
Multi-Kernel Gaussian Processes

Arman Melkumyan

Australian Centre for Field Robotics
School of Aerospace, Mechanical and

Mechatronic Engineering
The University of Sydney

NSW 2006, Australia
a.melkumyan@acfr.usyd.edu.au

Fabio Ramos

Australian Centre for Field Robotics
School of Information Technologies

The University of Sydney
NSW 2006, Australia

f.ramos@acfr.usyd.edu.au

Abstract

Multi-task learning remains a difficult yet impor-
tant problem in machine learning. In Gaussian
processes the main challenge is the definition of
valid kernels (covariance functions) able to cap-
ture the relationships between different tasks. This
paper presents a novel methodology to construct
valid multi-task covariance functions (Mercer ker-
nels) for Gaussian processes allowing for a combi-
nation of kernels with different forms. The method
is based on Fourier analysis and is general for ar-
bitrary stationary covariance functions. Analytical
solutions for cross covariance terms between pop-
ular forms are provided including Matérn, squared
exponential and sparse covariance functions. Ex-
periments are conducted with both artificial and
real datasets demonstrating the benefits of the ap-
proach.

1 Introduction

Over the past years Gaussian processes (GPs) have become
an important tool for machine learning. Initially proposed un-
der the name kriging in the geostatistical literature [Cressie,
1993], its formulation as a non-parametric Bayesian re-
gression technique boosted the application of these mod-
els to problems beyond spatial stochastic process model-
ing [MacKay, 1997; Rasmussen and Williams, 2006].

Gaussian process inference is usually formulated for a sin-
gle output, i.e. given a training set consisting of inputs x
and outputs y compute the mean and variance of the pre-
dictive distribution for a new point x∗. However, in many
machine learning problems the objective is to infer multiple
tasks jointly, possibly using the dependencies between them
to improve results. Real world examples of this problem in-
clude ore mining where the objective is to infer the concentra-
tion of several chemical components to assess the ore quality.
Similarly, in robotics and control problems there are several
actuators and the understanding and accurate modeling of the
dependencies between the control outputs can significantly
improve the controller.

Given its importance for mining applications, the geostatis-
tical community has studied the multiple output case for sev-
eral years under the name co-kriging [Wackernagel, 2003].

The main difficulty in cokriging or multiple output GPs is the
definition of a valid covariance function, able to model de-
pendencies between different outputs in the cross terms. Re-
cently, new approaches were proposed where the cross terms
are obtained from a convolution process [Boyle and Frean,
2005; Alvarez and Lawrence, 2009]. These approaches use
the same covariance function to model different tasks. In
many problems however, tasks can have very different behav-
iors and still be dependent. For example, in mining a chem-
ical component might have a very variable concentration but
still be correlated to another component with a smooth con-
centration in the same area.

In this paper we generalize the multi-task Gaussian pro-
cess through convolutional processes to allow the use of mul-
tiple covariance functions, possibly having a different covari-
ance function per task. We develop a general mathematical
framework to build valid cross covariance terms and demon-
strate the applicability to real world problems. As exam-
ples, we provide closed form solutions to cross covariance
terms between Matérn and squared exponential, Matérn and
sparse, and sparse and squared exponential covariance func-
tions. The sparse covariance function was recently proposed
for exact GP inference in large datasets [Melkumyan and
Ramos, 2009]. This property can be naturally incorporated
in the multiple output case with the definition of valid cross
sparse terms as described in this paper.

The paper is organized as follows: in Section 2 we dis-
cuss the previous work. Section 3 reviews multiple output
Gaussian process inference and learning. In Section 4 we
propose a new methodology for constructing multi-task co-
variance functions. Section 5 presents analytical solutions for
six cross covariance terms and Section 6 demonstrates exper-
imental results. Finally, Section 7 concludes the paper.

2 Related Work

Multi-task learning has received a lot of attention recently.
In regression problems, this can be achieved in the linear
case with multidimensional linear regression [Hastie et al.,
2001]. For non-linear cases, neural networks were employed
in [Caruana, 1997] where hidden units represent the sharing
knowledge between multiple tasks. In [Evgeniou et al., 2005]
correlation between multiple tasks is obtained by specifying
a correlated prior over linear regression parameters for sup-
port vector machines. The kernels obtained can model lin-
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ear dependencies aptly but are not suitable for more complex
(non-linear) dependencies between tasks.

