
Heuristic Rule-Based Regression
via Dynamic Reduction to Classification

Frederik Janssen and Johannes Fürnkranz
Knowledge Engineering, TU Darmstadt

Darmstadt, Germany
{janssen,juffi}@ke.tu-darmstadt.de

Abstract
In this paper, we propose a novel approach for
learning regression rules by transforming the re-
gression problem into a classification problem. Un-
like previous approaches to regression by classi-
fication, in our approach the discretization of the
class variable is tightly integrated into the rule
learning algorithm. The key idea is to dynamically
define a region around the target value predicted by
the rule, and considering all examples within that
region as positive and all examples outside that re-
gion as negative. In this way, conventional rule
learning heuristics may be used for inducing regres-
sion rules. Our results show that our heuristic algo-
rithm outperforms approaches that use a static dis-
cretization of the target variable, and performs en
par with other comparable rule-based approaches,
albeit without reaching the performance of statisti-
cal approaches.

1 Introduction
The accurate prediction of a numerical target variable is an
important task in machine learning. However, while the sta-
tistical learning community has proposed a great variety of
algorithms for solving this problem, it has not received so
much attention in the data mining and inductive rule learning
communities, where a strong focus lies on the comprehensi-
bility of the learned models.

The goal of this work is the design of a heuristic rule learn-
ing algorithm that learns regression models in the form of a
decision list or rule set consisting of simple regression rules
that have constant models in the rule head. This model class
is fairly restrictive, but we can show that our approach of
a dynamic reduction of regression to classification yields a
very good performance within this model class. However, its
performance is still below the performance of statistical ap-
proaches that incorporate linear models or boosting.

Several strategies to induce a set of regression rules have
been proposed in the literature. Some of them rely on the
gradient-descent algorithm for finding a rule ensemble that
optimizes some loss function. Others convert given trees into
sets of rules. We will briefly review work in this area in
Section 2. One of the most popular strategies for learning

classification rules is the so-called separate-and-conquer or
covering algorithm, which we will briefly recapitulate in Sec-
tion 3, because, due to its simplicity and its good performance
in classification, we decided to use this strategy as the basis
for our approach. In Section 4, we introduce our approach
for repeatedly converting regression problems into classifica-
tion problems. Its key idea is to dynamically define a region
around the target value predicted by the rule, and considering
all examples within that region as positive and all examples
outside that region as negative. The experimental setup of our
approach and the key results are described in Sections 5 and 6
respectively.

2 Related work
There are only a few published previous attempts that try to
adopt separate-and-conquer rule learning to regression. Ex-
amples include the FRS system [Demšar, 1999], which is a
reimplementation of the earlier FORS algorithm [Karalič and
Bratko, 1997], and predictive clustering rules (PCR) [Ženko
et al., 2005]. Predictive clustering rules are generated by
modifying the search heuristic of CN2 [Clark and Niblett,
1989] to use a heuristic that is based on the dispersion of the
data. This algorithm also follows a different route by join-
ing clustering approaches with predictive learning. The R2

system [Torgo, 1995] works to some extent analogously as
other separate-and-conquer algorithms by selecting an uncov-
ered region of the input data. But this selection differs from
the mechanism used in regular separate-and-conquer learn-
ing. However, it also allows for rules to overlap and the rules
predict linear models instead of a single target value.

More popular are techniques that learn regression trees
[Breiman et al., 1984; Quinlan, 1992; Wang and Witten,
1997], which can then be converted into decision rules as in
the M5RULES algorithm [Holmes et al., 1999]. The key idea
of these approaches is also to replace the purity heuristic of
the decision tree algorithm with a heuristic that measures the
reduction in variance.

Other rule-based regression algorithms are based on en-
semble techniques. For example, RULEFIT [Friedman and
Popescu, 2008] performs a gradient descent optimization, al-
lows the rules to overlap, and the final prediction is calculated
by the sum of all predicted values of the covering rules. REG-
ENDER [Dembczyński et al., 2008] uses a forward stage-
wise additive modeling.

1330

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Another popular technique to deal with a continuous target
attribute is to discretize the numeric values as a preprocessing
step and apply conventional classification algorithms on the
discretized target attribute. Research following this path can
be found in [Torgo and Gama, 1996; Weiss and Indurkhya,
1995]. The main problem here is that the number of bags for
the discretization process is not known in advance. For this
reason the performance of this technique strongly depends on
the choice of the number of classes. [Langford et al., 2006]
convert a regression problem into a set of binary classification
problems, where each classifier essentially tests whether an
example is above or below a certain threshold.

