
Q-Error as a Selection Mechanism in
Modular Reinforcement-Learning Systems∗

Mark Ring, Tom Schaul

IDSIA
Galleria 2

6928 Manno-Lugano, Switzerland
Email: {mark,tom}@idsia.ch

Abstract

This paper introduces a novel multi-modular
method for reinforcement learning. A multi-
modular system is one that partitions the learning
task among a set of experts (modules), where each
expert is incapable of solving the entire task by it-
self. There are many advantages to splitting up
large tasks in this way, but existing methods face
difficulties when choosing which module(s) should
contribute to the agent’s actions at any particular
moment. We introduce a novel selection mecha-
nism where every module, besides calculating a set
of action values, also estimates its own error for
the current input. The selection mechanism com-
bines each module’s estimate of long-term reward
and self-error to produce a score by which the next
module is chosen. As a result, the modules can use
their resources effectively and efficiently divide up
the task. The system is shown to learn complex
tasks even when the individual modules use only
linear function approximators.

1 Background, Motivation and Overview

Most reinforcement-learning solutions assume a single,
monolithic mechanism for learning and estimating the value
function. In practice, there are many reasons to decompose
the learning task and spread it among many component learn-
ers, where each learner has a limited domain of expertise.

Many modular approaches to reinforcement learning have
been proposed from many different perspectives and with
many different motivations. All recognize the need to decom-
pose large reinforcement-learning tasks into smaller, more
manageable components. The different approaches often re-
flect different dimensions along which the task can be split.

Each method expects that the modules are limited in some
way and that only together can they solve the task as a whole.
The principal limitations can be categorized as: goal, state,
observation, and capacity.

∗This work was funded by the following grants to J. Schmidhu-
ber: EU project FP7-ICT-IP-231722 (IM-CLeVeR) and SNF Project
200020-122124.

Goal limitation. The first modular reinforcement-learning
systems had goal-limited modules [Singh, 1992; Tenenberg
et al., 1993; Dayan and Hinton, 1993]. These systems
have multiple possible subgoals, where each subgoal is as-
signed to a particular module either manually or automati-
cally. The agents attempt to learn the appropriate policy for
each subgoal and also attempt to learn appropriate switch-
ing behavior between subgoals. Once a module takes control,
it is generally expected to retain control until a subgoal is
reached [Wiering and Schmidhuber, 1998; Sutton et al., 1999;
Dietterich, 2000; Bakker and Schmidhuber, 2004].

Observation limitation. Observation-limited modules as-
sign different parts of the observation space to different mod-
ules [Kohri et al., 1997], which is useful if the observation
space can be divided into orthogonal subspaces such that the
global value function depends on the features available in
each subspace independently. A global arbitrator is needed to
choose the appropriate module and corresponding subspace.

State limitation. Systems with state-limited modules gen-
erally try to solve problems where the observation alone is
insufficient for determining the state. Typically, each mod-
ule presides over different parts of the state space such that in
certain regions, one module is expert at dealing with a certain
observation, while in other regions, a different module may
be expert in dealing with the same observation but in a differ-
ent way [Wolpert and Kawato, 1998; Samejima et al., 2003;
Doya et al., 2002]. These modules often include a predic-
tion component that evaluates the modules’ fitness to the cur-
rent (unseen) state by measuring the accuracy of its predic-
tions. The module that best predicted the recent observations
gets control (meaning that the actions it recommends are most
likely to be taken by the agent).

Capacity limitation. Capacity-limited systems assume
nothing about how the modules will break up the task. They
assume only that each module is not powerful enough to per-
form the entire task by itself, though it may each have access
to all the necessary data. A simple example is a linear func-
tion approximator (LFA), which might receive the complete
input from the XOR problem, but still cannot always choose
the appropriate output because of its own capacity limitations.

This paper considers capacity limitation as the determin-
ing factor for breaking up the task, following the insight that
if a single module is powerful enough to solve the task, then,

1452

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

maybe it should. This insight is perhaps deeper than it seems:
a complex system composed of simple subsystems offers sev-
eral benefits. First, the simpler subsystem may be signifi-
cantly less computationally expensive than a monolithic sys-
tem, and it might also have a less computationally expensive
learning mechanism. Second, the modular solution is highly
and immediately parallelizable. Third, and most important,
the capacity limitation can be useful in forcing specialization
of modules in specific parts of the state space, which is diffi-
cult to achieve autonomously in other modular systems.

