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Abstract

In this paper, we present BENCH (Biclustering-
driven ENsemble of Classifiers), an algorithm to
construct an ensemble of classifiers through con-
current feature and data point selection guided by
unsupervised knowledge obtained from bicluster-
ing. BENCH is designed for underdetermined
problems. In our experiments, we use Bayesian Be-
lief Network (BBN) classifiers as base classifiers in
the ensemble; however, BENCH can be applied to
other classification models as well. We show that
BENCH is able to increase prediction accuracy of
a single classifier and traditional ensemble of clas-
sifiers by up to 15% on three microarray datasets
using various weighting schemes for combining in-
dividual predictions in the ensemble.

1 Introduction

Ensemble classification is a technique that combines the pre-
dictions of some number of “base” classifiers in some man-
ner to produce an aggregate prediction. Ensemble classifiers
have been successfully used to increase the stability of “un-
stable” or “weak” classifiers [Aljamaan and Elish, 2009] [Tao
et al., 2006] [Breiman, 1996] [Waske et al., 2010] [Sohn and
Dagli, 2003] [Diaz-Uriarte and de Andres, 2006] [Tu et al.,
2009] [Opitz and Maclin, 1999] [Bauer and Kohavi, 1999]; to
decrease the expected error by reducing the bias or the vari-
ance of the predictions [Bauer and Kohavi, 1999]; and to han-
dle high-dimensional [Tao et al., 2006] or underdetermined
[Waske et al., 2010] [Tao et al., 2006] datasets.

Typically, ensemble classification is done by creating sev-
eral classifiers in one of two ways: 1) random sampling of
the data points, as in bagging [Breiman, 1996] or boosting
[Schapire, 1990], or 2) random sampling of the features, as
in random forests [Ho, 1998]. Sampling from the data point
space reduces the variance of “unstable” classifiers. In ad-
dition, sampling from the feature space has been shown to
increase the prediction accuracy of classifiers for a large num-
ber of features [Waske et al., 2010].

Several methods have been developed recently that aim to
improve the prediction accuracy of an ensemble of classi-
fiers. DECORATE (Diverse Ensemble Creation by Opposi-
tional Relabeling of Artificial Training Example) [Melville

and Mooney, 2003] increases the diversity of an ensemble
by adding different randomly constructed data points into the
training set. Davidson [Davidson, 2004] proposes “bootstrap
model averaging,” a method that sums the joint probability
of the instances and classes and predicts according to the
most probable class. COPEN (pairwise COnstraint Projec-
tion based ENsemble) [Zhang et al., 2008] couples traditional
bagging and boosting with a new resampling method. Instead
of directly resampling the data points in the training set, it re-
samples based on pairwise constraints that specify whether
two data points are in the same class or not.

In some real world problem domains, learning to build
classifiers with high prediction accuracy can be a difficult
task due to the nature of the data available. For example,
in biology, recent advances in DNA microarray technology
allow the expression levels of thousands of genes to be mea-
sured simultaneously under different experimental conditions
[Kim and Cho, 2006] [Harrington et al., 2000], so the re-
sulting data contains many more features or genes than data
points or experiments. These types of problems, where there
are many more features than data points, are called under-
determined or under-constrained problems. Recently, devel-
opment of classification methods for underdetermined prob-
lems, such as those seen in DNA microarray data analysis,
has been an active research area (see, for example, [Kim and
Cho, 2006], [Peng, 2006], and [Kim and Cho, 2008]).

Underdetermined problems are hard to learn. One reason
is that classifiers may take an unreasonably large amount of
computing power to analyze the large number of features in
the data. For example, the computational complexity of learn-
ing Bayesian Belief Network (BBN) structure and parameters
[Cooper and Herskovits, 1992] grows superexponentially in
number of features [Murphy, 2002]. Also, having too many
features can create noise that prevents the learning algorithm
from identifying the features that are discriminating with re-
spect to the target concept.

One solution is to apply existing ensemble methods, such
as random forests, to reduce the number of features in the fea-
ture space; however, methods that select features randomly
may produce unnecessary noise. Another solution might be
to select only features that are closely related to the target
function using some feature score-based methods, but this so-
lution may not be suitable for biological domain because bi-
ological systems and their relationships to the environments
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are complex [Reiss et al., 2006]. For example, in genetic reg-
ulatory networks, genes may be co-expressed across just a
subset of experimental conditions [Reiss et al., 2006]. There-
fore, we need to take into account not just the values across a
subset of features but also a subset of conditions.