The key idea of our approach for converting regression
to classification is reminiscent of ε-insensitive loss functions
which form the basis of several support-vector regression al-
gorithms [Smola and Schölkopf, 2004]. A key difference is
that we adapt the width of the insensitive region dynamically
after each refinement step.

3 Separate-and-conquer rule learning
Most inductive rule learning algorithms for classification em-
ploy a separate-and-conquer strategy [Fürnkranz, 1999]. Its
basic idea is to find a rule that covers a part of the example
space that is not explained by any rule yet (the conquer step).
After this rule is found, it is added to the current set of rules,
and all examples that are covered by the rule are removed
from the data set (the separate step). Then, the next rule is
searched on the remaining examples. This procedure is re-
peated until no more (positive) examples are left. In order to
prevent overfitting, the two constraints that all examples have
to be covered (also called completeness) and that no negative
example has to be covered in the binary case (consistency)
can be relaxed so that some positive examples may remain
uncovered and/or some negative examples may be covered
by the set of rules.

For finding the next rule, most of the algorithms employ a
top-down search, which iteratively refines an initially empty
rule by successively adding conditions to it. For nominal at-
tributes, candidate conditions are formed by comparing the
attribute to all possible values. For numerical attributes, each
test (< and ≥) that compares the attribute’s value to one of
the values for this attribute is a candidate condition. The
splitpoints are calculated as the mean between two adjacent
(previously sorted) values. Among all candidate refinements,
the best one is selected using a heuristic function. This rule
is then in turn refined until no more negative examples are
covered. The best rule encountered in this process is then
returned as the final rule.

There are many different heuristics to navigate the search.
All of them are trying to maximize the coverage of positive
examples (p) and to minimize the negative coverage (n), but
differ in the way in which they trade off these two objectives
[Fürnkranz and Flach, 2005]. Experimenting with all known
heuristics was out of the scope for this paper, so the deci-
sion was to use a heuristic that is known to underfit the data
(weighted relative accuracy [Todorovski et al., 2000]), one
that overfits the data (laplace), and two that are known to per-
form well in a large variety of datasets (correlation and rel-

weighted relative accuracy (wra) =
p

P
− n

N

laplace (lap) =
p+ 1

p+ n+ 2

correlation =
p ·N − n · P√

P ·N · (p+ n) · (P − p+N − n)

relative cost measure (rcm) = c · p

P
− (1− c) · n

N

Figure 1: The rule-learning heuristics used in this paper. p
and n are the number of covered among the P positive and N
negative examples.

ative cost measure). The latter features a parameter c, which
we set to the value of 0.342, which was recommended in
[Janssen and Fürnkranz, 2010a]. The definition of these four
heuristics is shown in Figure 1.

In our implementation, we only consider refinements that
ensure that a minimum number of examples is covered. For
all experiments (cf. Section 6) we fixed the minimum cov-
erage to 3 examples. Missing attribute values are treated as
uncovered by any condition. When the class of an instance
is missing it is removed from the dataset in a pre-processing
step. As a search strategy simple hill-climbing was used.

For classifying unseen examples, we use the learned set of
rules as a decision list, i.e, the first rule that covers the exam-
ple “fires” and predicts the target value that is stated in the
head of the rule. If no rule covers the example, the prediction
is given by a default rule that usually predicts the majority
class in the data.

4 Dynamic Reduction to Classification
There are two principal approaches for adapting heuristic rule
learning algorithms to numerical target variables. One way
is to change the heuristic function in a way that the goal
of discriminating between positive and negative examples is
replaced with the goal of reducing the variance in the tar-
get value. This approach has been taken by most decision-
tree based approaches [Breiman et al., 1984; Quinlan, 1992;
Wang and Witten, 1997] and by several regression rule learn-
ing approaches [Karalič and Bratko, 1997; Torgo, 1995].

An alternative approach is to derive the necessary statis-
tics, i.e., p and n, the number of positive and negative ex-
amples that are covered by the rule, and P and N , the total
number of positive and negative examples in the dataset, from
numerical data, so that heuristics that are known to work well
for classification can be directly used on regression problems.
A simple strategy that employs this approach is to discretize
the target value using equal-width, equal-frequency, or the
search-based approach proposed in [Torgo and Gama, 1996].

