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Abstract

Most of the existing probit classifiers are based on
sparsity-oriented modeling. However, we show that
sparsity is not always desirable in practice, and only
an appropriate degree of sparsity is profitable. In
this work, we propose a flexible probabilistic model
using a generalized Gaussian scale mixture prior
that can promote an appropriate degree of sparsity
for its model parameters, and yield either sparse
or non-sparse estimates according to the intrinsic
sparsity of features in a dataset. Model learning
is carried out by an efficient modified maximum a
posteriori (MAP) estimate. We also show relation-
ships of the proposed model to existing probit clas-
sifiers as well as iteratively re-weighted l1 and l2
minimizations. Experiments demonstrate that the
proposed method has better or comparable perfor-
mances in feature selection for linear classifiers as
well as in kernel-based classification.

1 Introduction

In binary classification, we are given a training dataset D =
{(xi, yi)}Ni=1, where xi ∈ R

d, yi ∈ {1,−1} and N is the
number of observations. The goal is to learn a mapping y =
f(x;ω) from the inputs to the targets based onD, where ω is
the model parameter.

In this work, we pay attention to probit classifiers
[Figueiredo, 2003; Kabán, 2007; Chen et al., 2009], in which
the corresponding mapping is specified by a likelihood model
associated with priors over parameters of the model. Specifi-
cally, the f(x;ω) is formulated by

f(x;ω) = P (y = 1|x) = Ψ
(
Φ(x)

T
ω
)
, (1)

where Ψ(·) is a normal cumulative density function used as
the link function; ω ∈ R

n is the unknown parameter vector
of the likelihood model; Φ(x) = (φ1(x), . . . , φn(x))

T is a
vector of n fixed functions of the input, usually called fea-
tures, and Φ(x)

T
ω may contain the following well-known

formulations:

• Linear classifiers, where Φ(x) = (1, x1, . . . , xd)
T and

n = d+ 1 [Kabán, 2007].

• Nonlinear classifiers, in which φi(x), i = 1, . . . , n, are
fixed basis functions; usually φ1(x) = 1.

• Kernel-based classifiers, in which Φ(x) =
(1,K(x,x1), · · · ,K(x,xN ))T , and K(x,xi) are
Mercer kernel functions; here n = N + 1 [Tipping,
2001].

In previous work, sparsity of the learned model is al-
ways expected. In order to obtain a sparse f(x;ω), previ-
ous work has adopted various sparsity-inducing priors over ω
in probabilistic modeling. Most of these priors belong to the
Gaussian scale mixture (GSM) distributions: Laplacian (or
Gaussian-exponential) distribution has been widely used as a
sparsity-inducing prior in various contexts [Figueiredo, 2003;
Kabán, 2007], based on which a parameter-free Gaussian-
Jeffreys’ prior was further proposed in [Figueiredo, 2003];
two versions of Student-t (or Gaussian-inverse gamma) pri-
ors were utilized in [Chen et al., 2009; Tipping, 2001], re-
spectively; more recently, [Caron and Doucet, 2008; Griffin
and Brown, 2010] paid attention to a Gaussian-gamma distri-
bution. Besides, [Garrigues and Olshausen, 2010] proposed
a Laplacian scale mixture (LSM) distribution to induce group
sparsity, and [Raykar and Zhao, 2010] proposed a discrete
mixture prior which is partially non-parametric.

2 Sparsity Is not Always Desirable

Although most of the existing probit classifications are based
on sparsity-oriented modeling, it is important to ask: is spar-
sity always desirable? Our answer is no, which is illustrated
by a set of toy examples.