Biclustering is an unsupervised learning technique that un-
covers common patterns that exist across subsets of features
and data points [Tanay et al., 2005]. Biclustering meth-
ods have been successfully applied in the biological domain,
specifically when applied to network reconstruction and mi-
croarray analysis [Bonneau et al., 2006].

To address the problem, in this paper, we present BENCH
(Biclustering-driven ENsemble of Classifiers), a method to
build an ensemble of classifiers for binary classification prob-
lems using knowledge obtained from biclustering. BENCH
divides the original dataset into biclusters, which enables it
to perform concurrent feature and data point selection. Each
bicluster becomes a candidate dataset for constructing a base
classifier in the ensemble.

Since biclustering is an unsupervised learning technique,
its output (a set of biclusters) does not contain any class in-
formation; however, when constructing a classifier, the class
label information is essential. BENCH solves this problem
by analyzing how well the biclusters correlate with the class
labels and by forming candidate datasets to construct classi-
fiers based on bicluster features that distinguish the classes
well or distinguish them poorly.

The first type of candidate dataset is one that is enriched
with either mostly positive or mostly negative class labels,
which we call a homogeneous bicluster. Biclusters that are
enriched with one class label likely have features that are dis-
criminating with respect to the class label. These features
are the ones we select to build a classifier; however, in or-
der to build a good classifier, we need to have both positive
and negative class examples. BENCH solves this problem
by combining a positively enriched bicluster with a negative
one. BENCH identifies positive and negative homogeneous
biclusters with overlapping features and constructs a candi-
date dataset by taking the intersection of the two (discrimi-
nating) feature sets and the union of the data point sets. This
combined dataset is considered a Feature Inclusion (FI) can-
didate dataset.

The second type of candidate dataset is one that is enriched
with both class labels equally, which we call a heterogeneous
bicluster. The features in these datasets are ones that are non-
discriminating with respect to the class label. Ideally, we
would like to remove these types of features. BENCH com-
bines heterogeneous biclusters by taking the complement of
the union of the two feature sets and the union of the data
points. This approach collects non-discriminating features
and forms the Feature Exclusion (FE) candidate datasets by
removing these features.

BENCH is not dependent on the type of classifier used,
but in this paper we focus on the use of BBNs as our base
classifiers. We have chosen BBNs because they have many
good characteristics. BBNs are among the most widely used
probabilistic models for learning under uncertainty. Further-
more, they are capable of dealing with incomplete data, they
are robust against overfitting, they are able to make proba-

bilistic predictions (a property we use later when assigning
weights to the classifiers), and they are able to incorporate
prior knowledge into the learning process. Most importantly,
the structure of BBNs can reveal the dependency relation-
ships that exist between features in the problem domain.

1.1 Related Work: BBN Ensemble Classification

In this paper, we show that our method of constructing an
ensemble BBN classifier is able to increase the prediction
accuracy in microarray datasets by 15% relative to a single
BBN and traditional ensemble classifiers. In addition, we are
able to reduce the learning time by three orders of magnitude
when using only FI classifiers. This result is a significant im-
provement in the area of BBN learning, especially in light of
previous research to improve BBN learning. In this section,
we discuss some previous works on ensemble methods to in-
crease the prediction accuracy of BBNs.

There has been some research done in applying ensemble
learning techniques to Bayesian classifiers. In 2003, Tsym-
bal, Puuronen, and Patterson [Tsymbal et al., 2003] devel-
oped an ensemble classifier for naı̈ve Bayesian classifiers that
randomly samples the feature space. They improved upon
this method, however, by introducing an interactive refine-
ment technique in which each random subset of the feature
space is iteratively improved in order to improve the over-
all prediction accuracy of the ensemble. They compared
the performance of their ensemble of classifiers on a set of
21 datasets from the UCI database against a single naı̈ve
Bayesian classifier. In 14 out of the 21 datasets, the ensemble
of classifiers performed better than the single classifier. How-
ever, their method is limited to naı̈ve BBN classifiers, which
makes an assumption about the independence relationships
among the features. This assumption is rarely true in biolog-
ical domain. In addition, none of the 21 datasets used in their
experiments are underdetermined.