However, the use of class-discretization as a pre-processing
step makes it harder to fine-tune the class values to the context
provided by the examples, just as a pre-discretization of at-
tributes is less flexible than the dynamic discretization that is

1331

commonly used in rule learning or decision-tree algorithms.
Therefore, we propose an alternative approach that allows to
dynamically derive positive and negative examples from re-
gression data.

Each (complete or incomplete) rule r is associated with a
numerical target value yr which will be predicted for all ex-
amples that are covered by this rule. Obvious candidates for
determining yr are the mean and the median of the covered
examples. We chose the median because it is more robust
against outliers. Our goal is that the covered examples are
close to this predicted value. In fact, this is the key motiva-
tion behind all approaches that evaluate candidate conditions
by the reduction of the variance among the covered exam-
ples. We implement this idea in a different way by not di-
rectly using the standard deviation as a measure for the rule
quality, but by labeling all examples that are within the stan-
dard deviation as positive, and all examples that are outside
the standard deviation as negative. This allows to evaluate
the rule using standard classification heuristics such as those
defined in Figure 1 for guiding the learner. More precisely, if
the distance between the target value and the predicted value
is below a certain threshold, this example is considered to be
positive and if it is above the threshold it would be a negative
example, i.e.,

class(x) =

{
positive if |y − yr| ≤ tr
negative if |y − yr| > tr

(1)

where x is the current example, y is the true value of the ex-
ample x, yr is the value predicted by rule r and tr is a thresh-
old. Thus, the total number of positive and negative examples
is defined as

Pr =
m∑
i=1

1(|yi − yr| ≤ tr); Nr = m− Pr (2)

where m = number of examples, and 1(.) is the indicator
function.

All possible conditions l are then evaluated by forming the
refined rule r′ = r ∪ l and counting how many positive (pr,l)
and negative (nr,l) examples are covered by r′. Among them,
the condition that maximizes a given rule learning heuristic
such as those shown in Figure 1 is chosen.

Note that all counts are indexed with the rule r. This is
because both the predicted value yr and the threshold tr may
change with each refinement step. As a consequence, the la-
bels of the examples and thus any of the above counts may
change after r is replaced with r′. Note, however, that the
positive examples provide a focus towards the median of a
rule, which makes it more likely that the label of examples
changes from positive to negative than in the opposite direc-
tion.

One can think of different ways for defining the thresh-
old tr. As motivated above, the standard deviation σr of the
examples that are currently covered by the rule is a natural
choice. We also experimented with a factor that slightly re-
duces or enlarges the standard deviation. Section 6 shows the
results for three thresholds, tr = 0.95 · σr, tr = σr, and
tr = 1.05 · σr. We also considered asymmetric distributions

name # nominal # numeric # instances # values
auto-mpg 3 4 398 129
auto-price 1 14 159 145

auto93 6 16 93 81
cloud 2 4 108 94

compressive 0 8 1030 845
concrete 0 9 103 83

cpu 1 6 209 104
diabetes 0 2 43 20

echo-month 3 6 130 53
housing 1 12 506 229
machine 0 6 209 116

meta 2 19 528 436
pyrim 0 27 74 63
strike 1 5 625 358

triazines 0 60 186 102
veteran 4 3 137 101

Table 1: Overview of the databases. For each dataset, we
show the number of nominal and numeric attributes, the num-
ber of instances, and the number of distinct target values.

where we have two different thresholds, one for yr < y, and
one for yr > y, but this did not improve the results.

As in the classification setting, the refinement of a candi-
date rule continues until no more negative examples are cov-
ered, and the best rule encountered in this process is returned
as the final rule. Depending on the selected heuristic, this is
not necessarily the last rule.

Finally, we have to define a stopping criterion that stops the
induction of rules in general. A naive method to do so is to
stop the induction of additional rules when a certain amount
of examples is covered by rules. We decided to stop learning
rules as soon as 90% or more of the examples are covered
by rules. While we did not yet perform a thorough evalua-
tion of this parameter, it was chosen according to our expe-
rience with a different covering-based regression rule learner
[Janssen and Fürnkranz, 2010b]. We only confirmed in a few
informal experiments that 90% is a reasonable choice. All
remaining examples will be covered by a default rule, which
will predict the median value of all uncovered training exam-
ples.