2.1 An Illustrative Example

Here we compare four kernel-based classifiers, including
RVM with a Student-t prior in [Tipping, 2001], LAP with
a Laplacian prior in [Figueiredo, 2003], GJ with a Gaussian-
Jeffreys’ prior also in [Figueiredo, 2003], and GGIG with a
generalized Gaussian scale mixture (GGSM) prior that we
will propose in Section 4. We use the Gaussian kernel in
these experiments. These models are tested in two artificial
datasets. The spiral dataset is generated by the Spider Tool-
box1, which can only be separated by spiral decision bound-

1Spider machine learning toolbox, Jason Weston, Andre Elisse-
eff, Gökhan BakIr, Fabian Sinz, Available: http://www.kyb.
tuebingen.mpg.de/bs/people/spider/
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aries. The cross dataset samples from two equal Gaussian
distributions with one being rotated by 90◦, and an “X” type
boundary is expected. Parameter setting will be detailed in
Section 6.2.

Fig. 1 demonstrates the behaviors of four models on the
spiral data. Each model makes prediction only based on
kernel functions corresponding to the samples with black or
white circles in the figure. RVM, as well as LAP and GJ, can-
not recover the correct decision boundary. In this case there
is few information redundancy among features (i.e., kernel
function base), and almost all of the kernel functions are use-
ful for prediction. Under this situation, models with sparsity-
inducing priors would drop helpful information. The more
sparsity-inducing priors one uses, the worse predictions one
would obtain. The proposed GGIG with parameter q = 2.02

encourages non-sparse solutions. As a result, we lose few in-
formation, and obtain a good decision boundary. Different
from the spiral data, there is much redundant information in
the cross data. As shown in Fig. 2, comparing to RVM and
LAP, our model generates a similar decision boundary by au-
tomatically choosing q = 0.1 which is sparsity-inducing, but
uses less kernel functions. This is because the priors used
by LAP and RVM are not sparsity-encouraging enough. In
contrary, due to excessive sparsity-inducing of the Gaussian-
Jeffreys’ prior, GJ uses too few kernel functions.

(a) RVM (b) GJ

(c) LAP (d) GGIG (q = 2.0)

Figure 1: Experimental results in the spiral data.

We believe different problems need different degrees of
sparsity, which are determined by the information redun-
dancy among features in the data. When features inherently
encode orthogonal characterizations of a problem, enforcing
sparsity would lead to the discarding of useful information
and the degrading of the generalization ability. Only a proper
degree of sparsity for a specific problem is profitable.

2.2 Adjusting Induced Sparsity of Priors

Thus, in probit classifiers, we want to adjust the degree of
induced sparsity from priors in a data-dependent way. Usu-
ally, induced sparsity can be regulated by two factors: kurto-

2q is a shape parameter of the GGSM prior used in GGIG, which
will be introduced in Section 3. It controls the sparsity level, and is
determined automatically in our algorithm.

(a) RVM (b) GJ

(c) LAP (d) GGIG (q = 0.1)

Figure 2: Experimental results in the cross data.

sis and variance of a prior. A high kurtosis distribution has a
sharper peak and longer, fatter tails. When its excess kurtosis
is bigger than 0, a large fraction of parameters are expected
to be zero, therefore it induces sparsity. This factor enables
adjustment of sparsity by tuning the shape parameters of the
prior distribution. Variance could also influence the degree
of induced sparsity. In a zero mean prior, a small variance
indicates that a parameter is distributed closely around zero,
which encourages sparsity of the parameter.

We could view kurtosis of a prior as corresponding to the
structure of a penalization used in regularization methods,
which determines whether or not a sparse solution is encour-
aged in a problem. While variance is related to the trade-
off parameter, which is used to re-scale the penalization, and
balance the model fitness with regularization. Hence, both
kurtosis and variance are important for controlling the degree
of induced sparsity, and a mis-adjustment of either one may
result in bad solutions.

2.3 Our Contributions

We introduce here a family of generalized Gaussian scale
mixture (GGSM) distributions for ω in Section 3. Compared
to GSM and LSM, an additional shape parameter q is used
by GGSM, which is continuously defined in (0, 2]. Both kur-
tosis and variance of GGSM can be flexibly regulated by q,
so does the induced sparsity. This family includes as spe-
cial cases GSM and LSM when q = 1 and 2, respectively.
This gives GGSM an opportunity to promote the appropriate
degree of sparsity in a data-dependent way. The proposed
model using a GGSM prior can yield either sparse or non-
sparse estimates according to the sparsity among features in
a dataset. The estimation of ω with arbitrary q ∈ (0, 2] is
carried out by an efficient modified MAP algorithm, which is
detailed in Section 4. Its convergence is also analyzed.

