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Abstract

L1-regularized least squares, with the ability of dis-
covering sparse representations, is quite prevalent
in the field of machine learning, statistics and sig-
nal processing. In this paper, we propose a novel
algorithm called Dual Projected Newton Method
(DPNM) to solve the �1-regularized least squares
problem. In DPNM, we first derive a new dual
problem as a box constrained quadratic program-
ming. Then, a projected Newton method is utilized
to solve the dual problem, achieving a quadratic
convergence rate. Moreover, we propose to utilize
some practical techniques, thus it greatly reduces
the computational cost and makes DPNM more ef-
ficient. Experimental results on six real-world data
sets indicate that DPNM is very efficient for solving
the �1-regularized least squares problem, by com-
paring it with state of the art methods.

1 Introduction

Adding an �1-norm constraint or an �1-norm regularization
term to an optimization problem, a sparse solution can be
achieved in some applications. A sparse solution usually
benefits us in some aspects: good interpretation [Tibshirani,
1996] and memory savings.

The lasso [Tibshirani, 1996], a representative �1-
regularized least squares problem1, has attracted more and
more attentions from the field of artificial intelligence. It has
a wide range of applications, such as signal reconstruction
[Wright et al., 2009], image deblurring [Beck and Teboulle,
2009], gaussian graphical model structure learning [Friedman
et al., 2008], sparse coding [Lee et al., 2007], curve-fitting
and classification [Bishop, 2006]. In these applications, how
to efficiently solve the �1-regularized least squares problem
becomes a critical issue. Most existing optimization methods
for the �1-regularized least squares problem can be broadly
classified into three categories.

1In fact, the lasso is an �1-constrained least squares problem, but
it can be recast as an �1-regularized least squares problem under
mild conditions. In the subsequent text, we only focus on the �1-
regularized least squares problem.

First, some algorithms are designed by transforming �1-
regularized least squares as a constrained quadratic program-
ming problem. This is achieved by either introducing an
auxiliary variable, or splitting the variable into the positive
and negative parts. Representative algorithms include inte-
rior method (L1LS) [Kim et al., 2007], GPSR [Figueiredo et
al., 2007] and ProjectionL1 [Schmidt et al., 2007]. However,
these methods double the variable size, making the optimiza-
tion more costly.

Second, several algorithms are developed in the fixed-
point-type framework: A gradient descent operation is first
done, and then a soft-thresholding operation is performed.
Two most representative algorithms are SpaRSA [Wright et
al., 2009] and FISTA [Beck and Teboulle, 2009]. SpaRSA
utilizes the Barzilai-Borwein (BB) rule [Figueiredo et al.,
2007] to carefully choose the gradient descent step size.
FISTA chooses the position of the soft-thresholding opeara-
tion by exploiting Nesterov’s method [Nesterov, 1983]. Some
other fixed-point-type algorithms include FOBOS [Duchi and
Singer, 2009], fixed point continuation [Hale et al., 2007],
etc. However, these algorithms are first-order methods, not
utilizing the second-order information.

Third, a few active-set-type algorithms are studied. A very
recent method, called block principal pivoting (BP) [Kim
and Park, 2010] is proposed to solve the �1-regularized least
squares problem. It’s a further development based on least
angle regression (LARS) [Efron et al., 2004] and feature-sign
(FS) search algorithm [Lee et al., 2007]. Kim and Park [2010]
give a dual problem and then utilize it to obtain KKT condi-
tions. Subsequently, BP is built based on the KKT conditions.
However, BP doesn’t directly solve the dual problem, since
the constraint of the dual problem make it difficult to design
a very efficient algorithm (see Section 2.3).

Although various methods mentioned above are designed
to solve the �1-regularized least squares problem, none of
them reports a quadratic convergence rate2. In this paper, we
propose a second-order algorithm called Dual Projected New-
ton Method (DPNM) to efficiently solve the �1-regularized
least squares problem. By skillfully introducing an auxil-
iary variable and exploiting the characteristic of the �1-norm,

2The quadratic convergence rate here refers to limk→∞||x
k+1−

x
�||/||xk−x

�||2 = μ with μ > 0. It achieves a δ-accurate solution
x (||x − x

�|| ≤ δ) in O(log log(1/δ)) steps.
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we derive a new dual formulation of the �1-regularized least
squares as a box constrained quadratic programming prob-
lem. Due to the simple box constraint in our new dual prob-
lem, a projected Newton method is used to solve the dual
problem, achieving a quadratic convergence rate. Moreover,
we apply some practical techniques to DPNM, greatly reduc-
ing the cost per iteration. In the sequel, we will see that the
new dual form we derive doesn’t increase the variable size,
although we introduce an auxiliary variable. Low computa-
tional cost per iteration and less iterative steps make DPNM
quite efficient. Empirical studies demonstrate that DPNM
converges much faster than several state of the art algorithms
by comparing the CPU time consumed.

