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Abstract

We conjecture that the distribution of the time-
reversed residuals of a causal linear process is
closer to a Gaussian than the distribution of the
noise used to generate the process in the forward
direction. This property is demonstrated for causal
AR(1) processes assuming that all the cumulants of
the distribution of the noise are defined. Based on
this observation, it is possible to design a decision
rule for detecting the direction of time series that
can be described as linear processes: The correct
direction (forward in time) is the one in which the
residuals from a linear fit to the time series are less
Gaussian. A series of experiments with simulated
and real-world data illustrate the superior results of
the proposed rule when compared with other state-
of-the-art methods based on independence tests.

1 Introduction

Identifying the true direction of a causal time series is an
interesting problem for the evaluation of novel methods for
causal inference [Peters et al., 2009]. Furthermore, solving
this problem can provide new insights about the asymmetries
between past and future in physical systems [Janzing, 2010].

We conjecture that, when a linear process is appropriate for
modeling a time series with non-Gaussian innovations, the
residuals of a linear fit to the time-reversed series are more
Gaussian than the residuals in the chronologically (forward in
time) ordered series. This property can be derived for series
that follow a causal AR process, assuming that the noise is
non-Gaussian and that the cumulants of the distribution of
the noise are defined. Based on this property it is possible
to use Gaussianity measures to detect the true direction of a
time series. The proposed method works by fitting a linear
model to the time series in the original ordering and in the
inverted ordering and then selecting the direction in which
the corresponding residuals are less Gaussian.

∗This research has been supported by the Spanish Dirección
General de Investigación under project TIN2010-21575-C02-02. AS
acknowledges partial financial support from Shizuoka University
(Japan).

Different metrics can be used to measure the distance of the
empirical distribution of the residuals to the Gaussian. A sim-
ple method is to use an estimate of a cumulant of order higher
than two to make the decision. More sophisticated metrics,
such as the Maximum Mean Discrepancy (MMD) have been
recently proposed [Gretton et al., 2007]. The performance of
the novel causal inference rules is evaluated in experiments
with data simulated from AR and ARMA processes and with
real-world data formed by time series of EEG measurements
of brain activity. In these experiments, the proposed approach
outperforms state-of-the-art decision methods that work by
quantifying the independence of the empirical residuals with
respect to the previous time series values [Peters et al., 2009].

2 Reversibility in Time Series

The time series {Xt}∞t=−∞ is said to be reversible when

the vectors {Xt1 , Xt2 , . . .Xtn} and {X−t1 , X−t2 , . . . X−tn}
have the same joint distribution for all n > 0 and ti, where
1 ≤ i ≤ n [Lawrance, 1991]. Identifying the true direction of
a time series is only possible when the series is not reversible.

Consider the autoregressive-moving average linear process

Xt =

p∑

i=1

φiXt−i +

q∑

j=1

θjεt−j + εt , (1)

where {εt} is i.d. white noise [Brockwell and Davis, 1991].
The previous definition of reversibility implies stationarity
[Lawrance, 1991]. If the distribution of εt is Gaussian then
{Xt} is time-reversible. This can be derived using the fact
that, when the noise is Gaussian, the joint distribution of
{Xt1 , Xt2 , . . . Xtn} for any n > 0 and ti, where 1 ≤ i ≤ n,
is multivariate Gaussian. The symmetry of the covariance
matrix guarantees that the process is strictly stationary and
time-symmetric. Weiss showed that if an ARMA process1 is
reversible, then {εt} is normally distributed [Weiss, 1975].

An alternative definition of time reversibility not restricted
to strictly stationary processes is proposed in [Peters et al.,
2009; 2010]. Consider a causal ARMA process, in which εt
is independent of Xt−k ∀k > 0, ∀t ∈ Z. The causal ARMA
process is said to be reversible when there is an i.i.d. sequence
{ε̃t} such that Xt =

∑p

i=1 φiXt+i+
∑q

j=1 θj ε̃t+j + ε̃t, with

1The process must satisfy p > 0 or, if p = 0, the cases θn =

θq−n and θn = −θq−n are excluded.
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{ε̃t} being independent of Xt+k, ∀k > 0, ∀t ∈ Z. They then
show, using the Darmois-Skitovich theorem, that a causal
ARMA process with i.i.d. noise and p > 0 is time-reversible
if and only if the noise is normally distributed. Finally, Peters
et al. propose to identify the true direction of a time series by
fitting an ARMA model and testing whether the residuals of
the model are independent of the previous time series values
in one direction and dependent in the opposite one.

