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Abstract

Learning from streaming data represents an impor-
tant and challenging task. Maintaining an accurate
model, while the stream goes by, requires a smart
way for tracking data changes through time, origi-
nating concept drift. One way to treat this kind of
problem is to resort to ensemble-based techniques.
In this context, the advent of new technologies re-
lated to web and ubiquitous services call for the
need of new learning approaches able to deal with
structured-complex information, such as trees. Ker-
nel methods enable the modeling of structured data
in learning algorithms, however they are computa-
tionally demanding. The contribute of this work is
to show how an effective ensemble-based approach
can be deviced for streams of trees by optimizing
the kernel-based model representation. Both effi-
cacy and efficiency of the proposed approach are
assessed for different models by using data sets ex-
hibiting different levels and types of concept drift.

1 Introduction

The advent of new technologies mainly related to web and
ubiquitous services has determined the generation, at a rapid
rate, of massive unbounded sequences of data elements, i.e.
data streams. Data streams need to be processed quickly,
using bounded memory resources, and keeping output er-
rors as small as possible. Former approaches involved both
unstructured (see, for example [Gaber et al., 2005]) and
(semi-)structured data elements (e.g., [Asai et al., 2002;
Kudo and Matsumoto, 2004; Bifet and Gavaldà, 2008; Bifet
and Gavaldà, 2009]). These approaches, however, assumed
the input distribution of data to be time-invariant. In many
cases, however, this is hardly the case, since data streams
tend to evolve with time, e.g. think of a stream of news
or of stock market indices. This phenomenon is referred to
as concept drift. By adopting the formalization presented in
[Klinkenberg, 2004], if we model a stream as an infinite set
of elements e1, . . . , ej , . . ., a data stream can be divided into
batches, b1, b2, . . . , bn, . . ., where bi ≡ ei1 , . . . , eini

. For

each batch bi, data is independently distributed w.r.t. a distri-
bution Pi(e). Depending on the amount and type of concept
drift, Pi(e) will differ from Pi+1(e). In the context of data

streams classification involving unstructured data elements,
two main class of solutions have been proposed: instance se-
lection and ensemble learning. Examples of the first method
are Very Fast Decision Trees (VFDT) [Domingos and Hul-
ten, 2000] and its improvements for concept drifting reac-
tion and numerical attributes managing [Hulten et al., 2001;
Gama and Pinto, 2006; Pfahringer et al., 2008; Cohen et
al., 2008]. Ensemble learning employs multiple classifiers,
extracting new models from scratch and deleting the out-
of-date ones continuously. Online approaches for bagging
and boosting have been proposed in [Oza and Russell, 2001;
Chu and Zaniolo, 2004; Bifet et al., 2009]. Alternative meth-
ods are described in [Street and Kim, 2001; Wang et al., 2003;
Scholz and Klinkenberg, 2005; Kolter and Maloof, 2007;
Grossi and Turini, 2011a], where an ensemble of weighted-
classifiers is employed to cope with concept drifting. An in-
teresting comparison between different techniques not only
in terms of accuracy, but also including computational fea-
tures, such as memory and time required by each system, is
presented in [Bifet et al., 2009].

While the approaches cited above are more or less effective
in dealing with concept drifting, all of them introduce an ad-
ditional computational burden that may be the major reason
for which, up to now, no approach for dealing with concept
drift in streams of (semi-)structured data elements has been
proposed. In fact, methods devised for this type of data are
already computationally intensive and a naı̈ve application of
the above approaches to them soon becomes computationally
infeasible. This is a pity, since the number of applications in-
volving (semi-)structured data is constantly growing. For ex-
ample, the data exchanged between different web services are
codified by XML files that take the form of tree-typed docu-
ments; the automated managing of blogs, news and emails
coupled with the high interaction between users create new
challenges in natural language processing; in this context, all
the sentences are typically represented by trees enriched with
semantic information to be processed by a machine.