The remainder of this paper is organized as follows. In
Section 2, we present the Dual Projected Newton Method
(DPNM) in detail. In Section 3, experimental results are
shown on six real-world data sets. Concluding remarks are
given in Section 4.

2 Dual Projected Newton Method

2.1 Notations

First of all, we introduce some notations in this paper. Scalars
are denoted by lower case letters (e.g., x ∈ R) and vectors
by lower case bold face letters (e.g., x ∈ R

n). xi denotes
the i-th element of a vector x. Matrix and Sets are denoted
by capital letters (e.g., A, I) and �(I) indicates the number
of elements in the set I . AI denotes a submatrix of A, con-
taining the corresponding rows and columns indexed by I ,
and xI denotes a sub-vector of x including the corresponding
elements indexed by I . �1, �2 and �∞ norms of x are respec-

tively denoted by ||x||1 =
∑n

i=1 |xi|, ||x||2 =
√∑n

i=1 x
2
i

and ||x||∞ = maxni=1 |xi|. x� y(x,y ∈ R
n) is the element-

wise product of x and y. y = sign(x) ⇔ ∀i, yi = sign(xi)
and y = |x| ⇔ ∀i, yi = |xi|.

2.2 Problem Statement

The �1-regularized least squares problem is formulated as the
following optimization problem:

min
x∈Rn

P(x) =
1

2
||Ax − b||22 + τ ||x||1, (1)

where A = [aT1 ; · · · ; a
T
m](ai ∈ R

n, i = 1, · · · ,m) is an
m × n data matrix; b is a regression vector; τ is a tradeoff
parameter. In this paper, we focus on the case of m ≥ n,
in which we assume ATA has full rank. This assumption is
also introduced by Kim and Park [2010] when their BP algo-
rithm is proposed. The full rank assumption is usually reason-
able in practical applications. For instance, in the polynomial
curve-fitting problem [Bishop, 2006], the number of samples
is usually larger than the order of the polynomial, in which
ATA has full rank. In the classification task, each row of A is
a sample and bi is the corresponding label. When the data is
large-scale but not so high dimensional, the assumption that
ATA has full rank usually holds. Moreover, in the wavelet-
based image deblurring problems [Beck and Teboulle, 2009],
ATA always has full rank. Besides, in the gaussian graphical
model structure learning problem [Friedman et al., 2008], the
�1-regularized least squares is a subproblem, in which the full
rank assumption is satisfied.

2.3 Dual Problem of �1-regularized Least Squares

In this subsection, we derive a new dual problem of Eq. (1).
By introducing an auxiliary variable y, we reformulate
Eq. (1) as the following constrained optimization problem:

min
x,y∈Rn

1

2
||Ax− b||22 + τ ||y||1 s.t. x = y. (2)

We show in the following proposition that this constrained
optimization problem holds the strong duality property.

Proposition 1 Strong duality of Eq. (2) holds.

Proof Let In and Om×n be an n × n identity matrix and an
m× n zero matrix, respectively. Denote

z =

[
x
y

]
, C = [A,Om×n] ,

W = [On×n, In] , E = [In,−In] . (3)

Then, Eq. (2) can be equivalently formulated as follows:

min
z∈R2n

1

2
||Cz− b||22 + τ ||Wz||1 s.t. Ez = 0. (4)

The objective function in Eq. (4) is convex and the affine
equality constraint satisfies Slater’s condition [Boyd and Van-
denberghe, 2004]. Therefore, the strong duality of Eq. (4)
holds and so does Eq. (2). �

Proposition 1 inspires us to solve the dual problem of Eq. (2).
Let μ be the Lagrange multiplier corresponding with the
equality constraint and we get the Lagrange function as fol-
lows:

L(x,y,μ) =
1

2
||Ax− b||22 + τ ||y||1 + μ

T (x− y). (5)

By minimizing Eq. (5) with respect to the primal variables
x,y, we obtain the dual objective function as follows:

D̃(μ) = min
x∈Rn

{
1

2
||Ax − b||22 + μ

Tx

}

− max
y∈Rn

{
μ

Ty − τ ||y||1
}
. (6)

Based on the dual norm introduced in [Boyd and Vanden-
berghe, 2004], we obtain

max
y∈Rn

{
μ

Ty − τ ||y||1
}
=

{
0, ||μ||∞ ≤ τ,
+∞, ||μ||∞ > τ.

(7)

Then, by maximizing Eq. (6) with respect to the dual variable
μ, we get the dual problem as follows:

max
μ∈Rn

{
D̃(μ) = −

1

2
μ

THμ+ (HAT b)Tμ+ const

}
s.t.||μ||∞ ≤ τ,

(8)
where H = (ATA)−1 and const is a constant term. We con-
vert the above maximum problem to the following minimum

problem by inverting the sign of D̃(μ) and omitting the con-
stant term:

min
μ∈Rn

{
D(μ) =

1

2
μ

THμ− (HAT b)Tμ

}
s.t.−τ ≤ μi ≤ τ.

(9)
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Now, we have transformed the non-differentiable �1-
regularized least squares problem into a quadratic program-
ming problem with a simple box constraint, which is essen-
tial to design an efficient optimization algorithm. We should
mention that the dual problem is still an optimization problem
over an n-dimensional vector space, although we introduce
an auxiliary variable. If we can efficiently obtain the optimal
solution μ

� of dual problem Eq. (9), then we get the optimal
solution of the primal problem Eq. (1) via

x� = H(AT b− μ
�). (10)

As a matter of fact, before our new dual problem, some
literatures [Kim et al., 2007; Wright et al., 2009; Kim and
Park, 2010] have given the following dual problem:

min
α∈Rm

1

2
α

T
α− bT

α s.t. ||AT
α||∞ ≤ τ. (11)

The constraint in Eq. (11) is more complex than the constraint
in Eq. (9), since AT

α makes all the components (i.e., αis)
of α coupled with each other, hence developing an efficient
algorithm to solve Eq. (11) is not so easy. Thus, fewer al-
gorithm is designed by solving the dual problem Eq. (11) di-
rectly. Kim et al. [2007] and Wright et al. [2009] use Eq. (11)
to obtain the duality gap and some other properties. Kim and
Park [2010] exploit Eq. (11) to get KKT conditions, but not
directly solve it. However, the box constraint in Eq. (9) indi-
cates that the components of μ aren’t coupled with each other,
which is a very good property for designing an efficient algo-
rithm.

2.4 Algorithm

We design an efficient algorithm called Dual Projected New-
ton Method (DPNM) to solve the dual problem Eq. (9). Gen-
erally speaking, Eq. (9) can be solved by a projected gra-
dient method [Bertsekas, 1999], that is, generating a se-
quence {μk} by μ

k+1 = [μk−ηk∇D(μk)]+, where [x]+ =
sign(x) � min(τ, |x|) is the Euclidean projection of x onto
the box constraint in Eq. (9). However, the convergence rate
of the projected gradient method is at most linear. Subse-
quently, we focus on the following iterations by incorporating
the idea of Newton’s method, aiming to achieve a quadratic
convergence rate:

μ
k+1 = [μk − ηkMk∇D(μk)]+, (12)

where Mk is a positive definite matrix containing the second-
order information and ηk is a step size. How to choose the
positive definite matrix Mk is quite critical to the perfor-
mance of an algorithm. In the unconstrained optimization
problem, Mk can be simply chosen as the inverse of the
Hessian matrix, but Bertsekas [1982] shows that, in the con-
strained optimization problem, choosing Mk as the inverse
of Hessian matrix can’t guarantee objective descent per itera-
tion, even can’t guarantee convergence. In the case of simple
constraints (e.g., box constraint), Bertsekas [1982] suggests a
class of matrices Mk for which objective descent and conver-
gence can be guaranteed.