Thus, this paper answers the question: can a modular learn-
ing system made up of simple learning components cooperate
to perform a task that none of the simple components could
achieve by themselves? To answer as directly as possible,
we choose modules composed exclusively of linear function
approximators and then test the system on tasks that include
non-linear decision boundaries. The results demonstrate that
a very simple ε-greedy mechanism for choosing one module
at a time is sufficient for solving non-linear tasks.

The method requires each module to have two components:
a controller, which generates action values, and an error pre-
dictor, which predicts what the module’s TD error will be at
the next time step.

2 System description

In the standard reinforcement-learning framework (see Sutton
and Barto, 1998), a learning agent interacts with a Markov
Decision Process (MDP) over a series of time steps t ∈
{0, 1, 2, ...}. At each time step the agent takes an action
at ∈ A from its current state st ∈ S . As a result of the
action the agent transitions to a state st+1 ∈ S and a re-
ward rt ∈ � is received. The dynamics underlying the en-
vironment are described by the state-to-state transition prob-
abilities Pa

ss′ = Pr{st+1 = s′|st = s, at = a} and ex-
pected rewards Ra

ss′ = E{rt+1|st = s, at = a, st+1 = s′}.
The agent’s decision-making process is described by a pol-
icy, π(s, a) = Pr{at = a|st = s}, which the agent refines
through repeated interaction with the environment so as to
maximize Q(s0, a0) = E{∑∞

k=0 γ
krt+k+1|st = s0, at =

a0}, the total discounted reward it can expect to receive by
taking action a0 in state s0 and following policy π thereafter.

This paper introduces SERL, which stands for Selected
Expert Reinforcement Learner. For purposes of this paper,
SERL’s state is provided as an observation vector o ∈ O,
which uniquely identifies the state. SERL consists of a set of
modules, M. Each module i ∈ M contains two components:
a controller function,

f c,i : O → R
|A|,

which generates a vector of action-value estimates; and a pre-
dictor function,

fp,i : O → R
|A|,

which generates a vector of predicted action-value errors. At
every time step, each module generates values from the cur-
rent observation vector, ot :

qi
t = f c,i(ot)

pi
t = fp,i(ot)

These are combined for each module to create an |M| × |A|
matrix Lt of lower confidence values such that

Li
t = qi

t − |pi
t|,

where Li
t is the ith row of Lt. These are used for action selec-

tion in place of the action values. Note that this prudent trade-
off derives from the requirement that action values never be
overestimated. This is because, while every module has an
area of expertise where its value estimates should be roughly
correct, in all other places, the estimates may be wildly off.
In these inaccurate cases, the action-value estimate that is far
below the correct value does not interfere with the correct es-
timates from the other modules, whereas if the value is esti-
mated far above its correct value, it could be selected instead
of the correct value.

SERL then forms a global vector of action-value estimates
Q̂t corresponding to the best Li for each action. Thus, if Lia

t
is the entry in vector Li

t corresponding to action a, then

Q̂a
t = max

i
Lia
t

Winner. At every time step there is a winning module,
wt. In most cases the winner is the module with the high-
est L value. But this rule is modified in an ε-greedy fashion
to allow occasional random selection of winners, based on a
random value, xt ∼ U(0, 1):

W = {i ∈ M : max
a

Lia
t = max

a
Q̂a

t }

Pr{wt = i|Li
t} =

⎧⎪⎨
⎪⎩

1
|M | if xt < ε
1

|W | if xt ≥ ε and i ∈ W

0 otherwise.

SERL then calculates an ε-greedy policy [Sutton and
Barto, 1998] based on the winner’s L values: Lwt

t . (In prin-
ciple, the two ε values for action and module selection can be
different but were the same in the experiments of Section 3).

Learning. The function approximators are updated with
targets generated by TD-learning [Sutton, 1988]. The only
controller to be updated is that of the winning module from
the previous time step. The update is done using an action-
value method such as Sarsa [Rummery and Niranjan, 1994] or
Q-learning [Watkins, 1989]. We obtained good results with
no divergence issues by using Q-learning; thus the target for
qwtat was: rt + γmax

a
Q̂a

t+1.
Every module’s predictor is updated at every step; the tar-

get is the magnitude of the module’s TD error:

δit = rt + γmax
a

Q̂a
t+1 − qiat

t .