An interesting multi-task formulation combining Gaussian
processes and parametric models was proposed in [Teh et al.,
2005]. Each task is modeled with a different covariance func-
tion and correlated with a positive definite matrix learned by
optimizing a variational lower bound on the marginal likeli-
hood.

In geostatistics the multi-task inference problem has been
investigated under the name of co-kriging [Wackernagel,
2003]. Different forms of co-kriging have been proposed. Or-
dinary co-kriging assumes zero mean while simple co-kriging
computes an arbitrary mean in the same inference process. In
both cases the covariance function is usually assumed to have
the same form and parametrization for the different tasks. The
linear model of coregionalization proposes the introduction of
positive definite matrix multiplying the covariance function
similar to the prior model proposed in [Bonilla et al., 2008].

A convolution process between a smoothing kernel and a
latent function was used by Boyle and Frean to specify cross
covariance terms in [Boyle and Frean, 2005]. Alvarez and
Lawrence provide a sparse approximation for that approach
in [Alvarez and Lawrence, 2009]. Our model can also be
seen as a convolution process of two smoothing kernels (ba-
sis functions) assuming the influence of one latent function.
Extensions to multiple latent functions are also possible by
following the procedure in [Alvarez and Lawrence, 2009].

Our method differs from previous approaches by directly
modeling the dependencies between multiple tasks through
new cross covariance terms. A mathematical procedure is
presented to obtain basis functions for general stationary co-
variance functions which can be used to construct new cross
covariance terms. This is expected to provide much more
flexibility in representing complex dependencies between the
different outputs. It also generalizes the use of kernels with
different forms for the joint multiple output prediction.

3 Multiple Output Gaussian Processes

Consider the supervised learning problem of estimating
M tasks y∗ for a query point x∗ given a set X of
inputs x11, . . . ,xN11,x12, . . . ,xN22, . . . ,x1M , . . . ,xNMM

and corresponding noisy outputs y = (y11, . . . , yN11,
y12, . . . , yN22, . . . , y1M , . . . , yNMM )T , where xil and yil
correspond to the ith input and output for task l respectively,
and Nl is the number of training examples for task l.

The Gaussian processes approach to this problem is to
place a Gaussian prior over the latent functions fl mapping
inputs to outputs. Assuming zero mean for the outputs we
define a covariance matrix over all latent functions in order to
explore the dependencies between different tasks

cov [fl(x), fk(x
′)] = Klk(x,x

′), (1)

where Klk with l, k = 1 : M define the positive semi-definite
(PSD) block matrix K. In this work we allow Klk to be com-
puted with multiple covariance functions (or kernels) result-
ing in a final PSD matrix. To fully define the model we need
to specify the auto covariance terms klk with l = k and the
cross covariance terms klk with l �= k. The main difficulty in

this problem is to define cross covariance terms that provide
PSD matrices. A general framework for this is proposed in
the next section.

With these definitions, inference can be computed using
the conventional GP equations for mean and variance:
f̄l(x

∗) = kT
l K

−1
y y, V[fl(x

∗)] = kl∗ − kT
l K

−1
y kl, (2)

where Ky = K+σ2I is the covariance matrix for the targets
y and

kl = [k1l(x
∗,x11) . . . k1l(x

∗,xN11) . . .

. . . kMl(x
∗,x1M ) . . . kMl(x

∗,xNMM )]T .

Similarly, learning can be performed by maximizing the
log marginal likelihood

L(Θ) = −1

2
yTK−1

y y− 1

2
log |Ky|− log 2π

2

∑M

i=1
Ni (3)

where Θ is a set of hyper-parameters.

4 Constructing Multi-Kernel Covariance

Functions

4.1 General Form

To construct valid cross covariance terms between M covari-
ance functions k11, k22, . . . , kMM we need to go back to their
basis functions and construct cross covariance terms between
all the kernel pairs. The proposition below states that if the
M covariance functions kii, i = 1 : M can be written as
convolution of their basis functions (or smoothing kernels)
gi, defining the cross covariance terms as the convolutions of
gi with gj where i, j = 1 : M results in a PSD multi-task
covariance function.