In the framework of [Bertsekas, 1982], we propose the pro-
jected Newton method to solve the dual problem Eq. (9) and

we prove in the sequel that the convergence rate is at least
quadratic. Define

Ik ={i| − τ ≤ μk
i ≤ −τ + εk, (∇D(μk))i > 0

or τ − εk ≤ μk
i ≤ τ, (∇D(μk))i < 0}, (13)

where εk = min(||μk − [μk − ∇D(μk)]+||2, ε) and ε is a
small positive scalar. Denote

Hk
ij =

{
0, i ∈ Ik or j ∈ Ik, i 
= j,
Hij , otherwise.

(14)

Then, we obtain the following proposition:

Proposition 2 Hk is a positive definite matrix.

Proof ∀ x ∈ R
n,x 
= 0,

xTHkx =
∑
i/∈Ik

∑
j /∈Ik

Hijxixj +
∑
i∈Ik

Hiix
2
i

= x̄THx̄+
∑
i∈Ik

Hiix
2
i , (15)

where x̄i = xi, if i /∈ Ik, 0 otherwise. Under the assump-
tion that ATA has full rank, we get that H is positive defi-
nite. Then Hii > 0,

∑
i∈Ik Hiix

2
i ≥ 0 and x̄THx̄ ≥ 0. We

note that x 
= 0, so at least one of
∑

i∈Ik Hiix
2
i and x̄THx̄

is strictly positive. Thus, xTHkx > 0 is satisfied and the
proposition is verified. �

In our method, Mk is chosen as Mk = (Hk)−1, satisfying
the condition that Mk is a positive definite matrix. Denote

pk = Mk∇D(μk), μk(η) = [μk − ηpk]+. (16)

The step size ηk is chosen as ηk = αmk

with α ∈ (0, 1),
satisfying mk is the first nonnegative integer m such that

D(μk)−D
(
μ

k(ηk)
)
≥

σ

⎧⎨
⎩ηk

∑
i/∈Ik

∂D(μk)

∂μi
pki +

∑
i∈Ik

∂D(μk)

∂μi
[μk

i − μk
i (η

k)]

⎫⎬
⎭ ,

(17)

where σ is a constant. Then μ
k+1 is given by μ

k+1 =
[μk − ηkpk]+. The detailed procedure of DPNM is listed
in Algorithm 1. Next, we declare that Algorithm 1 not only
guarantees convergence, but also has a quadratic convergence
rate in the following theorem.

Theorem 1 The sequence {μk} generated by Algorithm 1
converges to the optimal solution μ

� and the convergence
rate of {||μk − μ

�||2} is at least quadratic.

Proof The objective functionD(μ) in Eq. (9) is twice contin-
uously differentiable and the Hessian matrix ∇2D(μ) = H
is positive definite under the assumption that ATA has full
rank. Therefore, the objective function D(μ) is convex and
Eq. (9) has a unique solution μ

�. Furthermore, there exists
positive scalars λ1, λ2 (λ1 and λ2 are the smallest and largest
eigenvalues of the Hessian matrix respectively.) such that
λ1||z||

2
2 ≤ zT∇2D(μ)z ≤ λ2||z||

2
2 for any z ∈ R

n. Accord-

ing to the KKT conditions [Bertsekas, 1999],
∂D(μ�)

∂μi

> 0, if
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Algorithm 1: DPNM-Dual Projected Newton Method

Input : A ∈ R
m×n, b ∈ R

n, τ ∈ R, μ0 ∈ R
n

1 Initialize σ = 10−3; α = 0.5; ε = 10−4;

2 Compute H = (ATA)−1; Atb = ATb;
3 for k = 0, 1, · · · do

4 wk = ||μk − [μk −∇D(μk)]+||2;

5 εk = min(wk, ε);

6 Compute Ik by Eq. (13);

7 Compute pk,μk(ηk) by Eq. (16);
8 m = 0;
9 while Eq. (17) is not satisfied do

10 m = m+ 1; ηk = αm;
11 end

12 μ
k+1 = [μk − ηkpk]+;

13 if convergence criterion is satisfied then
14 iter = k + 1; break;
15 end

16 end

17 μ
� = μ

k+1; x� = H(Atb − μ
�);

Output: μ�, x�, iter

μ�
i = −τ ;

∂D(μ�)
∂μi

< 0, if μ�
i = τ . Obviously, ∇2D(μ) = H

is Lipschitz continuous. Based on the properties above and
the Proposition 4 (and its extensions) in [Bertsekas, 1982],
Algorithm 1 converges to the optimal solution μ

� and the
convergence rate of {||μk − μ

�||2} is at least quadratic. �

The quadratic convergence rate is remarkable, which indi-
cates that Algorithm 1 can achieve a δ-accurate solution
μ (||μ− μ

�||2 ≤ δ) for Eq. (9) in O(log log(1/δ)) steps.