In this paper, we propose a new kernel-based ensemble
method, based on the architecture defined in [Grossi and
Turini, 2011b] and the on-line kernel-based approach for
stream of trees presented in [Aiolli et al., 2006]. We demon-
strate how a well-known approach can be employed and rein-
vented to solve concept drifting problems in tree-structured
learning. Starting from the problem of classifying trees, we
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employ a kernel-based approach for defining an ensemble
of classifiers, that not only improves the overall accuracy of
the base approach but guarantees a fast computation. In this
context, a variant of the Perceptron algorithm called DAG-
Perceptron is employed to define a new approach for learning
trees even in high-dynamical environments. The prototyped
system is completely evaluated and compared in terms of ac-
curacy and computational time with the online single DAG-
Perceptron. Our results demonstrated that the different mod-
els extracted from different levels of time granularity, and dy-
namically selected using current data distribution, provide a
better result than a single flat model continuously updated.

2 DAG-Perceptron for Tree streams

The DAG-Perceptron [Aiolli et al., 2006; 2007] has been de-
fined to deal with classification tasks involving a stream of
trees. It is an efficient version of an on-line kernel-perceptron
algorithm, adapted to tree-kernels, able to speed-up training
of a factor above 3. From a functional point of view, this cor-
responds to keep in memory the set of the already seen trees
for which the perceptron prediction was erroneous. More
specifically, let T be a stream of example pairs (Ti, yi), where
Ti are trees, and yi ∈ {−1,+1}. Then, at iteration t+ 1, the
scoring function of the perceptron for a new tree T is defined
by

St+1(T ) =

t∑

i=1

αiK(Ti, T ), (1)

where αi ∈ {−1, 0,+1} is 0 whenever sign(Si(Ti)) = yi,
and yi otherwise; K(·, ·) is a tree kernel, e.g. the SubSet Tree
kernel (SST). The SST kernel counts the number of match-
ing subset trees between two input trees. A subset tree of a
tree T is a structure which is rooted in a node of T and it
satisfies the constraint that each of its nodes is connected to
either all its children in T or none of them. The SST ker-
nel is defined as K(T1, T2) =

∑
v1∈VT1

∑
v2∈VT2

C(v1, v2),

where VT1
and VT2

are the sets of vertices of trees T1 and
T2, respectively, C(v1, v2) is recursively computed accord-
ing to the following rules: i) if label(v1) �= label(v2) then
C(v1, v2) = 0; ii) if label(v1) = label(v2) and v1 is a
preterminal then C(v1, v2) = 1; iii) if label(v1) = label(v2)

and v1 is not a preterminal then C(v1, v2) =
∏nc(v1)

j=1 (1 +

C(chj [v1], chj [v2])), where nc(v1) is the number of children
of v1 and chj[v] is the j-th child of vertex v. For a detailed
description of the SST kernel see [Collins and Duffy, 2002].
By disregarding trees that have null weight, eq. (1) can be
rewritten as

St+1(T ) =
∑

(Ti,yi)∈Mt

yiK(Ti, T )

where Mt = {(Ti, yi) ∈ T : i ≤ t, Si(Ti) �= yi} is
the model at time t of the perceptron. It is trivial to show
that the cardinality of M , and consequently the memory re-
quired for its storage, grows up with the number of tree pre-
sentations. However, Mt can be efficiently maintained in a
compact structure represented by a Directed Acyclic Graph
(DAG) where any (sub)tree si, occurring f+

t,si
times in trees

with yi = +1 and f−t,si times in trees with yi = −1,
is represented only once and its root vsi is annotated with

ft,vsi = f+
t,si

− f−t,si . In [Aiolli et al., 2006] it is shown
that this compact representation can be exploited to efficiently
compute the score for a tree by computing each C(·, ·) entry
only once:

St(T ) =
∑

vi∈DAGMt

∑

vk∈T

ft,viC(vi, vk)

The above computation can easily be adapted to a voted ver-
sion of the perceptron, thus improving the generalization abil-
ity of the system while still maintaining an efficient computa-
tion. This can be obtained by allocating for each vertex v of
the DAG an additional variable, used for computing the score
of the voted perceptron, which maintains the cumulated sum
fvoted
t,v =

∑
i≤t:sign(Si(Ti)) �=yi

(t− i+ 1) · fi,v , where we as-

sume fi,v = 0 for all vertices v that first appear in the DAG
after time i.