Wang et al. [Wang et al., 2003] applied ensemble classi-
fiers to mining data streams. Data streams consist of data that
is constantly being read in from a streaming source. In their
method, they divide the data stream into chunks and then use
these chunks to train the classifiers. Wang et al. also use the
predicted error rate to determine the weight of each derived
classifier in the ensemble. This method can be viewed as sam-
pling data points from the full streaming dataset in order to
create an ensemble. In their experiments, they used several
types of base classifiers, naı̈ve Bayesian networks, RIPPER,
and the C4.5 decision tree algorithm, on a dataset containing
credit card transaction records for a one year period. They
show that, with enough classifiers, the ensemble of classifiers
will outperform single classifiers with respect to both speed
and accuracy. However, this method has not been tested for
underdetermined problems.

In 2008, Jing et al. [Jing et al., 2008] combined parameter
boosting with structure learning to improve the classification
accuracy of BBN classifiers. They construct an ensemble of
BBN classifiers, starting with an empty set, and the algorithm
goes though fixed number of iterations or stops if some cri-
terion is met. At the beginning of each iteration, a training
set and the set of corresponding weights for the data points
are given to the TAN algorithm to build a BBN classifier. For
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base classifier i, the TAN algorithm adds the i edges with the
highest mutual information to a naı̈ve BBN. The training error
of the resulting TAN classifier is then used to determine the
weight of the test data points in the next iterations. The algo-
rithm will stop at this point if the training error increases. Jing
et al. test their ensemble of classifiers using UCI datasets as
well as two artificial datasets. According to their results, their
boosted BBNs have comparable or reduced average testing
error than naı̈ve BBN, TAN, and ELR on the 23 UCI datasets
and the simulated datasets. Their method is, however, not
designed to handle underdetermined problems.

In each of these methods, researchers applied ensemble
techniques, be it sampling the feature space or sampling data
points to show an increase in prediction accuracy over single
classifiers (naı̈ve Bayes classifiers or BBN classifiers); how-
ever, none of the methods concurrently select from both fea-
ture and data point spaces or demonstrate success on under-
determined data like BENCH.

2 Method

2.1 Overview
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Figure 1: BENCH Learning Algorithm method flowchart
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Figure 2: BENCH method flowchart

In this paper, we aim to improve the prediction accuracy of
a BBN classifier by combining feature selection and ensem-
ble learning methods. Our strategy is to build an ensemble
of BBN classifiers constructed from discriminating and non-
discriminating features identified through biclustering.

Figure 1 and Figure 2 give a basic outline of our algo-
rithm. Before applying the BENCH procedure, we need to
process the data into a form suitable for biclustering and
BBNs. Specifically, we replace the missing values for a fea-
ture with the average value of that feature, and we discretize
the values for each feature into three equal-width bins repre-
senting up-regulation, down-regulation, and no change. Once
we have the preprocessed data, we divide the data into biclus-
ters. We then assess these biclusters for their enrichment rela-
tive to the class labels, and we use the resulting homogeneous
and heterogeneous biclusters to form candidate datasets that
we use to train the BBN classifiers. Lastly, we choose a vot-
ing scheme to determine how the results from the individual
BBNs are combined into a final answer. The individual steps
of this procedure are described in the following sections.

2.2 Biclustering Data

Biclustering is an unsupervised learning technique that seeks
to identify a subset of features that exhibit similar behavior
across a set of data points. We apply the results of biclustering
to the problem of feature selection in a supervised fashion—
by uncovering regions of the data with strong similarity, bi-
clusters enable discovery of features that discriminate well or
poorly across some subsets of the data points.

In our experiments, we use the implementation of the
Samba biclustering algorithm available in EXPANDER [Ulit-
sky et al., 2010]. Samba (Statistic-Algorithmic Method for
Bicluster Analysis) combines a statistical data model and
graph-theoretic approach to find the most significant biclus-
ters in gene expression microarray data [Tanay et al., 2002].
Samba has been shown to perform well in terms of its abil-
ity to recover biologically relevant biclusters on both real and
synthetic microarray datasets as well as its robustness on syn-
thetic microarray datasets [Preli et al., 2006]. Samba was
shown to perform better than four other common bicluster-
ing algorithms: Cheng and Church’s algorithm [Cheng and
Church, 2000], the Order Preserving Submatix (OPSM) al-
gorithm [Ben-dor et al., 2002], Iterative Signature Algorithm
(ISA) [Ihmels et al., 2004], and xMotifs [Murali and Kasif,
2003].

2.3 Calculating Bicluster Enrichment

Having identified a set of biclusters in the data, we assess how
well each cluster can predict the class label. We classify each
bicluster as homogeneously positive, homogeneously nega-
tive, or heterogeneous with respect to the class label. We
make this classification based on the likelihood of achiev-
ing the same distribution of positive and negative class labels
through random choice; i.e., if a bicluster has a statistically
significant number of positive (negative) instances, we can
classify it as homogeneous.