2.5 Implementation Details

We present the implementation details of Algorithm 1, in
which some practical techniques are utilized to reduce the
cost per iteration.

• Since H and Atb are used several times in Algorithm 1,
they can be computed when we initialize the algorithm,
which greatly reduces the computational time. Here
O(n3) operations are needed and we focus on the prob-
lem where n is not very large.

• The computational bottleneck in Algorithm 1 is for com-
puting pk in Eq. (16), which requires an inverse opera-
tion for an n × n matrix Hk. But in fact, we only need
to compute the inverse of a smaller r × r matrix, where
r = n− �(Ik). Denote

Ĩk = {i|i /∈ Ik, 1 ≤ i ≤ n}, (18)

Bij =

{
Hii, i = j, 1 ≤ i ≤ n
0, otherwise.

(19)

Then there exists a permutation matrix P such that

Gk = PHkPT =

[
HĨk 0
0 BIk

]
. (20)

Therefore,

(Hk)−1 = PT (Gk)−1P = PT

[
H−1

Ĩk
0

0 B−1
Ik

]
P.

(21)

• We note that

pk =Mk∇D(μk) = PT

[
H−1

Ĩk
0

0 B−1
Ik

]
P∇D(μk)

=PT

[
H−1

Ĩk
∇D(μk)Ĩk

B−1
Ik ∇D(μk)Ik

]
. (22)

To further reduce the computational cost, the inverse
and multiplication operation H−1

Ĩk
∇D(μk)Ĩk can be re-

placed by the Cholesky decomposition, which can be ef-
ficiently obtained requiring O(r3) (r < n) operations.

Moreover, BIk is a diagonal matrix, B−1
Ik ∇D(μk)Ik re-

quires only O(n− r) operations.

• P is a permutation matrix, which indicates that PHkPT

in Eq. (20) is just the permutation of the rows and

columns for Hk, according to the index sets Ĩk and
Ik, without requiring any multiplication operation. This
conclusion can be also applied to Eq. (22).

3 Experiments

3.1 Experimental Settings

All algorithms in the experiments are implemented in Matlab
and they are tested on six real-world data sets: Extended Yale
Face Database B (ExtYaleB), USPS, Yale Face Database B
(YaleB), PIE, Isolet and dna. Their basic information is listed
in Table 1 (m is the number of samples and n is the dimen-
sion. ExtYaleB and YaleB are respectively resized to 32× 32
and 40× 30.).

In the experiments, every row of A is a sample in each data
set and bi is the corresponding label. For the �1-regularized
least squares problem in Eq. (1), the optimal solution x�

equals 0 if τ ≥ ||AT b||∞ [Wright et al., 2009]. In order
to avoid a trivial solution, we set τ = tol × ||AT b||∞ with
different tols (tol = 10−1, 10−2, 10−3, 10−4, 10−5).

To demonstrate the effectiveness and efficiency of DPNM,
we compare DPNM with four state of the art methods: BPR3

[Kim and Park, 2010], L1LS4 [Kim et al., 2007], FISTA5

[Beck and Teboulle, 2009] and SpaRSA6 [Wright et al.,
2009]. BPR is an active-set-type algorithm based on ob-
taining KKT conditions from Eq. (11). L1LS, FISTA and
SpaRSA directly solve the �1-regularized least squares prob-
lem in Eq. (1). Since different algorithms have different ter-
minated criteria, for fair comparisons, we first run the L1LS
algorithm until its relative duality gap is less than or equal to
10−4 and then record its objective value P� in Eq. (1). We
next run DPNM, SpaRSA, FISTA and BPR until the objective

3BPR is an improved algorithm based on BP.
4
http://www.stanford.edu/˜boyd/l1_ls/