3 Selective Dag-Perceptron Ensemble

Capturing concept drifting is one of the main challenges in
the context of mining data streams. A system should be con-
ceived for ensuring a good trade-off between data reduction,
and a powerful representation of all the evolving features.

Data reduction is needed because building a prediction
model that embeds all the information concerning erro-
neously classified instances coming from a stream of data
runs into the risk of generating a model of unbounded size.
Thus, the mining process needs to select and/or compress in-
formation about misclassified instances. On the other side,
a powerful representation of all the evolving features is re-
quired to cope with concept drifting, so that, as soon as a new
concept appears, its characteristic features are identified and
properly represented for prediction purposes. Characteristic
features of out-of-date concepts still need to be preserved,
since there is the possibility that those concepts will appear
again in the future. One serious downside of allowing a pow-
erful representation of all the evolving features is the need for
a potentially huge amount of memory, i.e. it goes against the
data reduction requirement we described above.

The approach proposed in [Grossi and Turini, 2011b] for
ensuring a good trade-off between these two requirements
has been to resort to a compact-layered ensemble method im-
plementing a multi-resolution data reduction strategy. The
adopted strategy can be summarized as follows. Stream-
ing data, as long as it arrives, is partitioned in chunks,
ck1, ck2, . . .. Recent chunks are used to build models belong-
ing to the ensemble at level 1. These models, M1,M2, . . .
are supposed to capture up-to-date concepts occurring in
ck1, ck2, . . .. This is the way how the system is able to iden-
tify and to retain (as long as memory availability allows it)
evolving features. The number of these models, let us say k,
is a structural feature of the ensemble and it is decided apri-
ori. When model Mk+1 is created, the eldest model M1 is
discarded from level 1, so to make space for Mk+1. The dis-
carded model M1 is inserted at level 2, and as soon as another
model is discarded from level 1, i.e. M2, due to the insertion
at level 1 of the most recently created model Mk+2, M1 is
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Figure 1: DAGs and their order. Only framed DAGs belong to the ensemble; the others contributed to create high-order DAGs.

aggregated with M2 at level 2, and it will not be aggregable
anymore for that level. The resulting aggregated model M1+2

is an high-order model since it covers, in a compressed form,
all the instances belonging to chunks ck1 and ck2. This pro-
cess is repeated till the number of models at level 2 exceeds
k, in which case the outcoming model from level 2 is inserted
into level 3. This is repeated until the maximum number of
levels (again, defined apriori) is reached, in which case the
outgoing model is lost. It is now clear that a model belonging
at level i summarizes data coming from 2i−1 chunks, thus al-
lowing a progressive aggregation of information along with
the level index. Let us now explain how this strategy can be
applied to a stream of trees.

Our approach, called EnDAG, is based on the structure ex-
plained before to build an ensemble. Such ensemble con-
stitutes a tool for concept drift reaction, guaranteeing a fast
kernel computation. The latter is one of the key aspects of
this approach, since in complex structures as trees, comput-
ing kernel scores is computationally expensive.

Each tree-chunk generates a DAG-Perceptron model.
DAGs are employed to maximize the number of elements for
training classifiers. Generally, a model mined from a small
set of elements tends to be less accurate than the one extracted
from a large data set. This assumption is true in “traditional”
learning contexts, but in a stream environment it is not nec-
essarily satisfied. Due to concept drifting, large data set can
include out-of-date concepts.