Proposition 1. Suppose kii (x, x
′), i = 1 : M are single-

task stationary covariance functions and can be written in the
following form:

kii (x, x
′) =

∫ ∞

−∞
gi (x− u) gi (x

′ − u) du, i = 1 : M (4)

Then the M task covariance function defined as

K
(
xi, x

′
j

)
=

∫ ∞

−∞
gi (xi − u) gj

(
x′
j − u

)
du (5)

where xi and x′
j belong to the tasks i and j, respectively, is a

PSD multi-task covariance function.
This preposition can be proved by considering the

quadratic form that it generates. After some algebraic ma-
nipulations this quadratic form can be rearranged into a sum
of squares which proves that K is a M task PSD covariance
function. The details of the proof can be found in the tech-
nical report ACFR-TR-2011-002 1. The covariance functions
kii, i = 1 : M can have the same form with different hyper-
parameters or can have completely different forms. When the
covariance functions can be written as in Eq. (4) the cross
covariance terms can be calculated as in Eq. (5). The main
difficulty is finding gi (smoothing kernel) for popular covari-
ance functions and computing the integrals in Eq. (5). The
following section demonstrates how to obtain smoothing ker-
nels for stationary covariance functions through the Fourier
analysis.

1The technical report ACFR-TR-2011-002 is available at:
http://www.acfr.usyd.edu.au/techreports/
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4.2 Constructing Cross Covariance Terms with
Fourier Analysis

Consider the covariance function k (x,x′) which can be rep-
resented in the form

k (x,x′) =
∫
RD

g (x− u) g (u− x′) du (6)

where g (u) ≡ g (−u):
Changing the variable of integration in Eq. (6) we obtain

k (x,x′) =
∫
RD

g (u) g (τ − u) du = (g ∗ g) (τ) (7)

where ∗ stands for convolution and τ = x− x′.
Applying the Fourier transformation

h∗ (s) = �τ→s [h (τ)] =
1√
2π

∫
RD

h (τ) eis·τdτ

h (τ) = �
−1
s→τ [h

∗ (s)] =
1√
2π

∫
RD

h∗ (s) e−is·τds (8)

to Eq. (7) and using the equality

(g1 (τ) ∗ g2 (τ))∗ (s) =
√
2πg∗1 (s) g

∗
2 (s)

one has that
k∗ (s) =

√
2π (g∗ (s))2 . (9)

Using Eqs. (9), (8) one can calculate the basis function
g (τ) of arbitrary stationary covariance function k (τ) via the
formula:

g (τ) =
1

(2π)
1/4

�
−1
s→τ

[√
�τ→s [k (τ)]

]
. (10)

5 Examples

In this section we provide analytical solutions for three cross
covariance functions using the framework described above.
Proofs can be found in the technical report ACFR-TR-2011-
002 referenced above. We have included the sparse covari-
ance function proposed in [Melkumyan and Ramos, 2009]
as this provides intrinsically sparse matrices which can be in-
verted efficiently. The definitions for the squared exponential,
Matérn (ν = 3/2 see [Rasmussen and Williams, 2006], p.85)
and sparse covariance functions are given below

kSE (r; lSE) = exp

[
−1

2

(
r

lSE

)2
]

(11)

kM (r; lM ) =
(
1 +

√
3r/lM

)
exp

(
−
√
3r/lM

)
(12)

kS (r; lS) =

[
2 + cos (2πr/lS)

3
(1− r/lS) +

+
1

2π
sin (2πr/lS)

]
H (lS − r) (13)

where lSE , lM and lS are the corresponding length scales,
H (x) is the Heaviside unit step function and r = |x− x′|.

5.1 Squared Exponential ×Matern 3/2

Given the squared exponential and Matérn 3/2 covariance
functions defined in Eq. (11) and Eq. (12) respectively, the
cross covariance term can be analytically calculated via the
proposed methodology resulting in:

kSE×M (r; lSE , lM ) =
√
λ
(π
2

)1/4

eλ
2

[
2 cosh

(√
3r

lM

)

−e
√

3r
lM erf

(
λ+

r

lSE

)
− e

−
√

3r
lM erf

(
λ− r

lSE

)]
(14)

where λ =
√
3
2

lSE

lM
, erf (x) = 2√

π

∫ x

0
e−t2dt.