5 Experimental setup
In the following, we compare our algorithm to a variety of
other algorithms, both state-of-the-art regression rule learn-
ers and statistical regression learners, all in their implementa-
tions in the WEKA data mining library [Witten and Frank,
2005]. The rule learning algorithms include M5RULES,
which applies the separate-and-conquer technique and gen-
erates a tree in each iteration and derives regression rules
from these model trees or (using the option -R) from re-
gression trees, and REGENDER [Dembczyński et al., 2008]
an ensemble-based rule learning algorithm, which we used
in its default configuration in WEKA (learning 50 rules)
and the setting recommended by its authors (learning 200
rules, different loss function, and different optimization tech-
nique). In addition, we also compare our dynamic approach
to regression by classification to a static approach. For

1332

this purpose, we used the standard approach implemented
in WEKA using the class weka.classifiers.meta.
RegressionByDiscretization. However, we used
an equal-frequency instead of the default equal-width dis-
cretization of the class variable, because the former seemed
to work better. As a learning algorithm we used the same
rule learning algorithm upon which our dynamic approach is
based, with the same four learning heuristics shown in Fig-
ure 1. As representatives for statistical regression algorithms
we used linear regression, a multi-layer perceptron (MLP),
and support-vector regression.

Table 1 shows the 16 datasets that were used in the ex-
periments. The datasets can be downloaded from the UCI
Repository [Frank and Asuncion, 2010] or at Luı́s Torgo’s
webpage.1 The table reports the number of instances and
numerical/nominal attributes and also the number of distinct
values. For the selection, we focused on datasets that have a
reasonable number of different values in the class variable, in
order to avoid any unfair advantage that rule-based methods
might have on data sets with a numerical data variable with
only a few different values.

The primary method to evaluate the algorithms is the rela-
tive root mean squared error (rrmse) obtained by a 1x10 cross
validation implemented in WEKA [Witten and Frank, 2005].
For space restrictions, we cannot report results on individual
datasets in this paper. Instead, we report average results over
all 16 datasets. We are aware of the problems that come with
averaging results over many different domains (i.e., some
databases may be outliers with huge variance compared to
the majority of the other datasets) and hence also report the
average ranks of the algorithms in the tables. Where applica-
ble, we also test for statistical significance using a Friedman-
Test with a post-hoc Nemenyi-Test as suggested in [Demšar,
2006]. The resulting CD-charts give insights how good the al-
gorithms perform by evaluating their ranking independently
from using average accuracy.

6 Results
Table 2 shows the results of various parametrizations of our
approach in comparison to the static regression by equal-
frequency discretization. We tried different variants using 5,
10, and 20 classes. For comparison, we also show the re-
sults of two other regression-based rule learning algorithms,
namely M5RULES [Holmes et al., 1999] used with the option
-R so that it predicts constant values in the rule head, and
REGENDER [Dembczyński et al., 2008] in its default con-
figuration which learns 50 rules, a number that is still compa-
rable to the number of rules learned by our algorithms. Other
settings for these algorithms are evaluated further below.

It can be clearly seen that all dynamic versions outperform
all static versions in all configurations. The best static version
has an average rank of 14.75, whereas the worst dynamic ver-
sion has an average rank of 13.13. A Friedman test can reject
the null hypothesis that all algorithms are equal with high cer-
tainty (p � 0.01). The post-hoc Nemenyi test shows that the
best configuration (dynamic regression using correlation as a

1http://www.liaad.up.pt/˜ltorgo/Regression/
DataSets.html

Dynamic Regression by Classification
factor heuristic rrmse rank # rules # conds
0.95 wra 0.752 8.63 15.06 38.31
0.95 lap 0.784 11.19 11.25 13.88
0.95 corr 0.726 6.50 10.13 24.63
0.95 rcm 0.780 9.81 19.06 34.25
1.00 wra 0.764 10.06 17.06 47.81
1.00 lap 0.774 10.63 10.19 12.50
1.00 corr 0.753 8.38 9.25 22.06
1.00 rcm 0.767 9.50 19.06 35.75
1.05 wra 0.780 13.13 13.19 34.19
1.05 lap 0.772 10.19 9.69 11.81
1.05 corr 0.796 12.88 10.25 33.31
1.05 rcm 0.775 9.75 19.44 37.56