To clarify the role of each DAG inside our system, we dis-
tinguish two types of models; the DAGs computed directly
from the stream, and the ones obtained by the aggregation of
existing DAGs (high-order DAGs). The creation of a high-
order DAG does not require any further access to the original
data. Fig. 1 highlights the relation between the two types of
models, showing an example of our structure called frame. A
frame is defined by three values indicating the number of lev-
els, the capacity of each level, and the number of DAGs that
can be aggregated in a high-order DAG. For each tree-chunk

of size k, C
j
k = {T j

1 , ..., T
j
k}, a DAG-Perceptron (Dj,k) is

computed. Successively, when the stream evolves the mod-
els are further aggregated in high-order DAGs, e.g. D2

j,2k or

D3
j,4k. For each level, only the highlighted models are actu-

ally stored in the structure. The higher is the level, the larger
is the data chunk considered by the high-order models. More-
over, Fig. 1 shows the logical naı̈ve management of the frame
structure. All the DAGs computed directly from the stream
are inserted at level 1 and represent the basic element of the
structure. Since each level has a finite capacity, when a level

is full the out-coming DAG is not deleted but it is inserted (or
aggregated) into the successive level. DAGs coming out from
the last level are simply deleted. From a logical perspective,
this structure can be viewed as a set of sliding windows repre-
senting different complementary portions of the stream, with
the properties that only the basic models access original data.

This logical view cannot be implemented directly. Manag-
ing all DAGs separately, as show in Fig. 1, tends to repeat the
same structures in different DAGs with a waste of resources,
in terms of time and memory. For this reason, the ensemble
is efficiently represented by a single DAG (EnDAG) where a
frame structure is associated with each node, thus avoiding
to replicate the same structure several times and enabling a
fast score computation for all needed models. The EnDAG is
created and subsequently updated by an operation that adds a
DAG to it:

DAGj ⊕ EnDAG ≡ ADD(
−−−−−−⇀
EnDAG,DAGj) (2)

As defined in eq. (2), the insertion of DAGj in EnDAG re-
quires two distinct operations, namely shifting and adding.

Shitfing: Algorithm 1 defines the
−−−−−−⇀
EnDAG operation. Since

each level has a finite capacity, before adding a new element
to the ensemble, we have to set a slot as free for each vertex
of EnDAG. Given a vertex v, the value of the last slot of level
i is forwarded to the first slot of level i+1 and all the remain-
ing values of level i are shifted to the right.1 The forwarded
value is summed to the first slot of level i + 1 (aggregation)
if a value not already aggregated is present, otherwise it is
inserted into the first slot of level i + 1 after that the same
procedure described above has be recursively applied to level
i + 1. The recursive invocation is repeated until a value is
aggregated or the last level of the frame is reached.

Adding: when a slot is set as free, the operation of adding a
new DAG in the ensemble can be performed. We recall that
our ensemble is represented by a single DAG, where for each
vertex we manage a frame structure. The adding operation
involves two different situations:

1. ∀vi ∈ DAGj such that ∃vk ∈ EnDAG for which
tree(vi) ≡ tree(vk), then vk.frame[1, 1] ← fvi . The
function tree(v) returns the tree rooted in v.

2. ∀vi ∈ DAGj such that �∃vk ∈ EnDAG for which

tree(vi) ≡ tree(vk), then: i) vertex vi is added2 to

1This is actually implemented by a circular array.
2Vertices of DAGj are examined following an inverted topolog-
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Figure 2: Example of application of the ⊕ operator to vertex vEnDAG ∈ EnDAG and matching vertices vDj , j = 2, . . . , 5
(i.e., tree(vEnDAG) ≡ tree(vDj )). The null value is represented by the n character.

Algorithm 1 The
−−−−−−⇀
EnDAG algorithm

1: for all v ∈ EnDAG do

2: insert(v, 2, v.frame[1, limit]);
3: for j = limit − 1 to 1 do

4: v.frame[1, j + 1] ← v.frame[1, j];
5: end for

6: v.frame[1, 1] ← null;
7: end for

insert(v, lev, val)
if v.aggregable[lev] = 1 then

v.frame[lev, 1] ← v.frame[lev, 1] + val;
v.aggregable[lev]← 0;

else

insert(v, lev + 1, v.frame[lev, limit]);
for j = limit− 1 to 1 do

v.frame[lev, j + 1] ← v.frame[lev, j];
end for

v.frame[lev, 1] ← val;
v.aggregable[lev]← 1;

end if

EnDAG; ii) vk.frame[1, 1] ← fvi and all the remain-
ing slots of vk.frame[, ] get the null value.