5.2 Matern 3/2 ×Matern 3/2

A combination of two Matérn 3/2 kernels results in the fol-
lowing cross covariance term:

kM1×M2 (r; l1, l2) = σ12

(
l1e

−√
3 r

l1 − l2e
−√

3 r
l2

)
(15)

where σ12 = 2
√
l1l2/

(
l21 − l22

)
, and l1 and l2 are the length

scales of the first and second Matérn 3/2 kernels, respectively.

5.3 Sparse × Sparse

One of the main challenges in multi-task learning with Gaus-
sian processes is the computational burden of inverting a large
matrix of size

∑M
i=1 Ni where M is the number of tasks, and

Ni is the number of points in task i. To tackle this problem in
the case of single task GPs, an intrinsically sparse covariance
function was proposed in [Melkumyan and Ramos, 2009].
This covariance function has the property of vanishing to zero
after a certain distance – represented as a hyperparameter esti-
mated during the learning phase. As the produced covariance
matrix is sparse, significant speed ups can be obtained during
inversion. Here, we derive an extension of that covariance
function for the multi-task case, in combination with itself
and other covariance functions. Note that the resulting multi-
task sparse×sparse covariance function has compact support.

Combination of two sparse kernels with characteristic
length-scales l1 and l2 results in

kS1×S2
(r; l1, l2) =

2

3
√
l1l2

[
lmin +

1

π

l3max

l2max − l2min

×

× sin

(
π
lmin

lmax

)
cos

(
2πr

lmax

)]
if r ≤ |l2 − l1|

2
(16)

kS1×S2
(r; l1, l2) =

2

3
√
l1l2

[
l − r +

l31 sin
(
π l2−2r

l1

)
2π (l21 − l22)

−

−
l32 sin

(
π l1−2r

l2

)
2π (l21 − l22)

]
if

|l2 − l1|
2

≤ r ≤ l1 + l2
2

(17)

and
kS1×S2

(r; l1, l2) = 0 if r ≥ l1 + l2
2

(18)

where H (x) is the Heaviside unit step function, l = (l1 +
l2)/2, lmin = min (l1, l2) and lmax = max (l1, l2).
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5.4 Squared Exponential × Sparse

The cross covariance term between squared exponential and
sparse kernels can be calculated analytically resulting in

kSE×S (r; lSE , lS) = σSE×S

[
erf

(
lS

2lSE
− r

lSE

)
+

+erf
(

lS
2lSE

+
r

lSE

)
+ e

−
(

lSE
lS

π
)2

Re [γ (r; lSE , lS)]

]
(19)

where Re [γ] stands for the real part of γ and

γ (r; lSE , lS) = e
2πr
lS

i

[
erf

(
lS

2lSE
− r

lSE
− i

lSE

lS
π

)
+

+erf
(

lS
2lSE

+
r

lSE
+ i

lSE

lS
π

)]
,

σSE×S = (2π)
1/4

√
lSE/(6lS).

5.5 Matern 3/2 × Sparse

The cross covariance term between Matérn 3/2 and sparse
kernels can be calculated analytically resulting in

kM×S (r; lM , lS) = σM×S exp
(
−
√
3r/lM

)
(20)

where

σM×S =
2π2

π2 + λ2
M×S

sinhλM×S√
3λM×S

, λM×S =

√
3

2

lS
lM

,

and lM and lS are the length scales of the corresponding co-
variance functions.

5.6 Squared Exponential × Squared Exponential

The cross covariance term between two squared exponential
kernels has an analytical form given by

kSE1×SE2
(r; l1, l2) =

√
2l1l2
l21 + l22

exp

(
− r2

l21 + l22

)
. (21)

For the general anisotropic case:

kSE1
(x,x′; Ω1) = exp

[
− (x− x′)T Ω−1

1 (x− x′)
2

]
(22)

kSE2 (x,x
′; Ω2) = exp

[
− (x− x′)T Ω−1

2 (x− x′)
2

]
(23)

kSE1×SE2
(x,x′; Ω1,Ω2) = 2D/2 |Ω1|1/4 |Ω2|1/4√|Ω1 +Ω2|

×

× exp
[
− (x− x′)T (Ω1 +Ω2)

−1
(x− x′)

]
(24)

Multidimensional and anisotropic extensions of the other
models are possible by taking the product of the cross covari-
ance terms defined for each input dimension.