Our approach to the problem of directionality detection is
different. Assuming a linear time-series model, we show that
the residuals of the time-reversed series are more Gaussian
than the residuals of the original series. Therefore, once we
have obtained the two series of empirical residuals, we can
use measures of Gaussianity to identify the correct direction.

3 Main Result

To simplify the presentation, the main result is derived for a
stationary causal AR(1) process

Xt = φXt−1 + εt , |φ| < 1 ,

{εt} is an i.d. white noise process, which is not necessarily
Gaussian. The noise is independent of the delayed values of
the process: εt ⊥ Xt−k, ∀k > 0, ∀t ∈ Z. The condition of
stationarity is fulfilled if |φ| < 1. The case φ = 0 is trivially
time-reversible (Xt = εt) and will not be considered further.

If the process is reversible, it can be expressed as

Xt = φXt+1 + ε̃t ,

where {ε̃t} is a white noise sequence and ε̃t ⊥ Xt+k,
∀k > 0, ∀t ∈ Z. The coefficient φ is the same as in the
forward equation because it is the one-lag autocorrelation
φ = cov(XtXt−1)/var(Xt) = cov(XtXt+1)/var(Xt),
which is symmetric in time.

If the process is not reversible, we define the time-reversed
residuals as

ε̃t ≡ Xt − φXt+1 .

In this case, {ε̃t} is not a white noise sequence and ε̃t is in
fact dependent of Xt+k, for some k > 0, ∀t ∈ Z.

Assuming that the cumulants of the white noise process
exist, the cumulants of ε̃t can be expressed in terms of the
cumulants of εt:

κn(ε̃t) = cn(φ)κn(εt), n > 0

cn(φ) = (−φ)n + (1 − φ2)n(1− φn)−1 (2)

The derivation of this expression can be found in Appendix
A. Figure 1 shows plots of cn(φ) as a function of φ for n =
1, . . . , 14. The following result can be stated for causal AR(1)
processes with φ �= 0 and |φ| < 1:

Theorem 3.1. The cumulants of ε̃t of order higher than 2 are
smaller in magnitude than the cumulants of εt, if these exist.

Proof. Using (2), and the fact that |cn(φ)| < 1, ∀n > 2, we
obtain |κn(ε̃t)| < |κn(εt)|, ∀n > 2.

For a Gaussian distribution, the cumulants of order higher
than two are zero. Therefore, Theorem 3.1 implies that the
cumulants of ε̃t are closer to the cumulants of a Gaussian than
the cumulants of εt. In this precise sense, the distribution of
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Figure 1: Coefficients cn(φ) (odd in the left plot, even in the
right plot) in a causal AR(1) process.

ε̃t is closer to a Gaussian than the distribution of εt. This
Gaussianization effect can be observed even when the higher
order cumulants diverge. In fact, it obtains even when none
of the cumulants are defined, as in the Cauchy distribution.
This effect is stronger for AR(1) processes in which |φ| is in

the vicinity of the golden ratio conjugate: φ ≈ ±(
√
5− 1)/2

(see appendix A and the plots in Figure 1).
Theorem 3.1 allows us to determine the correct direction

of the series {Xt}Tt=1 by measuring distances to the Gaussian
of the distributions of the residuals: Assuming that the AR(1)
model is correct, one performs a fit to the series and calculates
the empirical residuals in the original ordering, {et}Tt=2, and

in the inverted ordering of the series, {ẽt}T−1
t=1 , where

et = Xt − φ̂Xt−1 , ẽt−1 = Xt−1 − φ̂Xt ,

t = 2, . . . , T and φ̂ is the empirical correlation between Xt

and Xt−1. Note the difference between {et}, the empirical
residuals, and {εt}, the i.d. white noise process that was used
to generate the time-series values. The correct direction of the
series is the one in which the corresponding empirical resid-
uals are less Gaussian.