We calculate this likelihood by using the hypergeometric
probability, with a significance threshold of 0.05. That is,
if the probability of selecting at least as many positive data
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points as in the bicluster with a random sample of the same
size is less than 0.05, we classify the bicluster as homoge-
neously positive. If this probability is greater than 0.95, then
we label the bicluster as homogeneously negative (as the pos-
itive and negative probabilities are complementary), and we
label biclusters with intermediate values as heterogeneous.

2.4 Combining Biclusters

Homogeneous Biclusters
For the homogeneous biclusters, we want to combine the ho-
mogeneously positive and negative biclusters to form train-
ing sets with features that discriminate between the class la-
bels. To do so, we first compare all of the homogeneously
positive biclusters with all of the homogeneously negative bi-
clusters. If the features in a positive and a negative biclus-
ter overlap significantly (i.e., the number of common features
exceeds some user-defined threshold α), we form the candi-
date datasets by taking the intersection of the features and the
union of the data points. We remove any duplicate datasets
and use the remaining candidates as our FI datasets. If no FI
datasets are formed due to a large value of α, then the user
is expected to reduce the value of α; otherwise, BENCH will
proceed without FI classifiers (see Section 3.6).

Heterogeneous Biclusters
In contrast to the homogeneous clusters, the features of the
heterogeneous clusters do not discriminate well between the
class labels. Therefore, in combining the heterogeneous bi-
clusters, we want to form datasets that avoid these non-
discriminating features. We first compare all the heteroge-
neous biclusters with all other heterogeneous biclusters to
find a set of heterogeneous biclusters with at least β com-
mon features. For each heterogeneous bicluster, we compare
it with every other heterogeneous bicluster, combining the bi-
clusters in a greedy fashion. That is, if the bicluster have
at least β common features, we combine them by taking the
union of the data points and the union of the features. When
we have finished combining one heterogeneous bicluster, we
form an FE dataset by using the data points of the combined
bicluster and the complement of the features. As before, we
remove any duplicate datasets that result from this procedure.
If no FE datasets are formed due to a large value of β, then the
user is expected to reduce the value of β; otherwise, BENCH
will proceed without FE classifiers (see Section 3.6).

2.5 Creating and Weighting the Ensemble

Once the candidate FI and FE datasets have been generated
from the original set of biclusters, each dataset is used to train
a base classifier that will become part of the ensemble. In this
paper, we use BBNs as a base classifier, but our technique can
be applied to other classifiers as well.

Once the ensemble is created, we wish to weigh each clas-
sifier in the ensemble. In order for the ensemble to make a
prediction, each classifier is given a weighted vote, and the
class with the most votes is the prediction of the ensemble.
We tested three possible weighting schemes: a simple ma-
jority voting scheme in which every classifier is given equal
weight, a training error–based method in which every classi-
fier is weighted based on its training error, and a confidence-
based method in which each classifier is weighted by that

model’s associated confidence value. The results of these
tests appear in Section 3.4.

3 Results

In order to test the results obtained by BENCH, we compare
the performance of BENCH with that of other classification
methods. We used ten-fold cross validation for our experi-
ments.

We built BBN classifiers using the K2 algorithm imple-
mentation provided by WEKA [M. Hall, 2009].

3.1 Data

In this paper, we perform experiments on three sets of two-
class microarray data, Leukemia, Lymphoma, and Colon
Cancer. (BENCH is not limited to microarray data, though; it
can handle any two-class dataset with features suitable for
biclustering.) The Leukemia dataset contains 72 measure-
ments for the expression of 7129 genes, corresponding to
samples taken from bone marrow and peripheral blood. Out
of these samples, 47 samples are classified as acute lym-
phoblastic leukemia (ALL), and 25 samples are classified as
acute myeloid leukemia (AML). The Lymphoma dataset con-
tains 40 mRNA samples of normal and malignant lympho-
cytes. These samples, which analyze expression level for
4026 genes, are classified based on patient survival: 22 pa-
tients survived, and 18 did not. The Colon Cancer dataset
contains 62 samples of colon tissue measuring the activity of
1996 genes. Of the 62 samples, 40 were cancerous, and 22
samples were normal.

