset of partitions to
inject from one chromosome into another. After injection, we
repair any resulting inconsistencies.

To help explain the crossover steps, we use the baboon ex-
ample again; the various steps are illustrated in Figure 3 and
we shall refer to this as we describe the crossover operation
step by step.

1. Pick two crossover points in each of the two parent chro-
mosomes S1 and S2. Let the two crossover points be la-
beled X11 and X12 for S1 (X21 and X22 for S2). This is
illustrated in Figure 3a, where partition 1 is about to be
inserted into S2.

2. Let the partitions enclosed between X11 and X12 of S1

(partition 1) be denoted by I1. Inject the partitions of I1
into crossover point into X21 of S2.

3. If a vertex vi in partition Pk of S2 also exists in any
partition Pl of I1, delete partition Pk. This is to avoid
the growth of too many partitions. In the example (see
Figure 3b), partition 4 of S2 has elements ‘e’ and ‘f’
overlapping with partition 1 of S1, so it will be deleted.

4. For all vertices in S2 that are not assigned to any parti-
tion (due to partition deletions), evaluate each partition
in S2 and insert into the partition that results in the best
objective cost. For example, elements ‘g’ and ‘h’ are re-
distributed to the best partitions 6 and 1 respectively in
Figure 3c.

5. Repeat steps 2 to 4 for injecting the partitions of X21

and X22 into S1.
The schemata principle of genetic algorithms suggests

good parts of solutions should be mixed between chromo-
somes. As the goodness of the block type assignments are
closely dependent on the partitioning, as much of the assign-
ment information of the injected partitions should be main-
tained and are not independently crossovered. However, we
only have good assignment information among the injected
partitions themselves (in Figure 3b, this is B(3 , 3 ) of S2) ,
not between the injected partitions and the existing partitions
(“?“ in the image matrix of S2 of Figure 3b). For those as-
signments, we try each possible block type and choose the
best type assignment. At the end of this crossover operator,
we get two new offspring that share parts of the parents.

1221



6 5 6 6 4 4 4 4 5 5 6 6

a b c d e f g h i j k l

Null Null

Reg. Null

6 5 4

Reg.

Comp.

Row 
Reg.

Col 
Reg. Comp.

S2

X21 X22

3 2 3 2 1 1 3 2 3 2 3 2

a b c d e f g h i j k l

Comp. Nul

Reg. Null

3 1 2

Null

Null

Reg. Null Reg.

S1

X11 X12

(a) The partitions crossovered are the partition ids listed
between the crossover points X11 and X12 for S1 and X21

and X22 for S2.

6 5 6 6 1 1 ? ? 5 5 6 6

a b c d e f g h i j k l

Reg. Null

Row
Reg.

Col 
Reg.

6 1 5

?

?

? ? Comp.

S2

X21 X22

3 2 3 2 1 1 3 2 3 2 3 2

a b c d e f g h i j k l

Comp. Nul

Reg. Null

3 1 2

Null

Null

Reg. Null Reg.

S1

X11 X12

4

(b) Partition 4 of S2 has elements ‘e’ and ‘f’ overlapping
with partition 1 of S1, so it is deleted. Elements ‘g’ and
‘h’ are no longer associated with any partition.

6 5 6 6 1 1 6 1 5 5 6 6

a b c d e f g h i j k l

Reg. Null

Row
Reg.

Col 
Reg.

6 1 5

Reg.

Comp.

Null Null Comp.

S2

X21 X22

(c) Elements ‘g’ and ‘h’ are redistributed to the best parti-
tions 6 and 1 respectively.

Figure 3: Crossover example of the baboon brooming net-
work. Partition 1 of S1 is inserted into S2. It causes parti-
tion 4 to be deleted, and vertices at positions ‘g’ and ‘h’ of
chromosome S2 are redistributed.