Static Regression by Classification
classes heuristic rrmse rank # rules # conds

5 wra 0.883 18.25 5.63 20.75
5 lap 0.857 14.75 84.56 197.44
5 corr 0.844 15.13 28.06 84.00
5 rcm 0.852 16.63 22.88 68.00
10 wra 0.930 18.69 6.06 23.13
10 lap 0.872 17.00 138.44 339.25
10 corr 0.864 15.88 49.31 167.25
10 rcm 0.901 17.94 20.75 67.31
20 wra 0.965 20.81 10.06 36.56
20 lap 0.872 18.06 177.44 423.63
20 corr 0.862 17.81 95.13 295.00
20 rcm 0.928 19.13 33.19 102.13

Other Rule-Based Regression algorithms
algorithm rrmse rank # rules # conds
REGENDER (50) 0.768 9.38 50.00 190.00
M5RULES -R 0.773 10.44 6.19 14.94

Table 2: Evaluation of dynamic regression by classification
(top), static regression by classification (bottom), and two
other rule-based learning algorithms. Shown is the average
rrmse, the average rank among these 26 algorithms, and the
average number of rules and conditions of the learned con-
cepts.

search heuristic and a factor of 0.95) is significantly better
than all but two static configurations at a significance level of
0.1 (CD = 9.354), and better than seven at the significance
level of 0.01 (CD = 11.125). However, it should be noted
that our rule learning algorithm does not produce probability
distributions, which could improve its performance.

Somewhat surprisingly, the versions using more classes
tend to have a worse performance than the versions with
fewer classes. Apparently, the advantage of a finer grained
discretization of the target variable is outweighed by the dis-
advantage that problems with multiple classes are harder to
learn for the underlying rule learner. This is also confirmed
by the number of rules the algorithms learned. Here, when
learning 20 classes the number of rules is the highest among
all configurations.

With respect to the different configurations of the dynamic
approach, it seems that lower versions of the factor that is
applied to the standard deviation seem to yield a somewhat
better performance.

Among the four heuristics, correlation proves to be the

1333

algorithm rrmse rank # rules # conds
Regular 0.726 7.06 10.13 24.63
Bagged (10) 0.671 5.88 97.94 245.81
Bagged (20) 0.659 4.94 186.75 451.25
Bagged (50) 0.658 4.63 465.88 1146.56
Linear Regression 0.651 4.31 — —
MLP 0.746 5.88 — —
SVM Regression 0.673 5.19 — —
REGENDER (200) 0.679 4.50 200.00 1163.63
M5RULES 0.604 2.63 2.94 5.38

Table 3: Comparison of a bagged version to other types of
regression algorithms

best choice. This confirms previous results on classification
datasets [Janssen and Fürnkranz, 2010a]. However, it seems
that the good performance of the relative cost measure does
not materialize in this setting (or at least not with the param-
eter setting that performed well in classification). In this con-
text, a surprising observation is that the complexities of the
regression theories do not correspond to their known behav-
ior: while the expectations that laplace overfits and wra over-
generalizes are clearly met in classification, this cannot be
observed in the regression rule sets. In fact, with the dynamic
approach, laplace finds fewer rules and conditions than wra.

Interestingly, the rrmse monotonically decreases when the
factor attached to the standard deviation is increased for
laplace, while it increases for wra. This means that evalu-
ating rules with wra seems to decrease performance with a
growing number of positive examples, whereas the perfor-
mance of laplace seems to improve. A possible explanation
could be that a narrower range of positive examples may help
to prevent overfitting.

Overall, the performance of the dynamic class discretiza-
tion is comparable to the performance of other rule-based
learning algorithms, such as M5RULES with constant predic-
tions or REGENDER with low numbers of rules. With the
best-performing heuristic, correlation, a slight (but not sig-
nificant) advantage is noticeable.

However, it must be noted that the overall performance of
the algorithm does not match the performance of other stan-
dard regression algorithms, which learn more elaborate mod-
els than the piece-wise constant functions that are learned by
the algorithms tested in Table 2. In order to see this effect,
we can compare the performance of M5RULES with the pa-
rameter setting -R, which predicts constant values in its rule
head, to the performance of its default configuration which is
able to predict linear models in the rule heads (shown at the
bottom of Tables 2 and 3 respectively). In order to maximize
predictive performance, an adaptation of our approach for the
induction of linear models seems necessary, and is subject to
future work.

A different approach to weaken the bias of the piece-wise
constant prediction functions is to rely on ensemble tech-
niques, which is the key idea of the approach taken by REG-
ENDER. In order to evaluate the potential of our approach in
such a setting, we used bagging with best learner determined
in the previous experiment (using correlation as a heuristic
and a threshold of tr = 0.95 · σ). Table 3 shows the re-

� � � �
���	�
��
���	��
�

�������

�������
���� �����������
������
����������

�������
���

 !"