Theorem 3.1 can be readily generalized to causal AR(p)
processes and is expected to hold also for causal ARMA and
vector AR processes. An analysis of simulated and real-world
data provides strong evidence for this.

4 Gaussianity Measures

We consider two measures of Gaussianity for detecting the
direction of causal time series that follow a linear model. The
first one is directly based on the inequality given by Theorem
3.1 for a particular order of the cumulants. We focus on the
fourth order cumulant because κ4 is the cumulant with lowest
order which is non-zero for symmetric non-Gaussian noise.
In leptokurtic distributions, the estimates of κ4 have lower
variance than the estimates of cumulants of higher order.

Given a sample {Yi}Ni=1, the unbiased estimator of κ4 with
lowest variance is the fourth k-statistic [Kendall et al., 1994]:

k4 =
1

N [4]

[
(N3 +N2)S4 − 4(N2 +N)S3S1

−3(N2 −N)S2
2 + 12NS2S

2
1 − 6S4

1

]
, (3)
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Figure 2: Density for the noise (top row) and the reversed residuals (bottom row) in an AR(1) model with φ = (
√
5− 1)/2.

where N [4] = N(N − 1)(N − 2)(N − 3) and S1, . . . , S4 are

the first 4 power sums, that is, Sr =
∑N

i=1 Y
r
i . The inference

rule based on κ4 selects the direction for which the empirical
residuals have lower values of (3).

The deviations from Gaussianity may also appear at higher
order cumulants. In fact, it is possible to build non-Gaussian
random variables with a finite number of zero cumulants,
including κ4. Therefore, properly designed metrics on the
space of probability distributions should be a better way to
quantify the deviations of the residuals from Gaussianity and
to provide a more effective method for detecting the direction
of the time series. We focus on metrics based on a Hilbert
space embedding for probability distributions [Gretton et al.,
2007; Sriperumbudur et al., 2010]. Let p and q denote two
density functions defined on R and let F be the unit ball
in a universal reproducing kernel Hilbert space H defined
on R with kernel k(·, ·). The Maximum Mean Discrepancy
(MMD) between p and q within the set of functions F is

sup
f∈F

(Ey∼p[f(y)]−Ez∼q[f(z)]) = ‖μp − μq‖H ,

where μp = Ey∼p[k(y, ·)] and μq = Ez∼q[k(z, ·)] are the
corresponding mappings of p and q onto H and ‖·‖H denotes
the norm operator in H [Smola et al., 2007]. MMD vanishes
when p = q and is positive otherwise [Gretton et al., 2007].

Given a sample {Yi}Ni=1 with zero-mean and unit standard
deviation, we can compute the MMD statistic between the
standard Gaussian distribution and the empirical distribution
of the sample. For this, we define

p(y) =
1

n

n∑

i=1

δ(y − Yi) , q(z) = (2π)
− 1

2 exp
(−0.5z2

)
,

where δ(y) represents a point probability mass at y = 0, and
the target function q is the N (0, 1) density. Using a Gaussian
kernel k(y, z) = exp[− 1

2σ2 (y − z)2] of width σ, we obtain
the square of the MMD statistic:

‖μp − μq‖2H = 〈μp, μp〉H + 〈μq, μq〉H − 2〈μp, μq〉H

=
1

N2

N∑

i,j

k(Yi, Yj) +
σ√

2 + σ2
− 2

N

N∑

i=1

k
′

(Yi) , (4)

where 〈·, ·〉H denotes the dot product operator in H and

k
′

(y) = σ√
1+σ2

exp[− 1
2(1+σ2)y

2]. The MMD decision rule

selects the direction of the time series in which the value of
(4) for the empirical residuals is lower.