3.2 Overall BENCH Performance

We tested BENCH’s performance against two well-known
ensemble learning techniques: bagging and random forests.
We also included the results from a single BBN classifier to
act as a baseline for our algorithm, since we use BBNs as the
base classifiers for BENCH. For this experiment, we chose
to use the confidence-based weighting scheme for BENCH,
and we have included two results from BENCH in the figure
in order to compare bagging with BENCH on a more even
footing, one result using the full 59 classifiers produced by
BENCH and the other using a random sample of five classi-
fiers. In the following experiments, % Accuracy is defined as
the ratio of the number of correctly classified data points to
the total number of data points in the test set. A data point
is correctly classified if the predicted class label matches the
actual class label of that data point. Figure 3 shows the results
of ten-fold cross validation on the Leukemia dataset.

Since the performance of bagging and random forests de-
pends on the number and size of the individual datasets cho-
sen, we tried several different values for our comparison to
BENCH. Only the most accurate result from our trials ap-
pears in Figure 3. In order to provide a basis for comparison,
the figure also includes information on the number of data
points used in the classifier, the number of features used in
the classifier, and the number of classifiers used, in the form
“data points/features/classifiers.” The numbers shown for the
number of features and data points used in the BENCH run
are averages taken over all classifiers and all folds.
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As one can see from the figure, BENCH outperforms bag-
ging by 15.71% and random forests by 14.29%. Interestingly,
both bagging and random forests actually perform worse than
the single BBN classifier on this dataset; however, BENCH
still outperforms the single BBN classifier by about 14.28%.

Note that although using BENCH with BBN as a base clas-
sifier shows a significant performance improvement over the
single BBN classifier, it does not exceed the best results for
these datasets reported in the literature. For example, the best
reported accuracy for the Leukemia data is 97.22% (using
leave-one-out cross validation) [Peng, 2006], and the best ac-
curacy for the Colon Cancer dataset is 88.87% [Kim and Cho,
2008] (again, using leave-one-out cross validation). However,
as the performance of BENCH depends on the base classifier
being used (see Section 4), a direct comparison of these re-
sults to BENCH using BBNs as a base classifier may not be
apt. What we demonstrate here is that by using bicluster-
ing to identify sets of discriminating features over a subset of
data points, we can build an ensemble that outperforms the
base classifier as well as traditional ensemble methods such
as bagging and boosting.
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Figure 3: Comparison of prediction accuracy of BENCH to
single and ensemble classifiers on the Leukemia dataset

3.3 A Note on Using Ten-Fold Cross Validation

The problem of error estimation for small sample data re-
ceived a systematic treatment by [Braga-Neto and Dougherty,
2004], [Braga-Neto, 2007], and [Yousefi et al., 2010]. Specif-
ically, they concluded that although the bias is low, the vari-
ance is very high for small datasets when using cross val-
idation. The use of bootstrapping and bolstered resubstitu-
tion was suggested in [Braga-Neto and Dougherty, 2004] and
[Braga-Neto, 2007]; however, due to the high computational
cost of bootstrapping experiments and the broad acceptance
of cross validation by the data mining and AI communities,
we report the prediction accuracy along with the bias and
variance. In our results, the bias and variance were 0.0012
and 0.0096 for Leukemia, 0.0012 and 0.0043 for Lymphoma,
and 0.0541 and 0.0174 for the Colon Cancer datasets, respec-
tively. Note that validating BENCH with respect to bolstered
resubstitution is a topic for future research.

3.4 Different Weighting Schemes

One factor that influences the results of BENCH is the weight
assigned to each classifier for voting on the class. In this sec-

tion, we test the three weighting schemes introduced earlier:
majority voting, training error–based voting, and confidence-
based voting. The experiment shows that the choice of
weighting scheme had no bearing on prediction accuracy
for the Leukemia or Colon Cancer datasets; however, the
confidence-based method performed slightly better (7–10%)
than the other two weighting schemes on the Lymphoma
dataset. Combining the weighting schemes by multiplying
training error and confidence did not improve the perfor-
mance of the ensemble. Notably, though, all of the weighting
schemes outperformed the accuracy of a single BBN classi-
fier.

3.5 Parameters for Random Forests

We decided to test how the prediction accuracy of random
forests changed as we added more features and classifiers.
We varied the number of features from 5 to 40 and varied the
number of base classifiers from 5 to 60 using ten-fold cross
validation on the Leukemia dataset. The results show that
the prediction accuracy ranges from 70% to 82.86% with no
definitive trend when either or both the number of features
or base classifiers increase. Therefore, we conclude that in-
creasing the number of features or base classifiers has little
effect on the performance of the random forest ensemble.