Mutation Operators

We have designed three different operators to perturb the ex-
isting chromosomes: swap two random vertices between two
randomly chosen partitions, move a random vertex from a
randomly chosen partition to another, and change a block
type assignment to another allowable type. Generally, mu-
tation is not as important as crossover. However, because the
crossover operator does not crossover block type assignments
directly, the assignment mutation operator is important to al-
low searching over assignment. Hence, we set the assignment
mutation operator to occur on average three times more often
than the other two mutation operators.

5 Evaluation

In this section, we evaluate the efficiency and optimisation
performance of the three algorithms.

5.1 Datasets

To measure the scalability and optimising ability of the algo-
rithms, we generated synthetic datasets using the community
generating algorithm of Lancichinetti et al. [Lancichinetti et
al., 2008]. Briefly, the algorithm of Lancichinetti et al. gener-
ates a number of communities that have a set total number of
vertices. The degrees of vertices and community sizes follow
a power law (in this paper, exponent of 2 and 1 respectively).
In addition, the amount of inter-community connections are
governed by a mixing parameter, μ, with lower μ indicating
more inter-community connections. In our experiments, we
found μ had negligible effect on the performance of the three
algorithms, hence we do not present the results of varying this
parameter.

For real datasets, due to space limitations, we only demon-
strate the fitting of the Enron email dataset. The Enron email
corpus is a set of emails collected from the Enron corporation
over 3.5 years and is known to have a job title hierarchy as de-
tailed in [Diesner et al., 2005]. Our goal is to infer these job
title rankings from the interaction of the employees’ emails.
Moreover, we split the dataset into three time periods to re-
flect the interactions before, during and after the spreading of
information of the 2001 crisis.

5.2 Generated Community-Blockmodel Results

We evaluate the performance of KL-based, gaBM and saBM
algorithms on the synthetic community datasets, with and
without the block types supplied to the algorithms. The task
is easier when the block types are pre-specified by the user,
as it becomes finding the best partitioning of the vertices that
minimizes the objective costs according to the specified block
types.

For each parameter setting, we generate 10 different
community-model networks, ran the algorithms and analyzed
the average objective cost (lower is better) of the fitted block-
model and the average running time. All the experiments
were conducted on a dual Xeon 2.27GHz server with 32GB
of memory and running Ubuntu 10.04.

We first analyze when the blockmodels are not supplied,
which is the most difficult fitting task. The results are illus-
trated in the top row of Figure 4. We first present the results

1222



for two network sizes, 50 and 100 (Figures 4a and 4b), be-
cause the KL-based algorithm can only realistically fit models
to networks of these sizes, and then the results for networks
up to 800 vertices (Figures 4c and 4d), for the gaBM and
saBM algorithms.

Consider the performance comparison of the three algo-
rithms first (Figures 4a and 4b). Figure 4a show that the
gaBM obtains similar quality solutions to the KL-based al-
gorithm, with saBM results having three times the objective
cost. Speed wise, Figure 4b show that gaBM is slightly slower
than saBM but almost two factors faster than the KL-based al-
gorithm. For small networks, this again shows that gaBM is
a good balance between speed and accuracy.

For larger networks, the results illustrated in Figures 4c and
4d show that gaBM can obtain blockmodels with smaller ob-
jective costs (the 400 vertex result is due to one result having
an objective cost of 2× 105, which distorts the averages), but
about one factor slower than saBM. The results indicate that
for larger networks, if speed is important, than the saBM al-
gorithm should be used, but if accuracy is more important,
than the gaBM should be used.

Now consider the results where the known image matrix of
a community-like blockmodel is used to initialise the type as-
signments of the algorithm (see bottom row of Figure 4). The
results have similar behavior to the previous no blockmodel
results. However, for larger network sizes (see Figures 4g
and 4h), gaBM benefits greatly from the pre-specified block-
model, with objective costs significantly improved over saBM
and running times only 3-4 times slower. This indicates that
for larger networks, having a pre-specified blockmodel can
assist gaBM to better results.

