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Abstract

Matrix factorization based techniques, such as non-
negative matrix factorization (NMF) and concept
factorization (CF), have attracted great attention in
dimension reduction and data clustering. Both of
them are linear learning problems and lead to a
sparse representation of the data. However, the
sparsity obtained by these methods does not always
satisfy locality conditions, thus the obtained data
representation is not the best. This paper introduces
a locality-constrained concept factorization method
which imposes a locality constraint onto the tradi-
tional concept factorization. By requiring the con-
cepts (basis vectors) to be as close to the original
data points as possible, each data can be repre-
sented by a linear combination of only a few basis
concepts. Thus our method is able to achieve spar-
sity and locality at the same time. We demonstrate
the effectiveness of this novel algorithm through a
set of evaluations on real world applications.

1 Introduction

Data representation is a fundamental problem in many real
world applications such as pattern recognition, computer vi-
sion, image clustering etc. Especially linear data represen-
tations, such as principal component analysis (PCA), lo-
cality preserving projection (LPP) [He and Niyogi, 2003;
He et al., 2005], independent component analysis (ICA), non-
negative matrix factorization (NMF) [Lee and Seung, 1999]

and concept factorization (CF) [Xu and Gong, 2004], have
been widely used in these data analysis tasks.

Matrix factorization has been frequently used in linear data
representation. Given a data matrix X, the above algorithms
aim to find two or more matrix factors whose product is a
good approximation to the original matrix. One factor con-
sists of a set of new basis vectors which reveals the latent
semantic structure, and the other factor can be considered as
the coefficients (also referred as encodings) where each data
point is a linear combination of the found bases. In real ap-
plications, the dimension of the new basis vectors is usually
much smaller than that of the original data matrix. This gives
rise to a compact representation of the data points which can

facilitate other learning tasks such as clustering and classifi-
cation.

NMF and CF have attracted great attention as efficient ma-
trix decomposition methods. NMF aims to decompose a data
matrix X into two matrix factors U and V so that UV pro-
vides a good approximation to X. The CF model is a varia-
tion of NMF in that each cluster is expressed by a linear com-
bination of the data points and each data point is represented
by a linear combination of the cluster centers. The major ad-
vantage of CF over NMF is that the NMF algorithm can only
be performed in the original feature space of the data points,
but the CF method can be performed on any data representa-
tion space, so that it can be kernelized and the powerful idea
of the kernel method can be applied [Xu and Gong, 2004].

Since the dimension of the decomposed factors is much
smaller than that of the original matrix, both NMF and CF
map the data from high dimensional space to a low dimen-
sional representation and obtain a sparse encoding of the data.
However, the sparsity obtained by these methods does not al-
ways satisfy locality conditions. Since the local points share
the greatest similarity, it would be more natural to represent
the basis vectors using a few nearby anchor points, which
leads to a more efficient representation of the data.

Recently, Cai et al. [Cai et al., 2011] proposed a Locally
Consistent Concept Factorization approach to encode the ge-
ometrical information of the data space, which can extract
the document concepts with respect to the intrinsic manifold
structure. This method is able to discover the local geomet-
rical structure, but does not always satisfy the locality condi-
tions as we mentioned before. As to add sparseness constraint
to the matrix factorization, Hoyer [Hoyer, 2004] showed how
explicitly incorporating the notion of ’sparseness’ improves
the found decompositions. However, there is no work that in-
cludes locality and sparsity constraints at the same time to the
best of our knowledge.

In this paper, we introduce a novel matrix factorization al-
gorithm, called Locality-constrained Concept Factorization
(LCF) which imposes a locality constraint onto the traditional
concept factorization. By requiring the concepts (basis vec-
tors) to be as close to the original data points as possible, each
data can be represented by a linear combination of only a few
nearby basis concepts, thus achieving sparsity and locality at
the same time.