Fig. 2 shows, for a given vertex v ∈ EnDAG, an example
of evolution of the content of v.frame (of size 2×2) follow-
ing the insertion into the ensemble of DAGs generated after
reading some tree-chunks. For each insertion, next to the ’:’
character, both the value associated with the input vertex vDi

(i = 2, . . . , 5) and the current content of v.frame, as well as
the result of the ⊕ operation, are shown.

Fig. 3 provides a complete picture about the insertion of a
new DAG into EnDAG. For all the vertices already available
in the ensemble, we only update the frame structure. Other-
wise, as in the case of vertex with label q, a new vertex is
added to EnDAG with a frame that contains only a value (the
fv value) in first position.

This construction, where all the common substructures are
not duplicated between DAGs, enables an efficient high-order
DAGs creation and a fast score computation. In fact, given a
tree, we can compute the score associated with every DAG
in the structure by visiting EnDAG only once, and simply
considering the values different from null inside each frame.

It is worth to notice that the computation of high-order
DAGs does not imply any loss of information as long as any
high-order DAG is lost:

Theorem: Let D = {D1, . . . , Dm} be a set of DAGs (mod-

ical order. This guarantees that when a vertex v must be inserted
into EnDAG, all its children already belong to EnDAG.

els). Given a tree T and SD(T ) =
∑

Di∈D
SDi(T )

SD(T ) = SEnDAG(T )

=
∑

v∈EnDAG,u∈T

C(v, u)

r,c∑

i,j

v.frame[i, j],

where EnDAG = D1⊕· · ·⊕Dm, and EnDAG uses a vertex
frame of size r×c such that

(
c
∑r

i=1 2
i−1

)
= c(2r−1) ≥ m.

Proof: the proof of this theorem is derived from the one pre-
sented in [Aiolli et al., 2006] and not reported here due to
space limitations.

Finally, it is worth observing that a data stream involves an in-
finite set of elements, that cannot be stored completely even
with this structure. In fact, the actual size of the frame is de-
cided beforehand on the basis of the available computational
resources.

3.1 Ensemble management

The actual ensemble management is a four-phase approach.
i. For each tree-chunk Ci, a triple (Di,wi,bi) representing a
model, its weight and a boolean value bi is extracted from
Ci (see below for more info about wi and bi). ii. Subse-
quently, Di ⊕ EnDAG is computed; notice that each entry
of any EnDAG vertex’s frame will correspond to a model.
iii. Since data distribution can change through time, at time
t the DAGs currently in the structure (i.e., the corresponding
entries into the frames associated with vertices of EnDAG)
are re-weighed as follows: ∀i, wi = accuracy(Di, C

0.25
t )

where accuracy(Di, C
0.25
t ) is the accuracy of the model Di

computed over 25% of trees belonging to tree-chunk Ct; it
should be noticed that wi is independent from which specific
v ∈ EnDAG is considered. iv. A set of active DAGs (i.e.,
frame entries) is selected, setting the boolean value bi associ-
ated with a Di as true. The set of active models is selected

n
q:5

g:2

DAG

f:1 h:3

3 n

nn

n

nn

7 n

nn

5

g:

f: h:

2

nn

7

nn

5

nn

nn

EnDAG EnDAGDAG

g:

f: h:

3

1 3

q:
5

Figure 3: Example of update of EnDAG. ∀v ∈ DAG
we report label(v) : fv , while ∀u ∈ EnDAG we report
label(u) : u.frame. The null value is represented by n.
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Num. vertices Depth Maximum out-degree