5 Related Work

PC-LINGAM [Hoyer et al., 2008] combines conditional in-
dependence methods with ICA based approaches for causal
inference. This method discriminates between models in the
same d-separation-equivalence class by selecting the model
that maximizes the ICA target function

(
Ey∼p {|y|} −Ez∼N (0,1) {|z|}

)2
,

where p is the empirical distribution of the standardized
model residuals (zero mean and unit standard deviation). This
target function is a specific case of the MMD distance in
which the set F contains only the absolute value function | · |.

A related method is described in [Daniušis et al., 2010].
This technique employs Gaussianity measures for inferring
causal directions between two random variables. The variable
whose marginal distribution is closer to a Gaussian is selected
as the cause and the other one as the effect. The distance to
the Gaussian is computed using an empirical estimate of the
entropy. This method cannot be directly applied to time series
because, if the analyzed process is stationary, both cause (Xt)
and effect (Xt+1) have the same distribution.

In [Zhang and Hyvärinen, 2009], a class of acyclic causal
models are investigated. In these models, the causal relations
among the observed variables are nonlinear but the effect of
the disturbances is linear. These authors show that, when the
disturbances are additive, the correct causal model is the one
with the lowest entropy for the disturbances. This agrees with
the results of our investigation: For linear models, (2) implies
that the differential entropy of the forward residuals is lower
than that of the reversed residuals. However, in the problems
investigated, entropy-based measures of Gaussianity, such as
those used in [Daniušis et al., 2010], achieve lower accuracies
than the proposed methods (results not shown).
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Figure 3: Results obtained by each method in the experiments with AR(1) and ARMA(2,2) time series.

6 Experiments

The performance of the decision rules based on MMD and κ4

is investigated in experiments with simulated and real-world
data. The statistical test described in [Peters et al., 2009] is
used as a benchmark for comparison. This method is based on
determining whether the empirical residuals are independent
of the previous time series values in one direction and depen-
dent in the opposite direction. The degree of dependence is
measured using the p-value given by a statistical test based on
the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton
et al., 2008]. The smaller this p-value is, the larger the level of
dependence in the data. The direction predicted by the HSIC
test is the one for which the dependencies between the model
residuals and the previous time series values up to a fixed lag
γ are weaker. For example, when γ = 2 the HSIC method
checks for (i) dependencies between et and Xt−1, Xt−2 and
(ii) dependencies between ẽt and Xt+1, Xt+2. The input to
each decision rule (MMD, κ4 and HSIC) are the empirical
residuals and the time series values (the latter ones only for
HSIC). These input series are standardized so that they have
zero mean and unit standard deviation.

6.1 Experiments with Simulated Data

The protocol of these experiments is similar to the one used
in [Peters et al., 2009]. First, we simulate time series that
follow AR(1) processes, using different values of φ and with
εt ∼ |Z|rsgn(Z), where Z ∼ N(0, σ2) and σ is such that
εt has unit standard deviation. The parameter 0.1 ≤ r ≤ 2
determines the shape of the noise distribution. For r = 1
εt follows a Gaussian distribution. In the region r > 1, the
noise is leptokurtic. For values r < 1, the distribution of εt
is platykurtic and bimodal. The density of εt is plotted in the
top row of Figure 2 for r = 0.1, 0.75, 1.25 and 2. The bottom
row in this figure displays the density functions of the time-

reversed residuals in the AR(1) model when φ = (
√
5−1)/2.

The reversed residual densities are closer to a Gaussian than

the original ones.
In general, both MMD and HSIC use Gaussian kernels

whose width σ is σ2 = m/2, where m is the median distance
between sample points. However, MMD does not perform
well using this rule when the modes of the distribution for
r < 1 are far apart. In this specific case, the median distance
between sample points measures mainly the distance between
the modes, rather than the characteristic scale of the data. To
avoid this problem, we only consider positive values of the
residuals when computing m in MMD for r < 1. The results
of the HSIC test are similar using either the original or the
modified rule. In practice, the performances of MMD and of
the HSIC test do not strongly depend on the particular choice
of σ as long as reasonable values are considered.