Linear function approximation. For the demonstration
and experimental section below, the predictors and controllers
are all LFAs. The controllers and predictors are represented
as |A| × |O| weight matrices, Θc,i and Θp,i, so that the q and
p vectors are calculated as matrix multiplications:

qi
t = Θc,iot

pi
t = Θp,iot,

1453

o = (0,1) or (1,0)

o = (0,0) or (1,1)

r = + 1r = + 1

r = -1

r = -1

Figure 1: The XOR MDP. A tiny reinforcement-learning
problem that can only be learned by solving XOR. There are
only two states. In the top state the agent observes (0,1) or
(1,0) with equal likelihood, and must learn to move South; in
the bottom state the agent observes (0,0) or (1,1) and must
learn to move North. (All observations also include a bias
input, which is always 1.)

where all vectors o,q, and p are column vectors. Learning is
done by online least squares in the standard fashion:

Θc,wtat

t+1 = Θc,wtat

t + αδwt
t oT

Θp,iat

t+1 = Θp,iat

t + αp,i
t (|δit| − pia

t)oT
t ,

where Θc,ij refers to the weight vector (of size |O|) in the
jth row of Θc,i; and α is the learning rate. The learning
rate for the predictor is modified to emphasize small errors:
αp,i
t = α/(1 + 10|δit|). This keeps predictors from forming

highly accurate predictions of very high errors (whose exact
magnitude is essentially irrelevant) at the expense of main-
taining accurate predictions of low errors, which are critical.

3 Experiments

The experiments were devised to answer the following ques-
tions:

1. Can capacity-limited modular systems automatically di-
vide the task into smaller components?

2. Can the modules learn to cooperate to solve the task?

3. Can the system as a whole learn to solve tasks that the
individual modules cannot?

4. How does performance scale with number of modules?

The following two different experiments address these is-
sues. The first is a simple XOR (exclusive-or) reinforcement-
learning environment; the second is a small artificial eye task.

3.1 XOR

The XOR task is shown in Figure 1. The task answers ques-
tions 1 and 3 on a very small scale. A single LFA cannot solve
the XOR task. Therefore to solve the task, each module must
specialize in a different part of the space. In the XOR task,
the agent has two actions available, one to move North and
one to move South. There are only four states. The binary
state numbers are given to the agent as the observation vector

Figure 2: Results from running SERL on the XOR task with
the number of modules shown. The vertical axis shows re-
ward received, normalized between 0 and 1 (optimal policy),
while the horizontal axis shows the number of actions taken.
The dashed line displays the results for a simple Q-learning
agent using an LFA and the same parameters as with the mod-
ular system. All plots are averaged over 50 runs and error-
bars correspond to half a standard deviation, for readability.
The dotted line shows the baseline performance of the uni-
form random policy.

(together with a bias unit whose value is always 1). From the
even parity states (those with observations of 00 and 11), the
agent moves South for a reward of +1 and North for a reward
of −1. From the odd-parity states (observations of 01 and
10), the rewards are the opposite (+1 for South, -1 for North).
For the optimal policy, the agent must learn to take opposite
actions in odd- and even-parity states.

Figure 2 shows SERL’s performance when run in this en-
vironment. Learning was non-episodic, and the graph shows
reward received as a percentage of the optimal as a function
of the total number of actions taken. For this task, γ was set
to 0 so that only the immediate reward had any effect; esti-
mates of future reward did not. The learning-rate α was 0.05,
ε = 0.02 and all weights are initialized by randomly drawing
from N (0, 0.1). The graph shows the results using 1, 2, and
16 modules (n), as well as a simple linear Q-learner (without
a predictor). The one-module system and the linear Q-learner
show roughly the same performance and do not solve the task,
as expected. The two-module system solves it very quickly.
Adding more modules than necessary does not interfere with
success, in fact it even speeds up convergence.

3.2 Artificial Eye

In the artificial-eye task, SERL’s observation is determined
by the location of its “eye” (a 4 × 4 square—shaded gray)
above a 15 × 15 random black and white bitmap (Figure 3).
Each pixel in the bitmap represents a value of 1 (black) or
0 (white) within a 16-dimensional observation vector. This

1454

Figure 3: The moving-eye task. Through its “eye” (shown
in gray) SERL observes a 4 × 4 (16 bit) piece of the under-
lying black-and-white image. The agent can move the eye
one black or white square to the North, South, East or West.
It receives a reward of +1 when the upper-left corner of its
“eye” moves over an “X”, after which the eye “saccades” to
a random position.

observation vector is always expanded with a bias feature of
1. The image was generated randomly but was checked to
satisfy the constraint that every 4 × 4 square is unique. In
this task, SERL has four actions that move its eye one pixel
North, East, West, or South. If there is no room to move
in the chosen direction, the eye remains in place. There are
5 rewarding squares (shown as an X) which, when reached
with the upper left-hand corner of the eye, provide a reward
of +1 and force the eye to saccade to a random position in the
image. All other actions result in a reward of 0. For this task
γ = 0.9, and again α = 0.05 and ε = 0.02.