3 Modeling

3.1 Likelihood

Given a training dataset {(xi, yi)}Ni=1, let us consider the cor-
responding vector of hidden variables z = [z1, . . . , zN ]T ,
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where zi = Φ(xi)
Tω + ξi, and {ξi}Ni=1 is a set of indepen-

dent zero-mean and unit-variance Gaussian samples. If we
know z, we could obtain a simple linear regression likelihood
with unit noise variance z|ω ∼ N (z|Φω, I), i.e.,

p(z|ω) = (2π)−
n
2 exp

(
− 1

2
‖z−Φω‖22

)
. (2)

This enlightens us on the use of the expectation maximization
(EM) algorithm to estimate ω by treating z as missing data.
Here Φ = [Φ(x1), . . . ,Φ(xN )]T .

3.2 Generalized GSM Prior

We assume that the components of ω are independent and
identically distributed,

p(ω) =
n∏

i=1

p(ωi|q)

and each ωi follows a GGSM prior, i.e.,

p(ωi|q) =

∫
GN (ωi|λi, q)p(λi)dλi, (3)

where GN (ωi|λi, q) denotes the generalized Gaussian distri-
bution

GN (ωi|λi, q) =
q

2λ
1
q

i Γ(
1
q )

exp{−|ωi|q
λi

}, (4)

with a variance parameter λi and a shape parameter q ∈
(0, 2]; λi is a positive random variable with probability p(λi)
which will be defined later.

Compared to GSM and LSM, an additional shape param-
eter q is used by GGSM, which is continuously defined in
(0, 2]. It is easy to see that, when q = 1, 2, GGSM would
be specialized as LSM and GSM, respectively. This gives us
an opportunity to generate more appropriate priors than GSM
and LSM in a data-dependent way. More specifically, the
variance and kurtosis of GN (ωi|λi, q) are given by

Kur(ωi) =
Γ( 5q )Γ(

1
q )

Γ( 3q )
2

, Var(ωi) =
λ

2
q

i Γ(
3
q )

Γ( 1q )
.

Both of them can be regulated by q. Hence, when associated
with the same p(λi), GGSM is more flexible than GSM and
LSM, and a proper degree of sparsity may be induced with an
appropriate q. In this work, q is learned in a data-dependent
fashion on a separate validation set Q. For a specific prob-
lem, we search the best q in Q by cross validation. In our
experiments, we will use Q = {0.1, 0.5, 1.0, 1.5, 2.0}.

As to priors for the variance parameter λi, conjugate or
conditionally-conjugate distributions are always chosen due
to their computational convenience. In the following sections,
we focus on a special case of the above model, where λi = λ,
i = 1, . . . , n, and λ is imposed by an inverse gamma distri-
bution, i.e., λ ∼ IG(λ|a, b).

4 Estimation Method

The MAP estimation is a straightforward approach to learn
parameters of the above probabilistic model; that is

argmax
ω

p(ω,y, z, λ)

where p(ω,y, z, λ) = p(z|ω)p(ω|λ)p(λ)p(y|z). However,
the resulting optimization is computationally challenging, un-
less q = 1, 2. To address this problem, we use a technique
called the minorization method [Hunter and Lange, 2004] to
propose a modified MAP estimation, where p(ω,y, z, λ) is
replaced by a p(ω, ω̃,y, z, λ) which minorizes p(·) and can
be easily maximized. Function p(·) satisfies two conditions
for all ω ∈ R

n:

p(ω,y, z, λ) ≥ p(ω, ω̃,y, z, λ), ∀ω̃ ∈ (R+)n

p(ω,y, z, λ) = p(ω, |ω|,y, z, λ),
and a variational parameter ω̃ ∈ (R+)n is introduced. At
each iteration, we first choose this parameter as the current
value of ω, and find the optimal update for ω by

argmax
ω

p(ω, ω̃,y, z, λ). (5)

We then update ω̃ with the new |ω|. The algorithm is stopped
until the distance between |ω| and ω̃ is less than some thresh-
old.