To achieve this goal, we incorporate the idea of Local Co-

1378

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence



ordinate Coding [Yu et al., 2009] into the original objective
function of concept factorization. And we also propose a mul-
tiplicative algorithm to efficiently solve the corresponding op-
timization problem.

2 Background

Factorization of matrices is generally non-unique, and a num-
ber of different methods of doing so have been developed by
incorporating different constraints.

Suppose we have n data points {xi}
n
i=1. Each data point

xi ∈ R
m is m-dimensional and is represented by a vector.

The vectors are placed in the columns and the whole data
set is represented by a matrix X = [x1, · · · ,xn] ∈ R

m×n.
NMF aims to find an m× k matrix U and a k × n matrix V

where the product of these two factors is an approximation to
the original matrix, represented as X ≈ UV. Each column
vector of U, ui, can be regarded as a basis and each data point
xi is approximated by a linear combination of these k bases,

weighted by the components of V: xi ≈
∑k

j=1 ujvji.

The speciality of NMF is that it enforces that all entries
of the factor matrices must be non-negative. One limitation
of NMF is that the non-negative requirement is not applica-
ble to applications where the data involves negative number.
The second is that it is not clear how to effectively perform
NMF in the transformed data space so that the powerful ker-
nel method can be applied.

Concept Factorization is proposed striving to address the
above problems while inheriting all the strengths of the NMF
method. In the CF model, we rewrite the NMF model by
representing each base (cluster center) uj by a linear combi-
nation of the data points uj =

∑
iwijxi where wij ≥ 0. Let

W = [wij ] ∈ R
n×k, CF tries to decompose the data matrix

satisfied the following condition

X ≈ XWV.

Using the Frobenius norm to qualify the approximation,
CF tries to minimize the following objective function

O = ‖X−XWV‖2 (1)

3 Locality-constrained Concept Factorization

In this section, we introduce our Locality-constrained Con-
cept Factorization (LCF) algorithm, which takes the locality
constraint as an additional requirement. The algorithm pre-
sented in this paper is fundamentally motivated from the con-
cept of local coordinate coding [Yu et al., 2009].

3.1 The Objective Function

First we introduce the concept of coordinate coding.

Definition A coordinate coding is a pair (γ, C), where C ⊂
R

d is a set of anchor points, and γ is a map of x ∈ R
d to

[γv(x)]v∈C ∈ R|C| such that
∑

v γv(x) = 1. It induces

the following physical approximation of x in R
d: γ(x) =∑

v∈C γv(x)v.

According to this definition, the CF model can be consid-
ered as a coordinate coding where the basis vectors uj =∑

iwijxi are a set of anchor points, and each column of V

contains the coordinates for each data point with respect to
the anchor points. In order to add the local sparse constraint
to the traditional concept factorization, we require that each
original data point should be sufficiently close to only a few
anchor points. This can be achieved by introducing the fol-
lowing term to measure the locality and sparsity penalty:

R =

K∑
k=1

|vki| ‖uk − xi‖
2
=

K∑
k=1

|vki|

∥∥∥∥∥∥
N∑
j=1

wjkxj − xi

∥∥∥∥∥∥
2

The above constraint incurs a heavy penalty if xi is far away
from the anchor point uj while its coordinate vji with respect
to uj is large. Therefore, by minimizingR, we essentially try
to formalize our intuition that xi is close to the anchor points
uj as much as possible, otherwise its coordinate with respect
to uj tends to be zero.

With the locality constraint, our LCF algorithm reduces to
minimize the following objective function:

O = ‖X−XWV‖2 + λ

N∑
i=1

K∑
k=1

|vki|

∥∥∥∥∥∥
N∑
j=1

wjkxj − xi

∥∥∥∥∥∥
2

(2)
with the constraint that W and V are non-negative matrices.
The λ ≥ 0 is a regularization parameter.