The results from the eye task are shown in Figure 4. All
results are shown in proportion to the maximum achievable
reward for this task (an average of 0.36 per step), which is
represented by a value of 1 on the vertical axis. The horizon-
tal axis shows the total number of steps taken. Learning with
a simple Q-learner using an LFA (and the same parameters)
was similar to that of a single module and did not achieve high
reward. As the number of modules increases, SERL achieves
consistently higher reward, nearing the theoretical maximum.

This experiment addressed questions 2 and 4 above. Cod-
ing by hand, we were unable to find a solution with less than
eight modules that could achieve the optimal policy. There-
fore, the modules must cooperate to solve the task, each mak-
ing updates based on the values of the later winners. Each
(autonomously) learns to become expert in a small part of the
state space while leaving the rest to the other modules. With
more modules, more of the task is accomplished.

Figure 4: SERL’s results on the eye task with the number
of modules shown. The vertical axis shows reward received,
normalized between 0 and 1 (optimal policy), while the hor-
izontal axis shows the number of actions taken. The dashed
line displays the results for a simple Q-learning agent using
a LFA and the same parameters as the modular system. All
plots are averaged over 25 runs; error bars correspond to half
a standard deviation, for readability. The dotted line shows
the baseline performance of the uniform random policy.

4 Discussion

It is instructive to analyze what would happen if each module
contained only linear, action-value function approximators
and no error-prediction component. Could the same intelli-
gent behavior be achieved by simply selecting the action with
the highest estimated Q-value? In principle, the answer is yes,
given enough modules. Consider for the moment (without
loss of generality) a single action per state so that state-values
and action-values are identical. If every state has a dedicated
module, then each module need only calculate a single cor-
rect Q-value, while calculating an arbitrarily low value in all
other states. This is always possible for binary feature vectors
when a bias unit is present. However, in general it is more in-
teresting and efficient for each module to properly calculate
the value for multiple states.

An d-dimensional LFA (with a bias unit) can perfectly map
any d linearly independent vectors to any arbitrary values, but
in doing so, over-generalization becomes problematic. Let O
be the complete set of binary vectors of length d; let C ⊂ O be
a linearly independent subset of size d, where each element
is correctly mapped to its Q value by a modules’ controller
LFA; and let G = O − C. For the system to function cor-
rectly, all g ∈ G must be mapped to values not greater than
the correct value, or else the module will be chosen preferen-
tially over the module with the correct value. As d increases,
|O|
|C| increases exponentially, as does the difficulty of mapping
G to low values. In contrast, the predictor LFA only needs
to be correct when the controller’s error is zero. As long as
SERL has enough controllers to map every state that it en-
counters to the correct value, then the vectors in G may be

1455

mapped to any non-zero value. This constraint is much easier
to satisfy than the previous one, because it only requires that
vectors in G not be in the nullspace of the vectors in C.

Transfer of Control and Reward. An interesting aspect
of SERL is how easily it allows control to pass from mod-
ule to module. In most modular systems, transfer of control
is a core dilemma. But in SERL, modules do not truly as-
sume control; they only make suggestions. Each suggestion
is followed depending on its strength (Q-value) and expected
accuracy (prediction value). Module A may pass control to
module B without ever seeing a reward itself. Nevertheless,
module A shares in the credit for reaching the goal that B
achieves because module A learns to minimize the TD er-
ror for transfer to a state represented by B. More specifically:
each winning module’s controller is updated by the next. The
maximum Q-value at the current step is used to update all the
previous modules’ predictors and the previous winner’s con-
troller.

The system is therefore able to successfully combine the
intelligence of its components and demonstrates robustness
to the number of modules used, showing only positive bene-
fit to having more modules than are necessary and degrading
gracefully when the number of modules is insufficient.