5.3 Enron Email

We used the gaBM algorithm to explore this dataset over three
time periods - prior, during and after the crisis, denoted T1,
T2, and T3, respectively. The number of vertices (and edges)
for the graphs of T1 to T3 are 270 (1202), 264 (1718) and 284
(1876) respectively. As a guide to the communications be-
tween the employees we used results found by Diesner et al.
[Diesner et al., 2005] to help us construct our block type ma-
trices. Moreover, to overcome the possibility of over-fitting
the roles, as well as due to the similar behavior of some roles,
we search for blockmodels of five partitions/roles.

The population parameter of the algorithm was varied be-
tween 80 to 120 and we set it to halt when it reached a steady
state of 20 generations. The average (standard deviation) of
the running time taken for each population range from 516.14
secs (158.27) to 1242.84 secs (212.01).

We specified our blockmodels according to the following
five job titles or roles (in order of decreasing seniority): Ex-
ecutive Management, Senior Management, Lawyers, Man-
agers/Traders, and Specialists/Associates. To rate the accu-
racy of our findings we computed the Variation of Informa-
tion (VI) for comparing clusterings as described by Meila
[Meila, 2003]. The ‘gold standard clustering’ with which
we compared with were the known roles of each person. We
found the optimal blocks for each time step along with their
VI value (lower is more similar) and objective cost. As Table

2 shows, the VI values for the blockmodels are reasonably
low, suggesting they are a decent fit to the known roles.

T1

0 0 0 0 0

T2

0 4 1 4 1

T3

0 5 6 6 6
4 0 5 5 1 1 0 6 1 5 1 0 0 0 0
4 1 0 1 0 1 4 0 0 4 5 0 0 1 4
0 5 5 0 5 4 1 0 0 1 4 0 6 0 1
0 0 4 1 0 1 0 6 1 0 6 6 6 6 0

VI 12.6 VI 28.2 VI 17.1
Obj. Cost 2358 Obj. Cost 5283 Obj. Cost 7351

Table 2: Optimal image matrices for each time step along
with their VI value and objective cost, where numbers rep-
resent blocks such that 1 is complete, 0 is null, 4 is row-
regular, 5 is column-regular, and 6 is regular.

The communication of the emails is such that emails are
sent from row to column and one receives emails from col-
umn to row. For example, the image matrices in Table 2 show
that the communication pattern of the executive managers, al-
though little variation amongst themselves, increases from al-
most no communication at T1 (with only little received from
senior management and lawyers) to almost complete com-
munication to all others at T2, especially to lawyers and spe-
cialists/associates in both directions. Then communications
from T2 to T3 change from complete to mostly regular types,
reflecting that the executive management are reducing their
communications and crisis management, possibly because
they knew the company was about to declare bankruptcy.

Our findings are consistent with Diesner et al. [Diesner
et al., 2005]. The fitted generalised blockmodels summarise
the roles, the key relationships (block types) between the dif-
ferent roles, and demonstrates that the gaBM algorithm can
find interesting and useful blockmodels for larger sized real
networks.

6 Conclusion

In this paper we presented two new algorithms for fitting
network data to a generalised blockmodel. The algorithms
makes use of the strengths of simulated annealing and ge-
netic algorithms in tackling hard combinatorial optimization
problems. Compared to the existing KL-based algorithm, we
demonstrated their superior efficiency and accuracy on gen-
erated community networks, and using the gaBM algorithm
illustrated the fitting of useful generalised blockmodels to the
Enron dataset, which the KL-based method cannot do.

For future work, we aim to investigate additional ways to
measure and rank discovered blockmodels. In addition, we
wish to explore further speedups, possibly using hierarchical
compression techniques or combining the saBM and gaBM
algorithms.

7 Acknowledgments

This work was carried out in the CLIQUE Strategic Research
Cluster which is funded by Science Foundation Ireland (SFI)
under grant number 08/SRC/I1407.

References

[Airoldi et al., 2008] E. Airoldi, D. Blei, S. Fienberg, and
E. Xing. Mixed membership stochastic blockmodels.