�������
����
�������
����

#$����

Figure 2: Comparison of the algorithms shown in Table 3
against each other with the Nemenyi test. Groups of algo-
rithms that are not significantly different (at p = 0.01) are
connected.

sults for learning 10, 20, and 50 rule sets. More iterations
did not yield further improvements. We compared this set-
ting to REGENDER learning 200 rules, and to linear re-
gression, support-vector regression, multi-layer perceptrons,
and M5RULES. While the linear or piece-wise linear mod-
els seem to be somewhat better suited for these problems, no
significant difference between the models can be observed.

The value of the Friedman statistic is 3.879 which ex-
ceeds the critical value of 2.663 for p = 0.01. The post-
hoc Nemenyi test yields critical distance values of 3.476 for
p = 0.01 and 2.764 for p = 0.1 (Figure 2 illustrates this sit-
uation for p = 0.01). Thus, no significant difference can be
shown between the best algorithm M5RULES and the bagged
versions of our algorithms with 20 or more theories. Con-
versely, the test also does not show a significant difference
between our regular dynamic regression by classification ap-
proach and any of the other regression algorithms except the
model-based rule-learning algorithm M5RULES. However,
this result should be put into perspective, because in Figure 2
we only included the best-performing parameter setting of Ta-
ble 2. It seems obvious that the performance of the algorithm
without bagging is substantially worse than the performance
of the other algorithms.

7 Conclusions and Future Work
In this paper, we proposed a new technique for heuristic learn-
ing of regression rules. The key idea is to dynamically trans-
form the regression approach into a classification setting by
defining positive examples near the current mean as positive,
and those further away as negative. In this way, classifica-
tion rule heuristics can be directly used for learning regres-
sion rules. The algorithm clearly outperforms a static dis-
cretization using the same rule learner, and performs at least
equally to other state-of-the-art regression rule learning al-
gorithms. While it does not reach the performance of other
algorithms that use more expressive models, we also showed
that the use of bagging results in an algorithm that is en par
with other rule-based regression ensembles and statistical re-
gression techniques.

We expect that the algorithm still can be improved by a
more systematic investigation of its parameters such as the
factor applied to the standard deviation, or the percentage of
examples that need to be covered by rules. The current set-
ting setting of 90% is rather intuitive and perhaps not the best
choice. Similarly, a more systematic evaluation of classifi-
cation rule heuristics in the context of regression tasks could
lead to better performance. Other works [Lavrač et al., 1999;

1334

Fürnkranz and Flach, 2005] show that different heuristics
are suited for different applications, and it is still not well
explored which heuristic is the best choice. In the case of
parametrized heuristics, such as the relative cost metric, the
parameter can also be tuned to optimize the performance on
the datasets [Janssen and Fürnkranz, 2010a].

A promising path to optimize the predictive performance of
the algorithm would be to replace the constant predictions in
the rule heads with linear models. The results of M5RULES,
where we included both a version with constant predictions
and a version with linear models into the experimental eval-
uation, show that this should lead to drastic performance im-
provements. However, much of the interpretability of the rule
set would be lost when doing so.

Acknowledgments
This research was supported by the German Science Foundation
(DFG) under grant no. FU 580/2-2. We would like to thank the
reviewers for helpful suggestions and directions for future work.

References
[Frank and Asuncion, 2010] A. Frank and A. Asuncion. UCI

machine learning repository, 2010.
[Breiman et al., 1984] L. Breiman, J. Friedman, R. Olshen,

and C. Stone. Classification and Regression Trees.
Wadsworth & Brooks, Pacific Grove, CA, 1984.

[Clark and Niblett, 1989] P. Clark and T. Niblett. The CN2
induction algorithm. Machine Learning, 3(4):261–283,
1989.

[Dembczyński et al., 2008] K. Dembczyński, W. Kotłowski,
and R. Słowiński. Solving regression by learning an
ensemble of decision rules. In Proc. 9th International
Conference on Artificial Intelligence and Soft Comput-
ing (ICAISC-08), pp. 533–544, Zakopane, Poland, 2008.
Springer-Verlag.