3.6 FI and FE Classifiers

BENCH creates two different types of classifiers during train-
ing, Feature Inclusion (FI) classifiers and Feature Exclusion
(FE) classifiers. BENCH arrives at its final prediction by
combining predictions from both types of classifiers. Note
that BENCH will stop if both the FI and FE datasets are
empty. In this case, the user would need to adjust the α
and β parameters, as discussed in Section 2.4. We decided
to test the predictive power of each type of classifier to see
how much each contributed to the final prediction using the
confidence-based weighting scheme. In Figure 4, we present
the results of running a single BBN, only FI classifiers, only
FE classifiers, and the combined prediction of FI and FE clas-
sifiers for all three datasets. As one can see, using only the FE
classifiers typically leads to a decreased performance over-
all; however, using just the FI classifiers leads to a compa-
rable performance as compared to the combined classifiers
and even improves performance for the Colon Cancer dataset.
Thus, we can also achieve accurate predictions using just the
FI classifiers.

3.7 Learning Time

As discussed in Section 3.6, we can achieve accurate predic-
tions using only the FI classifiers. We can use this observation
to improve the training time of methods that train classifiers
on the entire feature set, like bagging or a single BBN. If we
train classifiers only on the FI datasets, it is possible to see a
significant reduction in training time.

Our experiments on the Leukemia dataset shows that the
training time for the FI classifier (0.5 seconds) is three or-
ders of magnitude smaller than the training time for the sin-
gle BBN classifier (1453.4 seconds) or the bagging method
(1134.2 seconds). Even though random forests and BENCH
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Leukemia Lymphoma Colon cancer
Single BBN 82.86 60 75
FI classifiers 95.71 70 80
FE classifiers 94.29 54.16 40
FI + FE classifiers 97.14 67.5 76.67
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Figure 4: Comparison of prediction accuracy between FI and
FE classifiers using confidence weighting on Leukemia, Lym-
phoma, and Colon Cancer datasets

have similar training times (0.5 seconds), using the FI classi-
fiers results in almost 10% higher accuracy. (Random forest
prediction accuracy is 82.85%, from Figure 3, and the FI en-
semble classification accuracy is given as 95.71%, from Fig-
ure 4.) Even though this result does not include the time re-
quired to produce the biclusters, biclustering is performed in
less than 25 seconds. We feel that the similar training time for
random forest to the training time of an ensemble of FI clas-
sifiers is offset by the decrease in prediction accuracy. Addi-
tionally, we observed (Section 3.5) that increasing the num-
ber of classifiers or features does not necessarily improve the
prediction accuracy of the random forest technique.

The reason for the small training time of FI classifiers is
that the number of features used for training an FI classifier
is small relative to the original feature space. For example,
in the Leukemia dataset, the average number of features in an
FI dataset is 226, which is much smaller than the 7,129 fea-
tures in the original dataset. It is interesting to observe that by
carefully selecting groups of data points and features together,
we can build an ensemble of classifiers capable of achieving
higher accuracy than randomly selecting data points (in bag-
ging) or features (random forest), individually.

4 BENCH Generalization

Thus far, we have shown that biclustering-driven ensemble
methodology is effective for building an ensemble of BBNs
classifiers; however, this method can be generalized to other
classification methods. To verify this, we tested BENCH us-
ing SVMs and decision trees as a base classifier. For decision
trees, we chose the J48 decision tree model that implements
C4.5 algorithm in WEKA. For SVMs, we used the basic C-
SVC (C-support Vector Classifiers) in WEKA-Libretos, since
all class attributes in our datasets are two-class. The results
of these tests appear in Table 1.

5 Conclusion

We have presented BENCH, a hybrid method for ensemble
classification. We have shown that BENCH improves predic-
tion accuracy by about 15% relative to individual classifiers
and other ensemble methods, such as bagging and random

Table 1: Comparison of the prediction accuracy of single and
BENCH ensemble classifiers using BBNs, decision trees, and
SVMs as base classifiers on the Leukemia dataset

Classifier Single classifier BENCH ensemble
BBN 82.86 97.14

Decision Tree 82.86 95.71
SVM 91.42 97.14

forests. By sampling simultaneously along the feature space
and the data points, we achieve a higher prediction accuracy
than traditional ensemble methods that sample along only one
dimension. For future work, we plan to study the theoretical
aspects of BENCH.
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