Using different values of φ and r, we sampled 1000 series
of length 100 and evaluated the accuracy of each decision
method. The accuracy is defined as the fraction of series for
which the method predicts the correct direction. The top row
in Figure 3 displays the results for r = 0.75, 1.25, 1.5when φ
is varied between −0.98 and 0.98. For r < 1, all the decision
rules perform similarly. However, when r > 1 the method
based on κ4 obtains worse results than MMD and HSIC. The
reason for this is the larger sampling variance of (3) when
the residual distribution is heavy-tailed. When r > 1 and φ is
small, MMD consistently outperforms HSIC. All the methods
perform similarly as random guessing for |φ| close to 0 or 1.
The reason is that, for these parameter values, the process
is close to being time-reversible. The highest accuracies are

obtained for φ ≈ ±(
√
5 − 1)/2. This is the value of φ for

which the Gaussianization effect is the largest.
We also simulate ARMA(2,2) models Xt = φ1Xt−1 +

φ2Xt−2+ θ1εt−1+ θ2εt−2+ εt, where the distribution of the
noise has the same functional form as before. The parameters
are φ1 = 0.9, φ2 = −0.3, θ1 = −0.29 and θ2 = 0.5 and r
is varied between 0.1 and 2, as in [Peters et al., 2009]. For
each value of r, 1000 series of length 200 are generated. The
analysis is made also for other choices of φ1: φ1 = 0.3 and
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Figure 4: Results obtained by each method in the experiments with EEG data.

φ1 = (
√
5 − 1)/2. The lag used in the HSIC independence

test is γ = 1, except in the experiments with φ1 = 0.3, where
γ = 2 performs better. The bottom row in Figure 3 displays
the results obtained by MMD, HSIC and the method based
on κ4. MMD performs best, followed by the κ4 method. The
performance of HSIC for r > 1 and φ1 = 0.3 is rather poor.
All the methods perform as random guessing for r = 1. In
this case, the noise distribution is Gaussian and the time series
are time-reversible. Similar results are obtained for ARMA
models of different orders and different parameter values.

6.2 Experiments with Real-world Data

The performance of the proposed rules is also evaluated in
experiments with time series of EEG measurements of brain
activity. Following [Peters et al., 2009], we use 1180 time
series of length 500 from the publicly available dataset [EEG
data, 2010]. Different ARMA models of order up to (5,5)
are calibrated to each time series in each possible direction.
The best model is selected using the AIC method. For each
time series, a Jarque-Bera test of Gaussianity is applied on
the empirical residuals of the correct direction of the series
[Peters et al., 2009]. We discard the series for which this test
does not reject the Gaussian hypothesis: When the noise is
Gaussian the series is time-reversible and it is not possible to
predict the correct ordering. Finally, we follow [Peters et al.,
2009] and select the final set of series on which we make a
decision. For this, we use two p-values. The first one, p, is
given by an HSIC test that checks for dependencies between
et and Xt−1. The second one, p̃, is given by an HSIC test
for dependencies between ẽt and Xt+1. We select those time
series that satisfy min(p, p̃) < α and max(p, p̃) > α and
additionally, max(p, p̃) −min(p, p̃) > δ, where α and δ are
two parameters whose value are fixed beforehand. We make
a decision only when the difference between p-values is at
least larger than δ and exactly one p-value is lower than α.
Typically, α is small and δ large. The first filter (the one based
on α) guarantees that the causal ARMA process provides a
good description for some ordering of the series. The second
filter (the one based on δ) selects series for which the HSIC
method is more confident about its decision. For the HSIC
test, the lag used in the experiments is γ = 1, which gives
the best results. Both MMD and HSIC use Gaussian kernels
whose width σ is σ2 = m/2, where m is the median distance
between sample points.