Breaking up is hard to do. If reinforcement learning is
going to scale to larger problems, then there will need to be
ways of scaling to large state spaces. One of the most promis-
ing ways to address this issue is through multi-module sys-
tems. Yet one of the most vexing problems with modular RL
systems has been getting them to split up a large task in mean-
ingful ways. Many methods rely on hand-built parceling of
the space, either by specifying in advance what the modules
should do (such as seeking certain goals), giving each module
a constrained representation of the input space. Methods that
attempt to get modules to split up the task autonomously by
developing expertise in the prediction of the task dynamics
have been at best only marginally successful and have used
only a small number of modules [Wolpert and Kawato, 1998;
Samejima et al., 2003; Doya et al., 2002].

The results in the previous section show that capacity lim-
itation can provide a natural way for modules to organize
themselves when they are augmented with predictions of their
own error. Figure 5 shows how the task has been distributed
among the modules. (It should be noted that no particular spa-
tial or temporal contiguity constraints were imposed to force
the system to group neighboring states together, though this
is a topic of ongoing work.)

Refinements. This paper has presented a proof-of-concept
for the capacity-limited approach to multi-module reinforce-
ment learning. This proof of concept has used linear function
approximators as an example class of function approxima-
tors. The reason for doing so is primarily to clarify the ex-
position, but also because this class is particularly important.
LFAs are straightforward to describe and analyze, have clean
learning algorithms, scale well to high dimensions, are easy
to parallelize, are not computationally demanding, and are
theoretically well understood. As a consequence, they have
been greatly studied and much is known about their behav-
ior and techniques for optimization. Some of that knowledge

7 3 1 1 3 7 4 1 6 6 4 1
7 4 3 6 5 5 5 1 2 3 2 6
0 6 6 5 2 2 7 3 3 3 3 4
3 6 2 6 3 3 7 7 7 6 3 7
3 3 3 6 6 2 7 7 1 1 4 2
6 4 2 3 3 2 2 1 3 6 1 5
3 6 6 2 4 7 7 3 2 3 5 2
3 4 3 0 3 2 3 7 6 5 6 5
0 3 4 1 3 0 7 3 3 3 7 6
1 4 3 4 3 7 3 2 3 3 7 6
4 6 2 1 6 1 6 0 1 7 7 4
7 6 2 6 3 6 2 2 5 2 0 3

Figure 5: The eye task with each eye position labeled by
the winning module for that position after training with eight
modules. The labels shown correspond to the upper left cor-
ner of each eye position.

could be used to advantage with SERL. In particular, methods
such as LSTD(λ) [Boyan, 1999] and LSPI [Lagoudakis and
Parr, 2003] can be used in combination with them, though
some adaption to those algorithms (beyond the scope of this
paper) is required.

On the other hand, more powerful function approximators
may also be used for either controller, or predictor, or both.
Though not explicitly tested in this paper, in the general case,
all actual instantiations of learning algorithms are limited, and
because of that, SERL can potentially make use of these lim-
itations to split a more complex problem into a set of simpler
solutions; or, said in another way, it can combine complex
mappings into even more complex mappings. Some interest-
ing examples to consider are:

• a nonlinear predictor with a linear controller. This may
have some advantages in continuous domains.

• a linear controller combined with a recurrent predictor
network (which maintains internal state information),
thus allowing recognition and parceling hidden states to
the correct controller (i.e., mapping POMDPs to a col-
lection of MDP solvers.)

Other Related Approaches. All modular approaches to
reinforcement learning considered here are value-function ap-
proximation methods based on the standard reinforcement-
learning framework as described by Sutton and Barto (1998).
However, classifier systems are also methods for learning
from reinforcement [Holland, 1985]. One such method,
XCS [Wilson, 1995] bears an interesting relation to our work
by virtue of the fact that it incorporates a method for predict-
ing Q-error, which is then used as part of the computation for
assessing the fitness of classifiers. This value in that system
helps to enhance accuracy and provide greater stability. We
speculate that prediction of TD-error may in general be a par-

1456

ticularly useful quantity for reinforcement-learning systems.

5 Conclusions

This paper has described the first modular RL system that
uses capacity limitation as the exclusive mechanism for au-
tomating module assignment. We have shown that this sys-
tem has the ability to allocate the state space across different
modules, to train each module on part of the state space, and
to consistently choose from among all the modules the one
best suited for the task. The results also showed that such
division of labor can be done automatically and follows as
a direct consequence of each module’s inability to solve the
entire task by itself.

Because each module keeps track of its areas of expertise,
and because it is an inherently easier task to keep track of
where one is expert than to keep track of the expertise itself,
SERL is able to combine expertise among the modules and
to solve problems greater than the ability of any individual
module. The system is robust to the number of modules used,
showing only positive benefit to having more modules than
are necessary and degrading gracefully when the number of
modules is insufficient.