1223



(a) Objective cost vs. number
of vertices, 3 algorithm compar-
ison.

(b) Running time vs. number
of vertices, 3 algorithm compar-
ison.

(c) Objective cost vs. number of
vertices, gaBM and saBM com-
parison.

(d) Running time vs. number of
vertices, gaBM and saBM com-
parison.

(e) Objective cost vs. number
of vertices, 3 algorithm compar-
ison.

(f) Running time vs. number of
vertices, 3 algorithm compari-
son.

(g) Objective cost vs. number of
vertices, gaBM and saBM com-
parison.

(h) Running time vs. number of
vertices, gaBM and saBM com-
parison.

Figure 4: Objective cost and running time results for the generated community datasets. Top row of figures: No Blockmodel
supplied. Bottom row: Blockmodel supplied.

Journal of Machine Learning Research, 9:1981–2014,
2008.

[Borgatti and Everett, 1992] S. Borgatti and M. Everett. No-
tions of position in social network analysis. Sociological
Methodology, 22:1–35, 1992.

[Brendel and Krawczyk, 2009] R. Brendel and
H. Krawczyk. Extended generalized blockmodeling
for compound communities and external actors. In
Proceedings of CASoN, pages 32–39, 2009.

[Bui and Moon, 2002] T.N. Bui and B.R. Moon. Genetic al-
gorithm and graph partitioning. Computers, IEEE Trans-
actions on, 45(7):841–855, 2002.

[Clauset et al., 2004] A. Clauset, M. Newman, and
C. Moore. Finding community structure in very
large networks. Phys. Rev. E, 70(6):066111, Dec 2004.

[Diesner et al., 2005] J. Diesner, T. Frantz, and K. Carley.
Communication Networks from the Enron Email Cor-
pus It’s Always About the People. Enron is no Differ-
ent. Computational & Mathematical Organization Theory,
11(3):201–228, 2005.

[Doreian et al., 2005] P. Doreian, V. Batagelj, and
A. Ferligoj. Generalized blockmodeling. Cambridge
University Press, 2005.

[James, 2010] T James. Grouping genetic algorithm for the
blockmodel problem. IEEE Transactions on Evolutionary
Computing, 14(1):103–111, 2010.

[Johnson et al., 1991] D. Johnson, C. Aragon, L. Mcgeoch,
and C. Schevon. Annealing : An Experimental by Sim-

ulated Optimization Part 11 , Graph Coloring and Eval-
uation ; Number Partitioning. Operations Research,
39(3):378–406, 1991.

[Kernighan and Lin, 1970] B. Kernighan and S. Lin. An effi-
cient heuristic procedure for partitioning graphs. Bell Sys-
tem Technical Journal, 49(2):291–307, 1970.

[Lancichinetti et al., 2008] A. Lancichinetti, S. Fortunato,
and F. Radicchi. Benchmark graphs for testing commu-
nity detection algorithms. Phy. Rev. E, 78(4):46110, 2008.

[Lerner, 2004] J. Lerner. Role assignments. In Network
Analysis, pages 216–252, 2004.

[Meila, 2003] M. Meila. Comparing clusterings by the vari-
ation of information. In Proceedings of the COLT/Kernel,
pages 173–187. Springer Verlag, 2003.

[Michalewicz, 1996] Z. Michalewicz. Genetic algorithms +
data structures = evolution programs (3rd ed.). Springer-
Verlag, London, UK, 1996.

[Nowicki and Snijders, 2001] K. Nowicki and T. Snijders.
Estimation and prediction for stochastic blockstruc-
tures. Journal of American Statistical Association,
96(455):1077–1087, 2001.

[Rosvall and Bergstrom, 2008] M Rosvall and C T
Bergstrom. Maps of random walks on complex networks
reveal community structure. PNAS, 105:1118–1123,
2008.

[Wasserman and Faust, 1994] S. Wasserman and K. Faust.
Social Network Analysis: Methods and Applications.
Cambridge University Press, 1 edition, 1994.

1224