4.1 Derivation of p(ω, ω̃,y, z, λ)

Constructing a proper p(ω, ω̃,y, z, λ) is important for the mi-
norization learning. In this work, we let

p(ω, ω̃,y, λ, z) ≡ p(z|ω)p(ω, ω̃, λ)p(λ)p(y|z), (6)

where p(ω, ω̃, λ) is a lower bound of p(ω|λ), and is induced
by the weighted arithmetic and geometric mean inequality3:

p(ω, ω̃, λ) = Cλ,q exp
(
− q

2λ

( n∑
i=1

ω̃q−2
i ω2

i + g(ω̃)
))

(7)

with ω̃ = (ω̃1, · · · , ω̃n)
T , ω̃i ∈ R

+, and

Cλ,q =
( q

2λ
1
q Γ( 1q )

)n

, g(ω̃) =
2− q

q

n∑
i=1

ω̃q
i .

Since p(ω|λ) ≥ p(ω, ω̃, λ), and p(ω|λ) = p(ω, ω̃, λ), if
and only if |ω| = ω̃, we conclude that p(ω, ω̃,y, z, λ) is
minorizing the original joint density function. Hereunto, we
have generated a modified MAP estimation implemented by
maxω,ω̃ p(ω, ω̃,y, z, λ), which is equivalent to iteratively
maximizing the following objective function with respect to
ω and ω̃:

h(ω, ω̃) = −1

2
‖z−Φω‖22 −

q

2λ

( n∑
i=1

ω̃q−2
i ω2

i + g(ω̃)
)
.

3We consider the following inequality:

(ω2
i )

q
2 (ω̃2

i )
1− q

2 ≤ q

2
ω2
i + (1− q

2
)ω̃2

i ,

which is a special case of the weighted arithmetic and geometric
mean inequality.
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When ω is fixed, ω̃ can be updated by the equation ω̃ =
|ω|, which is proven by differentiating h(ω, ω̃) and setting to
zero; when ω̃ is fixed, we use the EM algorithm to solve a l2
norm based convex optimization over ω by treating z and λ
as missing data.

4.2 Updating ω via Standard EM Algorithm

Now we give more details of the EM algorithm used to update
ω in the proposed algorithm.

Expectation Step

In the E-step, it begins with the functional H(ω|ωk), namely

H(ω|ωk) = Eλ,z

(
h(ω, ω̃k)|y,ωk

)
(8)

Here ωk is the estimate of ω at k-th iteration. 〈·〉 denotes the
expectation of a random variable. And both 〈 1λ 〉k and 〈z〉k
can be easily derived as follows:

〈 1
λ
〉k =

n
q + a∑n

i=1 |ωk
i |q + b

, (9)

and

〈zi〉k = Φ(xi)ω
k +

yiN
(
Φ(xi)ω

k|0, 1)
Ψ
(
yiΦ(xi)ωk

) . (10)

We can rewrite Eq. 9 as

(〈 1
λ
〉k)−1

= ρ · b
a
+

(
1− ρ

) ·
∑n

i=1 |ωk
i |q

n
q

(11)

with ρ = a
n
q +a ∈ (0, 1). It is interesting to see that, the recip-

rocal of 〈 1λ 〉k is a convex combination of a prior-dependent
term and a data-dependent term, while ρ is the mixture pa-
rameter. In this work, we use a non-informative inverse
gamma prior, i.e., a = b = 10−3, to make the estimate de-
pend more on the observations than on the prior knowledge.
Besides, in implementation Eq. 9 is updated only based on
ωk
i ≥ 10−4.