[Demšar, 1999] D. Demšar. Obravnavanje numericnih prob-
lemov z induktivnim logicnim programiranjem. Master’s
thesis, Faculty of Computer and Information Science, Uni-
versity of Ljubljana, Slovenia, 1999. In Slovene.

[Demšar, 2006] J. Demšar. Statistical comparisons of classi-
fiers over multiple datasets. Journal of Machine Learning
Research, 7:1–30, 2006.

[Friedman and Popescu, 2008] J. H. Friedman and B. E.
Popescu. Predictive learning via rule ensembles. Annals
Of Applied Statistics, 2:916, 2008.

[Fürnkranz and Flach, 2005] J. Fürnkranz and P. Flach. ROC
’n’ rule learning – Towards a better understanding of cov-
ering algorithms. Machine Learning, 58(1):39–77, 2005.

[Fürnkranz, 1999] J. Fürnkranz. Separate-and-conquer rule
learning. Artificial Intelligence Review, 13(1):3–54,
February 1999.

[Holmes et al., 1999] G. Holmes, M. Hall, and E. Frank.
Generating rule sets from model trees. In Proc. 12th Aus-
tralian Joint Conference on Artificial Intelligence (AI-99),
pp. 1–12. Springer, 1999.

[Janssen and Fürnkranz, 2010a] F. Janssen and J. Fürnkranz.
On the quest for optimal rule learning heuristics. Machine
Learning, 78(3):343–379, March 2010.

[Janssen and Fürnkranz, 2010b] F. Janssen and J. Fürnkranz.
Separate-and-conquer regression. In Proc. German Work-
shop on Lernen, Wissen, Adaptivität (LWA-10), pp. 81–89,
2010.

[Karalič and Bratko, 1997] A. Karalič and I. Bratko. First
order regression. Machine Learning, 26(2-3):147–176,
1997.

[Langford et al., 2006] J. Langford, R. Oliveira, and B.
Zadrozny. Predicting conditional quantiles via reduction
to classification. In Proc. 22nd Annual Conference on Un-
certainty in Artificial Intelligence (UAI-06), pp. 257–264,
Arlington, Virginia, 2006. AUAI Press.

[Lavrač et al., 1999] N. Lavrač, P. Flach, and B. Zupan. Rule
evaluation measures: A unifying view. In Proc. 9th Inter-
national Workshop on Inductive Logic Programming (ILP-
99), pp. 174–185. Springer-Verlag, 1999.

[Quinlan, 1992] J. R. Quinlan. Learning with continuous
classes. In Proc. 5th Australian Joint Conference on Arti-
ficial Intelligence (AI-92), pp. 343–348, Singapore, 1992.
World Scientific.

[Smola and Schölkopf, 2004] A. J. Smola and B. Schölkopf.
A tutorial on support vector regression. Statistics and
Computing, 14:199–222, August 2004.

[Todorovski et al., 2000] L. Todorovski, P. Flach, and N.
Lavrač. Predictive performance of weighted relative ac-
curacy. In Proc. 4th European Symposium on Principles
of Data Mining and Knowledge Discovery (PKDD-2000),
pp. 255–264, Lyon, France, 2000. Springer-Verlag.

[Torgo and Gama, 1996] L. Torgo and J. Gama. Regres-
sion by classification. In Proc. 13th Brazilian Symposium
on Artificial Intelligence (SBIA-96), pp. 51–60. Curitiba,
Brazil, 1996. Springer-Verlag.

[Torgo, 1995] L. Torgo. Data fitting with rule-based regres-
sion. In Proc. 2nd International Workshop on Artificial
Intelligence Techniques (AIT’95), 1995.

[Ženko et al., 2005] B. Ženko, S. Džeroski, and J. Struyf.
Learning predictive clustering rules. In Proc. 4th Inter-
national Workshop on Knowledge Discovery in Inductive
Databases, pp. 234–250. Springer, 2005.

[Wang and Witten, 1997] Y. Wang and I. H. Witten. Induc-
tion of model trees for predicting continuous classes. In
Poster papers of the 9th European Conference on Machine
Learning, pp. 128–137, Prague, Czech Republic, 1997.

[Weiss and Indurkhya, 1995] S. M. Weiss and N. Indurkhya.
Rule-based machine learning methods for functional pre-
diction. Journal of Artificial Intelligence Research, 3:383–
403, 1995.

[Witten and Frank, 2005] I. H. Witten and E. Frank. Data
Mining — Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann
Publishers, 2nd edition, 2005.

1335