5http://www.eecs.berkeley.edu/˜yang/

software/l1benchmark/
6
http://www.lx.it.pt/˜mtf/SpaRSA/
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Table 1: The average computational time (The time of computing H and Atb for DPNM is also included.) and the average
number of iterations over 10 independent executions (with different random starting points) for solving the �1-regularized least
squares problem. The regularized parameter τ is set as tol × ||ATb||∞. More details about the results are shown in the text.

data size coeff average time(CPU seconds) � average iterations

set m × n tol DPNM BPR L1LS FISTA SpaRSA DPNM BPR L1LS FISTA SpaRSA

ExtYaleB 2414

10−1 0.9062 2.0817 8.7543 18.3742 2.9490 15.0 83.0 46.0 3258.7 526.5

× 1024

10−2 1.0378 0.8750 26.8962 42.9980 6.0558 18.0 16.0 35.0 8037.7 1082.1

10−3 0.4971 1.0604 92.1205 49.8914 8.5170 10.0 10.0 37.0 10000.0 1564.3

10−4 0.2746 1.6095 279.9859 50.1130 55.3159 3.0 9.0 38.0 10000.0 10001.0

10−5 0.2710 2.1223 325.1329 50.1931 57.0251 2.0 10.0 30.0 10000.0 10001.0

Isolet 7797

10−1 0.3560 2.2915 3.1007 0.6595 0.5114 12.0 53.0 33.0 31.6 36.2

× 617

10−2 0.2544 0.9970 15.3178 1.2751 0.9600 8.0 12.0 54.0 92.2 79.9

10−3 0.2031 1.1891 21.0388 3.3981 4.9525 6.0 9.0 35.0 283.0 412.0

10−4 0.1649 2.0951 29.2915 14.3518 86.9161 3.0 11.0 37.0 1323.6 7098.0

10−5 0.1513 1.8817 31.0686 47.2366 123.6213 1.0 9.0 32.0 4400.4 10001.0

PIE 11154

10−1 1.2425 126.5265 91.2420 74.9511 7.8936 14.0 720.0 115.0 2687.0 251.0

× 1024

10−2 1.0813 3.0447 106.5602 204.9801 7.0325 11.0 14.0 70.0 7428.6 219.7

10−3 0.9106 3.7257 206.4877 275.4339 28.7151 10.0 10.0 32.0 10000.0 956.0

10−4 0.5900 5.3669 1332.5470 275.4096 287.1595 3.0 9.0 62.0 10000.0 9374.9

10−5 0.5598 7.1639 1463.5147 275.4168 320.7441 1.0 10.0 35.0 10000.0 10001.0

USPS 7291

10−1 0.0617 0.2466 1.9089 0.2585 0.1741 8.0 11.0 28.0 57.9 33.6

× 256

10−2
0.0595 0.3149 3.9277 0.7283 0.2934 6.0 10.0 25.0 212.3 57.2

10−3 0.0421 0.3917 5.2646 0.7591 0.7786 4.0 9.0 18.0 227.1 166.8

10−4 0.0432 0.4112 5.2152 2.8532 21.6712 2.0 8.0 12.0 930.2 4504.2

10−5 0.0372 0.4825 6.5782 10.2410 48.6217 1.0 9.0 12.0 3251.0 10001.0

YaleB 5850

10−1 2.8930 62.8636 28.9774 58.9738 4.7258 26.0 968.0 39.0 3443.2 256.5

× 1200

10−2 1.8639 2.7727 81.4151 169.9488 20.0788 18.0 22.0 43.0 10000.0 1162.1

10−3 1.7421 2.9562 139.2338 170.2495 33.2614 17.0 19.0 32.0 10000.0 2017.5

10−4 0.9744 2.7449 378.8279 169.9587 155.3790 10.0 11.0 26.0 10000.0 9052.3

10−5 0.6419 3.4733 1295.9871 169.7176 185.0566 6.0 9.0 41.0 10000.0 10001.0

dna 3186

10−1 0.0135 0.0776 0.3058 0.0255 0.0172 2.0 7.0 22.0 23.6 17.0

× 180

10−2 0.0158 0.0826 0.4766 0.0424 0.0363 2.0 6.0 23.0 58.7 43.8

10−3 0.0164 0.0871 0.5249 0.0956 0.0660 2.0 6.0 17.0 184.3 82.4

10−4 0.0138 0.0879 0.3110 0.1936 0.0904 1.0 6.0 17.0 431.3 121.4

10−5 0.0161 0.0832 0.2097 0.4012 0.1061 1.0 6.0 13.0 920.6 140.3

value in Eq. (1) are less than or equal to P�, or the iterative
steps exceeds 10000. We independently run the five algo-
rithms 10 times respectively with different random starting
points. To further speed up SpaRSA and FISTA algorithms,
the continuation technique [Hale et al., 2007] is adopted.