3.2 The Algorithm

We introduce an iterative algorithm to find a local minimum
for the optimization problem. The objective function can be
rewritten as follows:

O =‖X−XWV‖2 + λ

N∑
i=1

K∑
k=1

|vki|

∥∥∥∥∥∥
N∑
j=1

wjkxj − xi

∥∥∥∥∥∥
2

= ‖X−XWV‖
2
+ λ

N∑
i=1

∥∥∥(xi1
T −XW)D

1/2
i

∥∥∥2

where Di = diag(|vi|) ∈ R
K×K . Using the matrix prop-

erty Tr(AB) = Tr(BA), ‖A‖2 = Tr(AT
A) and Tr(A) =

Tr(AT ), we have

O =Tr
(
(X−XWV)(X−XWV)T

+ λ

N∑
i=1

(xi1
T −XW)Di(xi1

T −XW)T
)

=Tr
(
XX

T − 2XWVX
T +XWVV

T
W

T
X

T

+ λ

N∑
i=1

(xi1
T
Di1x

T
i − 2xi1

T
DiW

T
X

T

+XWDiW
T
X

T )
)

(3)

Let ψjk and φki be the Langrange multiplier for constraints
wjk ≥ 0 and vki ≥ 0, respectively. We define matrix Ψ =
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[ψjk] and Φ = [φki], then the Langrange L is

L =Tr
(
XX

T − 2XWVX
T +XWVV

T
W

T
X

T

+ λ

N∑
i=1

(xi1
T
Di1x

T
i − 2xi1

T
DiW

T
X

T

+XWDiW
T
X

T )
)
+Tr(ΨW

T ) + Tr(ΦVT )

Define K = X
T
X, define a column vector a = diag(K) ∈

R
N . Let A = (a, · · · , a)T be a K × N matrix whose rows

are aT . Define a column vector b = diag(WT
KW) ∈ R

K .
Let B = (b, · · · , b) be a K × N matrix whose columns are
b. The partial derivatives of L with respect to W and V are:

∂L

∂W
=2KWVV

T − 2KV
T

+ λ

N∑
i=1

(−2XT
xi1

T
Di + 2KWDi) + Ψ

∂L

∂V
=2WT

KWV− 2WT
K+ λ(A − 2WT

K+B) + Φ

Using the Karush-Kuhn-Tucker conditions (also known as the
KKT conditions) ψjkwjk = 0 and φkivki = 0, we get the
following equations:

(KWVV
T )jkwjk − (KV

T )jkwjk

+ λ(

N∑
i=1

KWDi)jkwjk − λ(

N∑
i=1

X
T
xi1

T
Di)jkwjk = 0

2(WT
KWV)kivki − 2(WT

K)kivki

+ λ(A− 2WT
K+B)kivki = 0

The above equations lead to the following update rules:

wjk ← wjk
(KV

T + λ
∑N

i=1 X
T
xi1

T
Di)jk

(KWVV
T + λ

∑N
i=1 KWDi)jk

(4)

vki ← vki
2(λ+ 1)(WT

K)ki
(2WTKWV+ λA + λB)ki

(5)

We have the following theorem regarding the above itera-
tive updating rules. Theorem 1 guarantees the convergence of
the iterations in Eq. (4) and (5) and therefore the final solution
will be a local optimum.

Theorem 1. The objective function O in Eq. (2) is nonin-
creasing under the update rules in Eq. (4) and Eq. (5). The
objective function is invariant under these updates if and only
if W and V are at a stationary point.

To prove Theorem 1, we use an auxiliary function similar
to that used in the Expectation-Maximization algorithm.To
make the proof complete, we restate the definition of auxil-
iary function and its property which will be used to prove the
algorithm convergence.

Definition G(x, x′) is an auxiliary function for F (x) if the
conditions

G(x, x′) ≥ F (x), G(x, x) = F (x)

are satisfied.