While we only show a proof of concept here, there is
good reason to believe that this technique will generalize to
other function approximators as well as to other reinforce-
ment learning algorithms.

The system is highly parallelizable and stable, showing no
sign of divergence despite the combination of LFA and off-
policy TD updates.

Acknowledgments

We thank Vincent Graziano, Jürgen Schmidhuber, and
Faustino Gomez for many helpful discussions, and we also
thank Faustino Gomez, as well as the anonymous reviewers,
for helpful suggestions on earlier drafts.

References

[Bakker and Schmidhuber, 2004] B. Bakker and J. Schmid-
huber. Hierarchical reinforcement learning based on sub-
goal discovery and subpolicy specialization. In F. Groen
et al., editor, Proc. 8th Conference on Intelligent Au-
tonomous Systems IAS-8, pages 438–445, Amsterdam,
NL, 2004. IOS Press.

[Boyan, 1999] Justin A. Boyan. Least-squares temporal dif-
ference learning. In In Proceedings of the Sixteenth Inter-
national Conference on Machine Learning, pages 49–56.
Morgan Kaufmann, 1999.

[Dayan and Hinton, 1993] Peter Dayan and Geoffrey E. Hin-
ton. Feudal reinforcement learning. In C. L. Giles, S. J.
Hanson, and J. D. Cowan, editors, Advances in Neural In-
formation Processing Systems 5, pages 271–278, San Ma-
teo, California, 1993. Morgan Kaufmann Publishers.

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical rein-
forcement learning with the maxq value function decom-
position. J. Artif. Intell. Res. (JAIR), 13:227–303, 2000.

[Doya et al., 2002] Kenji Doya, Kazuyuki Samejima, Ken
ichi Katagiri, and Mitsuo Kawato. Multiple model-based
reinforcement learning. Neural Computation, 14(6):1347–
1369, 2002.

[Holland, 1985] J. H. Holland. Properties of the bucket
brigade. In Proceedings of an International Conference
on Genetic Algorithms. Lawrence Erlbaum, Hillsdale, NJ,
1985.

[Kohri et al., 1997] Takayuki Kohri, Kei Matsubayashi, and
Mario Tokoro. An adaptive architecture for modular q-
learning. In IJCAI (2), pages 820–825, 1997.

[Lagoudakis and Parr, 2003] Michail G. Lagoudakis and
Ronald Parr. Least-squares policy iteration. Journal of
Machine Learning Research, 4:1107–1149, 2003.

[Rummery and Niranjan, 1994] G. A. Rummery and M. Ni-
ranjan. Online Q-learning using connectionist systems
(Tech. Rep. No. CUED/F-INFENG/TR 166). Cambridge
University Engineering Department, 1994.

[Samejima et al., 2003] Kazuyuki Samejima, Kenji Doya,
and Mitsuo Kawato. Inter-module credit assignment
in modular reinforcement learning. Neural Networks,
16(7):985–994, 2003.

[Singh, 1992] Satinder Pal Singh. Transfer of learning by
composing solutions of elemental sequential tasks. Ma-
chine Learning, 8, 1992.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder P. Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement
learning. Artif. Intell., 112(1-2):181–211, 1999.

[Sutton, 1988] Richard S. Sutton. Learning to predict by the
methods of temporal differences. Machine Learning, 3:9–
44, 1988.

[Tenenberg et al., 1993] Josh Tenenberg, Jonas Karlsson,
and Steven Whitehead. Learning via task decomposition.
In J. A. Meyer, H. Roitblat, and S. Wilson, editors, From
Animals to Animats 2: Proceedings of the Second Inter-
national Conference on Simulation of Adaptive Behavior,
pages 337–343. MIT Press, 1993.

[Watkins, 1989] Christopher J. C. H Watkins. Learning from
Delayed Rewards. PhD thesis, King’s College, May 1989.

[Wiering and Schmidhuber, 1998] M. Wiering and
J. Schmidhuber. HQ-learning. Adaptive Behavior,
6(2):219–246, 1998.

[Wilson, 1995] S.W. Wilson. Classifier fitness based on ac-
curacy. Evolutionary Computation, 3(2):149–175, 1995.

[Wolpert and Kawato, 1998] Daniel M. Wolpert and Mitsuo
Kawato. Multiple paired forward and inverse models
for motor control. Neural Networks, 11(7-8):1317–1329,
1998.

1457