Maximization Step

Following the E-step, the M-step updates ω by

ωk+1 =
(〈 1
λ
〉k · q ·Vk +ΦTΦ

)−1
ΦT 〈z〉k, (12)

with Vk = diag((ω̃k
1 )

q−2, . . . , (ω̃k
n)

q−2). In order to avoid
handling arbitrarily large numbers in the matrix Vk, we
rewrite the updating rule in Eq. 12 as

ωk+1 = U
(〈 1
λ
〉k · q · I+ΦTΦU

)−1
ΦT 〈z〉k,

where U = diag((ω̃k
1 )

2−q, . . . , (ω̃k
n)

2−q).

4.3 Monotonicity Analysis

The algorithm proposed above will be referred to as GGIG
in this paper. The convergence of GGIG can be guaranteed
by its monotonicity. Specifically, its objective function, i.e.,
p(ω,y, z, λ), is non-decreasing between iterations; that is,

p(ωk,y, zk, λk) ≤ p(ωk+1,y, zk+1, λk+1), (13)

for k = 0, 1, 2, . . ..
To see this, we firstly notice that

p(ωk,y, zk, λk) = p(ωk, ω̃k,y, zk, λk), (14)

which can be derived from the properties of the surrogate
function p(·). Then, since ωk, zk and λk are updated by a
standard EM algorithm, it is clear that

p(ωk, ω̃k,y, zk, λk) ≤ p(ωk+1, ω̃k,y, zk+1, λk+1). (15)

This relationship comes from the monotonicity of the EM al-
gorithm. Continue this way and again consider the properties
of the surrogate function p(·), we have

p(ωk,y, zk, λk) ≤ p(ωk+1, ω̃k,y, zk+1, λk+1)

≤ p(ωk+1, ω̃k+1,y, zk+1, λk+1)

= p(ωk+1,y, zk+1, λk+1).

Thus, Eq. 13 is established. For a bounded sequence of
the objective function values {p(ωk,y, zk, λk)}, GGIG con-
verges monotonically to a stationary value.

5 Related Work

In this section, we show the relationships of our model to
other existing approaches. Many of these approaches are spe-
cial cases of GGIG.

5.1 Probit Classifiers with GSM Priors

[Figueiredo, 2003] proposed probit classifiers using a hier-
archical Laplacian distribution, and we refer to it as LAP.
Specifically, LAP considers that each ωi has an independent
zero-mean Gaussian prior ωi|τi ∼ N (ωi|0, τi) with its own
variance τi, and that each τi has an exponential hyper-prior
with a variance parameter γ. Using standard MAP estima-
tion, LAP obtains

ωk+1 =
(
γ ·Vk

lap +ΦTΦ
)−1

ΦT 〈z〉k, (16)

with Vk
lap = diag((ωk

1 )
−1, . . . , (ωk

n)
−1). Comparing the

above rule with Eq. 12, it is not difficult to see that, GGIG
can be specialized as LAP by letting q = 1, a � N + 1
and b = a

γ . Actually, generalized Gaussian distribution with
q = 1 plays the same role as the hierarchical Laplacian prior,
while setting a to very large values makes 1

λ heavily peaked
at the value a

b = γ.
To eliminate the parameter γ in LAP, Figueiredo ex-

tended the hierarchical Laplacian prior to be a parameter-free
Gaussian-Jeffreys’ prior, which used an improper Jefferys’
distribution as the hyper-prior. We here refer to this model as
GJ. Its model parameter ω is updated by

ωk+1 =
(
Vk

gj +ΦTΦ
)−1

ΦT 〈z〉k, (17)

with Vk
gj = diag((ωk

1 )
−2, . . . , (ωk

n)
−2). Although the GJ

model avoids pre-specifying γ, it always leads to an exagger-
ated sparsification, which would be interpreted by the follow-
ing limit:

lim
q→0

〈 1
λ
〉k · q ·Vk =

n

n+ b
Vk

gj , (18)
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where 〈 1λ 〉k · q · Vk is the only difference between Eq. 12
and Eq. 17. GJ is a special case of GGIG with q → 0 and
b 
 n. Thus, it is not surprising that GJ is likely to provide
over-sparse solutions.