Lemma 2. If G is an auxiliary function, then F is nonin-
creasing under the update

xt+1 = argmin
x

G(x, x′). (6)

Proof. F (xt+1) ≤ G(xt+1, xt) ≤ G(xt, xt) = F (xt)

The equality F (xt+1) = F (xt) holds only if xt is a local
minimum of G(x, xt). By iterating the updates in Eq. (6),
the sequence of estimates will converge to a local minimum
xmin = argminx F (x). Next, we will define an auxiliary
function for our objective function and use Lemma 2 to show
that the minimum of the objective function is exactly our up-
date rule, thereby Theorem 1 is proved.

First, we prove the convergence of the update rule in
Eq. (4). Considering any element wab in W , we use Fwab

to denote the part of O which is only relevant to wab. Since
the update is essentially element-wise, it is sufficient to show
that each Fwab

is nonincreasing under the update step of (4).
We prove this by defining the auxiliary function G for Fwab

as follows.

Lemma 3. The function

G(w,w
(t)
ab ) = Fwab

(w
(t)
ab ) + F ′

wab
(w

(t)
ab )(w − w

(t)
ab )

+
(KWVV

T )ab + λ
∑N

i=1(KWDi)ab

w
(t)
ab

(w − w
(t)
ab )

2
(7)

is an auxiliary function for Fwab
, the part of O which is only

relevant to wab.

Proof. Since G(w,w) = Fwab
(w) is obvious, we only need

to show that G(w,w
(t)
ab ) ≥ Fwab

(w). To do this, we compare

G(w,w
(t)
ab ) with the Taylor series expansion of Fwab

(w):

Fwab
(w) =Fwab

(w
(t)
ab ) + F ′

wab
(w

(t)
ab )(w − w

(t)
ab )

+
(
KVV + λ

N∑
i=1

KDi

)
ab
(w − w

(t)
ab )

2

Since

∂2O

∂W 2
= 2KVV + 2λ

N∑
i=1

KDi

and

(KWVV
T )ab + λ

N∑
i=1

(KWDi)ab

=
∑
k

(KW)ak(VV
T )kb + λ

N∑
i=1

∑
k

(KW)ak(Di)kb

≥(KW)ab(VV
T )bb + λ

N∑
i=1

(KW)ab(Di)bb

≥
∑
k

(K)akw
(t)
kb (VV

T )bb + λ

N∑
i=1

∑
k

(K)akw
(t)
kb (Di)bb

≥w
(t)
ab

(
(K)aa(VV

T )bb + λ

N∑
i=1

(K)aa(Di)bb

)

≥
1

2
w

(t)
ab F

′′
wab
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Thus, G(w,w
(t)
ab ) ≥ Fwab

(w).

Then we define an auxiliary function for the update rule in
Eq. (5). Similarly, let Fvab

denote the part of O relevant to
vab. Then the auxiliary function regarding vab is defined as
follows.

Lemma 4. Function

G(v, v
(t)
ab ) = Fvab

(v
(t)
ab ) + F ′

vab
(v

(t)
ab )(v − v

(t)
ab )

+
(WT

X
T
XWV+ 1

2λA+ 1
2λB)ab

v
(t)
ab

(v − v
(t)
ab )

2
(8)

is an auxiliary function for Fvab
, the part of O which is only

relevant to vab.

The proof is essentially similar to the proof of Lemma 3
and is omitted here due to space limitation. With the above
lemmas, now we give the proof of Theorem 1.

Proof of Theorem 1: From Lemma 3 we know that
G(w,w

(t)
ab ) is an auxiliary function for Fwab

, and from

Lemma 4 we know that G(v, v
(t)
ab ) is an auxiliary function

for Fvab
. According to Lemma 2, by solving w(t+1) =

argminwG(w,w
(t)
ab ), We obtain

w
(t+1)
ab = w

(t)
ab

(KV
T + λ

∑N
i=1 X

T
xi1

T
Di)ab

(KWVV
T + λ

∑N
i=1 KWDi)ab

(9)

and by solving v(t+1) = argminz G(v, v
(t)
ab ), We obtain

v
(t+1)
ab = v

(t)
ab

2(λ+ 1)(WT
K)ab

(2WTKWV+ λA+ λB)ab
(10)

which are exactly the same updates as in Eq. (4) and (5).
Therefore, the objective function O in Eq. (2) is nonincreas-
ing under these updates. �

4 Experiments

In this section, we show the data clustering performance of
the proposed method, and compare the results with four other
related methods using the same data set. The algorithms that
we evaluated are listed below:

• Traditional K-means (Kmeans).