Figure 4 shows the accuracy of each method for α = 0.02,
0.04, 0.06 and 0.08 and values of δ in the interval [0, 0.5]. The

number of series selected varies from 164 for α = 0.8 and
δ = 0 to 17 series for α = 0.02 and δ = 0.5. MMD has the
best overall performance. The method based on κ4 obtains
rather poor results. The reason is that the noise in the EEG
data usually presents heavy tails. These heavy tails mean that
the variance of the estimator of κ4 given by (3) due to the
finite size of the sample is rather large. The accuracy of HSIC
increases with δ and in some cases HSIC outperforms MMD
(for large δ). Note that, by increasing δ, we are selecting
the time series in which the HSIC method is more confident
about its prediction. Hence, larger values of δ favor the HSIC
method. The MMD approach could be modified to generate
p-values under the null hypothesis that the distribution of the
residuals is Gaussian [Gretton et al., 2007]. These p-values
could be used to select the time series for which MMD is
more confident about its prediction. However, this possibility
has not been addressed in the present investigation.

7 Concluding Remarks

Using the properties of cumulants we have shown that for a
causal AR(1) process, the residuals {ε̃t} of a time-reversed
linear stochastic process are closer to a Gaussian than the
noise {εt} used to generate the process in the chronologi-
cally ordered direction. The proof is based on showing that
all the cumulants of ε̃t of order higher than 2 are smaller in
absolute value than the cumulants of εt. Using this property,
we have designed a rule to identify the correct direction of a
time series that admits a linear model and has non-Gaussian
noise. This rule is based on measuring the distance of the
residual distribution to the Gaussian. The correct direction is
identified as the one for which the model residuals are less
Gaussian. Experiments on several AR and ARMA processes
with different distributions for the innovations and different
parameter values confirm the excellent performance of the
proposed rule. Similar results are obtained using real-world
time series of EEG data. The performance is good even when
the cumulants of the noise are not defined. This is probably
related to the fact that the cumulants of a finite sample are
finite.

A Derivations

The product cumulants of the random variables εt and Xt−1

are defined as

logE[exp {aεt + bXt−1}] ≡
∞∑

n=0

∞∑

m=0

an

n!

bm

m!
κnm(εt, Xt−1) ,
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with κ00(εt, Xt−1) = 0, and a and b arbitrary constants.
Since εt and Xt−1 are independent, only the single-variable
cumulants in the expression above are different from zero:

κnm(εt, Xt−1) = δm0κn(εt) + δn0κm(Xt) , n+m > 0,

where δ is the Kronecker delta and κm(Xt−1) = κm(Xt) by
stationarity. The characteristic function of ε̃t and Xt+1 can
be written in terms of the characteristic functions of εt and of
Xt:

E[exp {aε̃t + bXt+1}] = E[exp {(b− aφ)εt}]·
E[exp

{
(bφ+ a(1− φ2))Xt

}
] ,

where a and b are purely imaginary constants. The product
cumulants of ε̃t and Xt+1 can also be expressed in terms of
the cumulants of εt and Xt :

∞∑

n=0

∞∑

m=0

an

n!

bm

m!
κnm(ε̃t, Xt+1) =

∞∑

j=0

1

j!

{
(b− aφ)jκj(εt) + (bφ+ a(1− φ2))jκj(Xt)

}
,

for all m > 0, n > 0, m + n > 0. Assuming stationarity,
we can use the relation

κn(Xt) = (1 − φn)−1κn(εt) ,

and express the product cumulants in terms of the cumulants
of εt alone

κnm(ε̃t, Xt+1) = cnm(φ)κn+m(εt) , (5)

cnm(φ) = (−φ)n + (1− φ2)n(1− φn+m)−1φm .

The cumulants of ε̃t and Xt are particular cases of (5) with
m = 0 and n = 0, respectively. Therefore, the cumulants of
ε̃t can be expressed as a function of the cumulants of εt:

κn(ε̃t) = cn(φ)κn(εt) ,

cn(φ) = (−φ)n + (1 − φ2)n(1− φn)−1

and n > 0. For causal AR(1) processes with φ �= 0 and
|φ| < 1 we obtain c1(φ) = c2(φ) = 1, |cn(φ)| < 1, ∀n > 2,
limn→∞ cn(φ) = 0 and

φmin = lim
n→∞ argmin

φ

{|cn(φ)|} = ±(
√
5− 1)/2 .
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