Num. trees avg / min / max avg / min / max avg / min / max

Seta 1000 15,85 / 5 / 107 7,75 / 2 / 24 2,30 / 2 / 8

Setb 229814 15,57 / 5 / 167 7.65 / 2 / 28 2,28 / 2 / 14

Setc 1500000 15,72 / 5 / 256 7.74 / 2 / 41 2,29 / 2 / 15

Table 1: Original data statistics.

based on the value of an activation threshold θ. All the classi-
fiers that differ at most θ from the best classifier with the high-
est weight are enabled. This behavior allows the ensemble to
dynamically select those models that best match the concepts
currently represented in the stream. However, currently dis-
abled models are not deleted from the ensemble since they
can be enabled in the future in case associated matching con-
cepts come back as relevant.

4 Comparative Experimental Evaluation

We compared 3 applications of our approach with the incre-
mental single flat model (labelled Dag) proposed in [Aiolli
et al., 2007; 2006]. We considered a weighed-ensemble ap-
proach, labeled WE, where all the models are active and the
final score is computed, even considering the weight associ-
ated with each DAG. In the remaining two approaches, the
selective behavior is enabled. The final class is computed
considering the weighed score or a majority class of the ac-
tive DAGs only. These two approaches are labeled SE and
SEM respectively. In all the cases, even the voted approaches
are tested as well.

The aim of the faced task is to predict, for each tree, the av-
erage vertex out-degree. All the experiments involve the use
of semi-real data, where it is possible to control concept drift,
and test how the latter influences the final results. Original
data includes two sets of trees computed as Part-of-Speech
of sentences taken from PropBank dataset. Specifically, the
input trees are real, taken from the POS tagging, while the
task is artificially created (by randomly changing the thresh-
old through time) for studying the behavior of the systems in
the presence of different drifting phenomena. Table 1 reports
the statistics about the datasets.

This approach is motivated by the fact that, before assess-
ing our approach with a real-world task, we must demonstrate
the reliably of the approach on controlled tasks. Due to space
limitation, only results on “hard” concept drifts are presented.
It is worth observing that in case of small concept fluctua-
tions, an ensemble of classifiers is by construction (due to the
average operator) robust.

Since our aim is to analyze the reaction of the systems to
concept drifting, three families of tests were considered. All
the systems were stressed by considering different situations,
where concept drift may occur. Given a set of trees, a drift
is simulated by classifying the trees based on their average
out-degree value. In particular, a threshold h is randomly
changed through time to assign the class value to a tree. If
a tree T has an average vertex out-degree higher than h, T is
classified as +1, otherwise t class is -1. Figure 4 highlights
the concept drifting phenomenon inside a specific train data
of DS-0 and DS-2. With reference to Table 2, DS-0 in-

(a) DS-0

(b) DS-2

Figure 4: Concept drift phenomenon. Percentage of positive
trees (y-axis) through time (x-axis).

volves the use of exactly 1000 trees taken from Seta, namely
500 for the test set and 500 for the train set. Every 500 ele-
ments a drift may occur. This situation represents a pure con-
cept drifting phenomenon, since from a drift to the next one
the same set of trees changes its class value. DS-1 shares
the same philosophy of DS-0, but a change may occur ev-
ery 1000 trees and the same tree can be randomly repeated
many times both in the train and the test set. DS-1 proposes
a real context, where some features appear in multiple and
unpredictable forms, while others are more unlikely. Finally,
DS-2 selects a subgroup from Setb, and estimates the relia-
bility of each system by varying the ratio between a drift and
the next one. The described datasets are freely available at
http://www.math.unipd.it/˜sperduti/TreeCD.

All the systems were implemented in Java 1.6 and the ex-
periments were run on a PC with Intel E8200 DualCore with
4Gb of RAM, employing Windows Vista as OS.

Our experiments consider frames of size 8 × 4. This frame
size is large enough to consider DAGs representing big por-
tions of data at higher-levels. The dimension of the frame is
selected to avoid loss of information, so to have a fair com-
parison of our approach versus the single flat DAG model,
which does not lose information.