• Nonnegative Matrix Factorization (NMF) [Lee and Se-
ung, 2001].

• Concept Factorization (CF) [Xu and Gong, 2004].

• Non-negative Matrix Factorization with Sparseness
Constraints (SparseNMF) [Hoyer, 2004].

• Our proposed Locality-constrained concept Factoriza-
tion (LCF).

We use two metrics to evaluate the clustering performance.
One metric is accuracy (AC), which is used to measure the
percentage of correct labels obtained. The second metric is

the normalized mutual information (M̂I). In clustering ap-
plications, mutual information is used to measure how similar
two sets of clusters are. The definitions of these two metrics
can be found in [Xu and Gong, 2004]. The performance is

Table 1: Statistics of the two data sets
dataset size(N) dimensionality(M) of classes(K)

Yale 165 1024 15

ORL 400 1024 40

evaluated by comparing the cluster label of each sample with
the label provided by the data set.

The evaluations were conducted for the cluster numbers
ranging from 2 to 10. For each given cluster number k, we
randomly chose k clusters and ran the test 10 times, and the
final scores were obtained by calculating the average and vari-
ance over the 10 test runs. Since the evaluated methods whose
clustering results depend on the initialization, each test run
consists of 10 sub-runs from which we chose the best result
to report.

In the experiments, the parameters were set to be the values
that each algorithm can achieve its best results. For our LCF
algorithm, the regularization parameter is set to be λ = 0.3.

4.1 Data Sets

The experiments are conducted on two data sets. One is
the Yale Database, and the other is Cambridge ORL face
database. The important statistics of these data sets are de-
scribed below (also summarized in Table 1):

• The Yale database contains 165 gray scale images of 15
individuals. All images demonstrate variations in light-
ing condition (left-light, center-light,right-light), facial
expression (normal, happy, sad, sleepy, surprised and
wink), and with/without glasses.

• The ORL database contains ten different images of each
of 40 distinct subjects, thus 400 images in total. For
some subjects, the images were taken at different times,
varying the lighting, facial expressions (open/closed
eyes, smiling/not smiling) and facial details (glasses/no
glasses). All the images were taken against a dark ho-
mogeneous background with the subjects in an upright,
frontal position (with tolerance for some side move-
ment).

In all the experiments, images are preprocessed so that
faces are located. Original images are first normalized in
scale and orientation such that the two eyes are aligned at the
same position. Then the facial areas were cropped into the
final images for clustering. Each image is of 32 × 32 pixels
with 256 gray levels per pixel.

4.2 Clustering Results

Fig. 1 and 2 show the plots of accuracy and normalized mu-
tual information versus the number of clusters for different
algorithms on the Yale dataset. As can be seen, our proposed
LCF algorithm consistently outperforms all the other algo-
rithms. The detailed clustering results are shown in Table 2.
The last row shows the average accuracy (normalized mu-
tual information) over k. Comparing to the best algorithm
other than our proposed LCF i.e. SparseNMF, our algorithm
LCF achieves 4.41% improvement in accuracy and 5.69%
improvement in normalized mutual information.
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Table 2: Clustering Results Comparison on the Yale database
k Kmeans NMF CF SparseNMF LCF

Accuracy(%)