A version of the hierarchical Student-t prior was utilized in
probit classifiers in [Chen et al., 2009], which is referred to
as STU here. It gave a similar rule of GJ in Eq. 17.

5.2 Models with a LSM Prior

[Garrigues and Olshausen, 2010] proposed a LSM prior in
sparse coding models of natural images. With q = 1, the
GGSM prior used in our model is the factorial version of
the LSM prior in the paper. An important difference be-
tween LSM and GGSM is that, the former can only encourage
sparse solutions, while the latter with different values of q can
induce both sparsity and non-sparsity.

5.3 Iteratively Re-weighted l1 and l2 Minimization

From Eq. 8, it is clear that the EM progress is equivalent to a
version of the iteratively re-weighted l2 minimization [Char-
trand and Yin, 2008]. Consider a special case of GGSM,
where each component ωi uses different λi, and q = 1. Then
inference in the model can be implemented by solving the
following MAP sequence:

ωk+1 = argmax
ω

−1

2
〈‖z−Φω‖22〉k −

n∑
i=1

1 + a

|ωk
i |+ b

|ωi|,

which is equivalent to the update proposed in the iteratively
re-weighted l1 minimization [Candès et al., 2008]. Hence,
our model provides a probabilistic interpretation for the two
iteratively re-weighted algorithms.

6 Experiments

We now empirically study the behaviors and prediction per-
formance of the proposed GGIG method. We first focus on
linear classifiers, where we have full control over the distri-
bution of the relevant information among features in order to
shed light on the appropriateness of sparse and non-sparse.
Then we pay attention to kernel-based classifiers.

6.1 Feature Selection for Linear Classifiers

Here Φ(x) = (1, x1, . . . , xd)
T in Eq. 1, and our method may

be seen as the combination of a learning algorithm and a fea-
ture selection step.

We consider synthetic data having 50-dimensional
i.i.d. features. The data are generated using ω =
[3, . . . , 3, 0, . . . , 0]T , where the number of relevant features
nf provides a range of testing conditions by varying in the
set {2, 4, 8, 16, 32, 50}. We use independent zero-mean and
unit-variance Gaussians to draw a data matrix X, and use a
Gaussian with mean Xω and unit-variance to draw y, which
are then thresholded at zero to provide the class labels z. In
this group of experiments, the training set size is varied in
{50, 200}. For each training set, a test set containing 3000
samples is also generated from the same model as the corre-
sponding test set.

We test GGIG with different values of q ∈ Q. Fig. 3(a)
and 3(b) show the obtained results in cases of N = 50 and
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Figure 3: Experimental results from feature selection

200. We can see that, GGIG with different q obtain quite dif-
ferent performances for a problem. As nf is changed from
2 to 50, the corresponding optimal q is increased from 0.1
to 2.0, which coincides well with our expectation. When nf

is relatively small, the data has large sparsity in the features.
So the model needs a prior that is sparsity-encouraging with
a large kurtosis, which means small values of q are better.
In contrary, when nf is large, most features are relevant to
the decision-making, and few information is redundant, thus
enforcing sparsity would lead to the discarding of useful in-
formation. As a result, priors should have a low kurtosis, i.e.
large values of q are preferred.

The above experiments confirm that different classification
problems need to be imposed by different degrees of sparsity,
which are determined by the information redundancy among
their features. They also demonstrate that a proper degree
of induced sparsity can be provided in GGSM by tuning the
shape parameter q from cross validation.

Next we compare GGIG with other existing probit clas-
sifiers, including LAP, GJ, as well as STU. To find the
optimal γ� in LAP, we do 5-fold cross validation within
{0.01, 0.04, 0.08, 0.1, 0.4, 0.8, 1, 4, 8, 10}. Parameters of
STU are specified referring to [Chen et al., 2009]. From the
experimental results in Fig. 3(c) and 3(d), we can see that
GGIG gives lower averaged error rate than any other mod-
els in all cases. As we analyzed above, this is because the
proposed GGSM-based model utilizes appropriate priors in
probabilistic modeling, which could induce proper degrees of
sparsity for various problems.