The model activation threshold θ is set to 0.1 as the default
value used in [Grossi and Turini, 2011b]. For each test, a
collection of 10 training sets (and corresponding test sets of
equal size as the training sets) are randomly generated with
respect to the features outlined in Table 2. Every system is
run, and the accuracy is computed by using a train-and-test
approach. After a learning batch of 200 trees, the reliability
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Original data set Num. trees Avg. different trees Avg. shared Avg. effective

train train trees concept drifts

DS-0a/b/c Seta 25k / 50k / 100k 500 - 500 50 / 100 / 200 47,2 / 97,5 / 190.7

DS-1a/b/c Seta 25k / 50k / 100k 358 - 575 8893.2 / 17738.4 / 35626.4 20.1 / 40.1 / 77.7

DS-2a/b/c Setb 25k / 50k / 75k 24729.6 / 49153.2 / 73340.3 4162.8 / 15183.9 / 31754.2 20.2 / 18.9 / 18.1

Table 2: Description of datasets composition and statistics.

is tested with a test set of 200 unseen elements. Finally, the
average accuracy and 95% of interval confidence is reported.

Table 3 presents the overall accuracy reported by the sys-
tems. As a general observation, we can state that our SE and
Dag approaches provide an average accuracy higher than the
other ones even considering the confidence value. We addi-
tionally performed a test of significance between these two
systems, highlighting when the difference between SE and
Dag is statistically relevant. Moreover, Table 3 shows how
the selective behavior is important to guarantee a powerful
tool for reacting to concept drift. In this situation, WE ap-
proach does not guarantee a reliable performance in the pres-
ence of multiple data changes. DS-2 data set shows how the
accuracy of SE and Dag tends to be the same, increasing the
period between two changes. The use of the voted version
does not provide any improvement in the accuracy of our ap-
proaches. This is due to the nature of the voted approach that
implicitly simulates an ensemble method.

The run-time behavior of the systems is proposed in Ta-
ble 4. The latter highlights how our SE (and SEM) guaran-
tees a performance that outperforms all the others. This re-
sult is provided by the structure of EnDAG that manages all
the DAGs in the ensemble in a unique structure avoiding the
repetition of substructures. Tests not reported here for lack
of space showed that the described EnDAG implementation,
on the average, improves speed of a factor 4 on the naı̈ve ap-
proach that maintains all the DAGs separated.

These results show that, in the presence of concept drift-
ing, in most cases the accuracy of our system is increased
with respect to a single model. Moreover, if we consider SE
and Dag approaches, they demonstrate that even if in some
cases the accuracy of the two systems is similar, the run time
values guarantee that our SE approach is more suitable to be
employed in a streaming environment.

As a final test, we studied the behavior of our systems (ex-
cluding voting) on a large dataset of 1 million of trees gener-
ated from Setc in Table 1. We tested only our SE with Dag,
since the two systems are the most representative ones, given
the past tests. In particular, if we consider the behavior pro-
posed by SE, i.e. an average accuracy of 95.72% and run-
time of 211976.6 seconds, the results show that Dag is much
slower than SE, being able to process only 42.2% of the input
trees in the same amount of time needed by SE to complete
its task.

5 Conclusions

Kernel methods provide a powerful tool for modeling struc-
tured objects in learning algorithms. Unfortunately, they re-
quire a high computational complexity to be used in stream-
ing environments.

This work is the first that demonstrates how kernel meth-
ods can be employed to define an ensemble approach able to
quickly react to concept drifting and guarantees an efficient
kernel computation. Our experimental assessment demon-
strates that for high dynamical data streams our system pro-
vides an high level of reliability both in terms of accuracy and
time performance.
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adaptively frequent closed unlabeled rooted trees in data
streams. In Proceeding of the 14th ACM SIGKDD Internl.
Conf. on Knowl. Disc. and data mining, KDD ’08, pages
34–42, New York, NY, USA, 2008. ACM.
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