Note that the examples above do not consider parameters
for the amplitude (signal variance) of the covariance func-
tions. This, however, can be added by multiplying blocks of
the multi-task covariance matrix by coefficients from a PSD
matrix as in [Bonilla et al., 2008].

6 Experiments

6.1 1D Simulation

The first experiment demonstrates the benefits of using the
multi-kernel methodology in an artificial 1D problem for two
dependent tasks. The observations for the first task are gen-
erated from a minus sine function corrupted with Gaussian
noise. Only the observations for the second part of the func-
tion are used and the objective is to infer the first part from
observations of the second task. Observations for the second
task were generated from a sine function with some additional
complexity to make the function less smooth and corrupted
by Gaussian noise. A comparison between independent GP
predictions, multi-task GP with squared exponential kernel
for both tasks, and the multi-kernel GP (squared exponential
kernel for the first task and Matérn 3/2 for the second) is pre-
sented in Figure 1. It can be observed in Figure 1(c) that the
multi-kernel GP models the second function more accurately.
This helps in providing a better prediction for the first task.

Despite the simplicity of this experiment it simulates a very
common phenomenon in grade estimation for mining. Some
elements have a much higher concentration variability but fol-
low the same trend as others. Being able to aptly model these
dependencies from noisy x-ray lab samples is essential for an
accurate final product. This is empirically demonstrated in
the second experiment.

6.2 Iron Ore

1363 samples from an iron ore mine were collected and an-
alyzed in laboratory with x-ray instruments to determine the
concentration of three components: iron, silica and alumina.
Iron is the main product but equally important is to asses the
concentration of the contaminants silica and alumina. The
samples were collected from exploration holes of about 200m
deep, distributed in an area of 6 km2. Each hole is divided
into 2 meter sections for laboratory assessment, the lab result
for each section is then an observation in our dataset. The
final dataset consists of 4089 data points representing 31 ex-
ploration holes. We separate two holes to use as testing data.
For these holes we predict the concentration of silica given
iron and alumina. The experiment is repeated employing dif-
ferent multi-task covariance functions with either squared ex-
ponential or Matérn kernel for each task combined with the
cross-covariance terms presented in Section 5. The results
are summarized in Table 1 which demonstrates that the de-
pendencies between iron, silica and alumina are better cap-
tured by the Matérn 3/2 × Matérn 3/2 × SqExp multi-kernel
covariance function.

6.3 Jura

In the third experiment GPs with different multi-kernel co-
variance functions were applied to the Jura dataset. The Jura
dataset is a benchmark dataset in geostatistics2. It consists of
a training set with 259 samples in an area of 14.5km2 and
a testing set with 100 samples. The task is to predict the
concentration of cadmium (Cd), lead (Pb) and zinc (Zn) at

2The Jura dataset is available at:
http://goovaerts.pierre.googlepages.com/
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(a) Independent GPs with SqExp
and SqExp

(b) Multi-task GPs with SqExp
and SqExp

(c) Multi-Kernel GPs with Sq-
Exp (top) and Mat3/2 (bottom)

Figure 1: Predictive mean and variance for independent GPs, multi-task GPs and multi-kernel GPs. SqExp indicates the
squared exponential covariance functions while Mat3/2 indicates the Matérn 3/2 covariance function. The dots represent the
observations and the dashed (red) line represents the ground truth for task 1.

Kernel for Fe Kernel for SiO2 Kernel for Al2O3 Absolute Error
SqExp SqExp SqExp 2.7995±2.5561

Matérn 3/2 Matérn 3/2 SqExp 2.2293±2.1041

Matérn 3/2 SqExp Matérn 3/2 2.8393±2.6962
SqExp Matérn 3/2 Matérn 3/2 3.0569±2.9340

Matérn 3/2 Matérn 3/2 Matérn 3/2 2.6181±2.3871

Table 1: Mean and standard deviation of absolute error for iron grade

new locations. The multi-kernel covariance functions pro-
posed in this paper enable considering different kernels for
each of the materials thus maximizing the predictive qualities
of the GP. The 259 training samples were used at the learn-
ing stage and the 100 testing samples were used to evaluate
the predictive qualities of the models. The square root mean
square error (SMSE) for all possible triplet combinations of
SqExp and Matérn 3/2 kernels are presented in Table 2. The
results demonstrate that the dependencies between cadmium,
lead and zinc are better captured by the Matérn 3/2 × SqExp
× SqExp triplet-kernel.