6.2 Kernel-based Classifiers

We then show experiments of the kernel-based classifiers. In
the following experiments, the Gaussian kernel is used.

Toy datasets

In this part, we give more details on the toy experiments in
Section 2. We compare GGIG, RVM, LAP and GJ on the spi-
ral and cross datasets, respectively. About parameter setting,
we select kernel width used in each algorithm through 5-fold
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Table 1: Average Error Rate on Two Toy Datasets.
DATA GGIG LAP RVM GJ

Spiral 0.60(198.2) 11.60(108.5) 8.92(56.2) 30.91(13.8)
Cross 9.62(4.0) 11.41(12.8) 11.20(7.5) 13.27(3.2)

Table 2: Average Error Rate on Four Real Datasets.
MODEL SOLAR GERMAN THYROID TITANIC

GGIG 34.85% 23.82% 4.00% 21.60%
SVM 35.98% 23.89% 4.98% 22.10%
RVM 35.19% 23.77% 5.06% 23.00%
LAP 36.66% 24.51% 4.74% 23.12%
GJ 38.02% 24.89% 4.66% 23.36%

cross validation within {0.1, 0.5, 1.0, . . . , 10.0}. Parameters
in RVM can be adapted by itself. Other parameters are spec-
ified following the way as before.

Fig. 1 and Fig. 2 (in page 2) demonstrate the behaviors
of each model. As we discussed before, the spiral data is a
non-sparse scenario, which contains few redundance infor-
mation. The cross data is a sparse scenario, and high degrees
of sparsity need to be induced from priors. Using cross val-
idation, the GGIG method successfully determined q = 2.0
and q = 0.1 for these two datasets, respectively. Table 1
shows the average error rate over 50 independent runs. The
quantity in bracket is the average number of used kernel func-
tions for each model. We can see GGIG clearly outperforms
other methods, especially in the spiral data.

Real datasets

To demonstrate the performances of GGIG further, we com-
pare different algorithms on four benchmark datasets. These
algorithms include GGIG, LAP, GJ, as well as SVM and
RVM.

The four datasets have been preprocessed by Rätsch et al.
to do binary classification tests4, including Solar, German,
Thyroid and Titanic. We optimize parameters following the
way in [Ratsch et al., 2001]. For SVM, the trade-off param-
eter C is searched in set {f × 10g} with f ∈ {1, 3} and
g ∈ {−6, . . . , 6}. Kernel width and other required param-
eters are specified as before. Table 2 reports the error rate
of these models. GGIG outperforms other classifiers in three
of these datasets, and is only a little worse than RVM in the
German data.
7 Conclusions

In this paper, we begin with a set of toy experiments, which
suggests that different problems need different degrees of
sparsity. To induce an appropriate degree of sparsity for a
specific problem, we propose a GGSM prior in the proba-
bilistic modeling of the probit classifications. Comparing to
the previous GSM and LSM priors, we can flexibly adjust the
induced sparsity from the GGSM prior, and proper degrees
of sparsity can be promoted by tuning the shape parameter q
in a data-dependent way. The model learning with arbitrary
q ∈ (0, 2] is carried out by an efficient modified MAP al-
gorithm. And we also analyze in detail relationships of the
proposed method to other previous approaches.

4http://ida.first.fraunhofer.de/projects/
bench/benchmarks.htm

Several questions still remain in this proposed model. Al-
though it updates parameters using closed form formulations,
a low convergence rate inheriting from the EM algorithm in-
creases its computational cost. One potential way to address
this issue is using successive over-relaxation [Yu, 2010]. Be-
sides, another problem is how to guarantee a good local opti-
mum due to the multi-modality of the posterior. We believe
the ε-regularization recently proposed in [Chartrand and Yin,
2008] would be helpful.
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