2 78.18 ± 16.86 73.18 ± 18.00 71.82 ± 20.21 79.09 ± 17.51 85.00± 17.01
3 59.09 ± 12.14 62.73 ± 11.42 58.79 ± 9.70 63.33 ± 9.91 76.36± 17.29
4 51.36 ± 7.20 56.14 ± 5.75 53.18 ± 9.55 56.82 ± 7.87 58.64± 9.52
5 50.36 ± 3.36 52.55 ± 5.30 52.36 ± 5.74 54.18 ± 6.94 58.18± 7.18
6 46.52 ± 6.85 49.55 ± 8.91 48.18 ± 8.10 51.06 ± 8.63 52.42± 10.74
7 43.25 ± 6.42 46.49 ± 5.97 47.14 ± 5.92 47.66 ± 5.29 49.48± 4.84
8 44.20 ± 3.78 45.00 ± 3.56 46.36 ± 2.91 47.05 ± 2.84 49.43± 5.69
9 43.74 ± 7.03 43.23 ± 4.33 44.65 ± 6.32 42.32 ± 4.50 47.68± 5.71
10 39.45 ± 4.49 41.36 ± 5.77 43.91 ± 5.19 41.00 ± 3.34 45.00± 7.50

Avg. 50.68 ± 7.57 52.25 ± 7.67 51.82 ± 8.18 53.61 ± 7.43 58.02± 9.50
Normalized Mutual Information(%)

2 40.58 ± 39.97 32.53 ± 38.16 34.66 ± 43.79 42.85 ± 40.46 56.78± 39.45
3 38.49 ± 20.50 34.28 ± 16.27 31.99 ± 20.51 32.70 ± 15.86 54.24± 30.02
4 31.00 ± 6.92 32.78 ± 9.04 31.48 ± 11.96 35.88 ± 10.04 36.13± 9.92
5 39.08 ± 7.99 40.11 ± 8.46 38.13 ± 8.51 40.21 ± 7.76 42.91± 10.41
6 40.03 ± 11.26 37.74 ± 10.81 38.99 ± 11.40 39.83 ± 11.50 42.43± 11.94
7 36.39 ± 6.24 36.89 ± 6.36 40.46 ± 5.32 40.73 ± 5.37 42.41± 4.47
8 40.78 ± 4.09 41.07 ± 3.64 40.48 ± 2.26 40.90 ± 3.08 43.78± 3.70
9 41.58 ± 7.28 40.94 ± 5.24 40.90 ± 7.06 40.86 ± 3.54 43.12± 5.09
10 39.04 ± 5.58 39.83 ± 4.59 41.85 ± 4.96 41.07 ± 2.63 44.45± 7.32

Avg. 38.55 ± 12.20 37.35 ± 11.40 37.66 ± 12.86 39.45 ± 11.14 45.14± 13.59
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Figure 1: Accuracy on the Yale database
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Figure 2: Mutual Information on the Yale database

Fig. 3 and Fig. 4 show the graphical clustering results for
the ORL data set. LCF obtains the best result for most of
the cases. SparseNMF fails to consider the locality condition,
and in some cases performs even worse than Kmeans. Table 3
shows the detailed clustering accuracy and normalized mu-
tual information. Comparing to the best algorithm other than
our proposed LCF algorithm, i.e., SparseNMF, LCF achieves
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Figure 3: Accuracy on the ORL database
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Figure 4: Mutual Information on the ORL database

5.8% improvement in accuracy. For normalized mutual infor-
mation, LCF achieves 6.4% improvement.