6.4 Concrete Slump

In the last experiment the concrete slump dataset3 is consid-
ered. This dataset contains 103 data points with seven in-
put dimensions and 3 outputs describing the influence of the
constituent parts of concrete on the overall properties of the
concrete. The seven input dimensions are cement, slag, fly
ash, water, SP, coarse aggr. and fine aggr., and the outputs
are slump, flow and 28-day compressive strength of concrete.
83 data points are used for learning and 20 data points are
used for testing. The square root mean square error (SMSE)
for all possible triplet combinations of SqExp and Matérn 3/2
kernels for this dataset are presented in Table 3. The results
demonstrate that the dependencies between slump, flow and
28-day compressive strength of concrete are better captured
by the SqExp ×Matérn 3/2 ×Matérn 3/2 triplet-kernel.

3The concrete slump dataset is available at:
http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test

7 Conclusions

This paper presented a novel methodology to construct cross
covariance terms for multi-task Gaussian process. This
methodology allows the use of multiple covariance functions
for the same multi-task prediction problem. We prove that if a
stationary covariance function can be written as a convolution
of two identical basis functions, a cross covariance term can
always be defined resulting in a positive semi-definite multi-
task covariance matrix. A general methodology to find the
basis function is then developed based on Fourier analysis.

We provide analytical solutions for six combinations of co-
variance functions, three of them combining different covari-
ance functions. The analytical forms for the cross covariance
terms can be directly applied to GP prediction problems but
are useful for other kernel machines.

We presented a multi-task sparse covariance function
which provides computationally efficient (and exact) way
of performing inference in large datasets [Melkumyan and
Ramos, 2009]. Note however that approximate techniques
such as [Williams and Seeger, 2001; Lawrence et al., 2003;
Snelson and Ghahramani, 2006] can also be used.

As a future work we plan to extend the approach to non-
stationary covariance functions, possibly combining non-
stationary and stationary kernels. This can be useful in appli-
cations involving space and time domains such as pollution
estimation or weather forecast.
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Kernel for Cd Kernel for Pb Kernel for Zn SMSE for Cd SMSE for Pb SMSE for Zn
SqExp SqExp SqExp 1.0231 13.7199 42.4945

Matérn 3/2 Matérn 3/2 Matérn 3/2 0.9456 11.9542 38.7402
Matérn 3/2 Matérn 3/2 SqExp 0.9079 11.4786 42.1452
Matérn 3/2 SqExp Matérn 3/2 0.8239 9.7757 36.2846

SqExp Matérn 3/2 Matérn 3/2 1.0375 12.4937 39.6459
SqExp SqExp Matérn 3/2 0.8214 9.9625 37.8670
SqExp Matérn 3/2 SqExp 1.0269 12.087 42.6403

Matérn 3/2 SqExp SqExp 0.7883 9.7403 34.4978

Table 2: Square root mean square error for cadmium (Cd), lead (Pb) and zinc (Zn) for all possible triplet-kernels combining
SqExp and Matérn 3/2

Kernel for Slump Kernel for Flow Kernel for Strength SMSE for Slump SMSE for Flow SMSE for Strength
SqExp SqExp SqExp 13.8776 820.4181 733.1642

Matérn 3/2 Matérn 3/2 Matérn 3/2 13.6224 820.6727 733.5744
Matérn 3/2 Matérn 3/2 SqExp 14.7709 821.8064 733.0741
Matérn 3/2 SqExp Matérn 3/2 14.2670 822.7529 733.5768

SqExp Matérn 3/2 Matérn 3/2 13.5690 820.3678 732.7032

SqExp SqExp Matérn 3/2 15.3459 821.1577 733.6685
SqExp Matérn 3/2 SqExp 16.2332 824.4468 733.7083

Matérn 3/2 SqExp SqExp 13.7503 845.5608 741.3144

Table 3: Square root mean square error for slump, flow and strength of concrete for all possible triplet-kernels combining SqExp
and Matérn 3/2
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