3.2 Experimental Analysis

The average computational time (The time of computing H
and Atb for DPNM is also included.) and the average num-
ber of iterations over 10 independent executions (with dif-
ferent random starting points) are listed in Table 1. From
these results, we can get: (a) DPNM is the most efficient
among all the algorithms, both on CPU time and iterative
steps, especially for small τs. (b) The CPU time (iterative
steps) for DPNM tends to become less when the regular-
ization parameter τ decreases. When τ is small, the feasi-
ble region in Eq. (9) becomes small. Thus, it’s easier and
cheaper to find the optimal solution in a smaller feasible re-
gion. On the contrary, L1LS, FISTA and SpaRSA tends to
consume more CPU time and iterative steps when τ becomes
smaller and this phenomenon can be also observed in [Wright
et al., 2009]. For BPR, not such an obvious phenomenon is
observed. On some data sets (e.g., PIE and YaleB), when
τ = 10−1 × ||ATb||∞, the iterative steps and CPU time are
very large, which indicates that BPR is not so stable when the
regularization τ varies. This is due to the frequent variables
exchanging among different groups. (c) For BPR, sometimes
less iterative steps even leads to more CPU time. The compu-

tational cost for BPR varies greatly for each iteration, more
iterative steps with cheaper cost per-iteration consuming less
CPU time is possible. (d) Most of the time, the iterative
steps for L1LS are much smaller than that for SpaRSA and
FISTA, but the CPU time is more, since the computational
cost per iteration for L1LS is more expensive than SpaRSA
and FISTA. Whereas too large iterative steps for SpaRSA and
FISTA make them less efficient than DPNM and BPR. (e)
L1LS, SpaRSA and FISTA are very slow when τ is small, al-
though continuation technique [Hale et al., 2007] is adopted
for SpaRSA and FISTA. For DPNM, the CPU time consumed
doesn’t vary too much when τ changes.

To further understand the accuracy of the solutions for dif-
ferent algorithms, we plot the average objective values of
Eq. (1) for the five algorithms on the six real-world data sets
as in Figure 1. From the figures, we can see that BPR and
DPNM achieve the smallest objective values and they are
very competitive most of the time. In Table 1, we find the iter-
ative steps of SpaRSA and FISTA sometimes exceed 10000,
which indicate that their objective values might be still larger
than P� when the iterative steps reach 10000. Integrating
Table 1 and Figure 1 together, we can see that when an algo-
rithm’s iterative steps exceed 10000, the corresponding ob-
jective value is truly larger than L1LS’s objective value P�,
which confirms that our conclusion is correct.

In all, DPNM is very efficient and effective for solving the
�1-regularized least squares problem: DPNM converges fast
with an at least quadratic convergence rate, which requires
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Figure 1: The bar plots of average objective values in Eq. (1)
for different algorithms. Each subfigure shows the average
objective value vs. tol bar on a real-world data set.

only a dozen even fewer steps, and consumes much less CPU
time.

4 Conclusions

In this paper, a novel algorithm called DPNM is proposed
to efficiently solve the �1-regularized least squares problem.
Our main contribution is reflected in: (1) We derive a new
dual form of the �1-regularized least squares as a box con-
strained quadratic optimization problem. (2) Due to the sim-
ple box constraint, a projected Newton method is applied to
efficiently solve the new dual problem, achieving a quadratic
convergence rate. Empirical studies on six real-world data
sets demonstrate that DPNM is more efficient than several
state of the art algorithms. A limitation of DPNM is that it
works under the assumption that ATA has full rank, and so
does BPR. Whereas the other three algorithms (L1LS, FISTA,
SpaRSA) can still work without the full rank assumption. In
our future work, we will extend DPNM to the case without
the full rank assumption.
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