4.3 Learning the Overcomplete Basis

Usually, matrix factorization methods are used for dimension
reduction in many applications. However, [Lee et al., 2007]

shows that in some cases, it is desirable to learn the over-
complete basis. Here we evaluate the performance of our al-
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Table 3: Clustering Results Comparison on the ORL database
k Kmeans NMF CF SparseNMF LCF

Accuracy(%)

2 88.00 ± 17.64 87.50 ± 17.64 86.00 ± 16.09 88.00 ± 17.49 88.00± 17.78
3 87.33 ± 10.73 82.00 ± 11.27 82.67 ± 12.36 87.33 ± 10.93 91.33± 9.80
4 72.25 ± 13.53 73.25 ± 8.37 79.50 ± 9.34 82.25 ± 7.94 84.50± 9.92
5 63.60 ± 11.62 61.80 ± 7.40 69.00± 8.26 63.80 ± 7.77 68.20 ± 8.27
6 65.67 ± 7.04 61.00 ± 7.57 68.00 ± 7.74 69.17 ± 5.83 73.83± 6.99
7 67.14 ± 13.19 60.00 ± 6.23 66.71 ± 7.06 68.00 ± 6.07 78.71± 11.00
8 65.63 ± 7.57 57.88 ± 5.76 68.63 ± 6.29 65.00 ± 6.98 75.50± 6.20
9 62.33 ± 7.44 53.11 ± 4.55 66.33 ± 7.32 70.11 ± 6.35 74.67± 8.18
10 60.10 ± 7.23 57.00 ± 6.15 64.50 ± 6.17 59.50 ± 7.79 70.60± 6.62

Avg. 70.23 ± 10.66 65.95 ± 8.33 72.37 ± 8.96 72.57 ± 8.57 78.37± 9.42
Normalized Mutual Information(%)

2 69.45± 42.12 67.02 ± 40.95 60.95 ± 40.11 68.99 ± 42.71 68.38 ± 41.04
3 74.75 ± 17.48 65.08 ± 15.94 68.11 ± 18.03 73.43 ± 17.50 81.76± 17.12
4 63.64 ± 16.27 62.09 ± 9.01 70.15 ± 11.54 74.12 ± 9.17 77.26± 13.09
5 59.30 ± 12.75 52.59 ± 9.10 60.30 ± 8.93 60.03 ± 9.42 63.61± 10.83
6 65.75 ± 6.22 55.72 ± 5.45 61.83 ± 7.03 64.70 ± 7.13 71.63± 8.32
7 71.19 ± 10.56 59.06 ± 6.53 66.86 ± 7.62 67.92 ± 7.45 78.39± 10.46
8 69.48 ± 6.22 61.38 ± 4.54 69.89 ± 4.74 65.77 ± 5.71 76.23± 5.03
9 67.56 ± 7.50 56.88 ± 5.32 68.47 ± 5.68 69.42 ± 5.19 76.01± 7.92
10 67.89 ± 6.54 60.23 ± 6.54 66.96 ± 5.40 64.55 ± 6.59 73.25± 6.10

Avg. 67.67 ± 13.96 60.01 ± 11.49 65.95 ± 12.12 67.66 ± 12.32 74.06± 13.32

gorithm in this aspect. To show the performance for learing
the overcomplete basis of our proposed algorithm, 150 data
points from mixture of three Gaussians in a 2- dimensional
space are randomly generated. NMF and LCF are conducted
to obtain three basis vectors and cluster these data points into
3 clusters. Fig 5 shows that our LCF obtains better results
than NMF. The bases obtained by NMF are far away from the
original points. However, since we add a locality constraint,
the three bases obtained by LCF exactly reside in the cluster
centers, which leads to a better data representation.
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(a) NMF clustering results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) LCF clustering results

Figure 5: Experiments on learning the overcomplete basis.
The black diamonds are the bases learned by each algorithm.

5 Conclusions

In this paper we proposed a novel matrix factorization
method, called Locality-constrained Concept Factorization
(LCF). This method enforces a locality constraint onto the
traditional concept factorization. By requiring the concepts
(basis vectors) to be as close to the original data points as pos-
sible, each data can be represented by a linear combination of
only a few nearby basis concepts, thus achieving sparsity and
locality at the same time. The experimental results on two
standard face databases have demonstrated the effectiveness
of our approach over other matrix factorization techniques,
especially for the data clustering applications.
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