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Abstract

We present a novel approach for domain adaptation
based on feature grouping and re-weighting. Our
algorithm operates by creating an ensemble of mul-
tiple classifiers, where each classifier is trained on
one particular feature group. Faced with the dis-
tribution change involved in domain change, dif-
ferent feature groups exhibit different cross-domain
prediction abilities. Herein, ensemble models pro-
vide us the flexibility of tuning the weights of cor-
responding classifiers in order to adapt to the new
domain. Our approach is supported by a solid the-
oretical analysis based on the expressiveness of en-
semble classifiers, which allows trading-off errors
across source and target domains. Moreover, ex-
perimental results on sentiment classification and
spam detection show that our approach not only
outperforms the baseline method, but is also supe-
rior to other state-of-the-art methods.

1 Introduction

Discriminative learning models work effectively when the
training and testing examples are drawn from the same dis-
tribution. However, in several real-world applications, it is
often highly desirable to train a classifier from one source do-
main, and apply it to a similar but different target domain,
where the annotated data is unavailable or expensive to cre-
ate. One example of this scenario is to learn a text categorizer
from a large collection of labeled newswire articles, but use it
to process regular Web documents. In this domain adaptation
setting, the goal is to leverage the data available in the source
domain to improve the accuracy of the model when testing on
target domain examples.

As observed by previous studies, unfortunately, naı̈vely ap-
plying classifiers to a different domain often leads to consid-
erable performance degradation [Daumé III, 2007; Jiang and
Zhai, 2007]. Consequently, a number of approaches have
been proposed recently to address the problem of domain
adaptation. Some methods focus on re-weighting training in-
stances from different domains [Jiang and Zhai, 2007; Bickel
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et al., 2009], while others modify the feature space to cap-
ture domain-specific and domain-invariant aspects [Blitzer
et al., 2006; Daumé III, 2007; Finkel and Manning, 2009;
Jiang and Zhai, 2006]. Despite the fact that these methods
adapt seemingly very different strategies, the shared rationale
behind is to bring the empirical source distribution closer to
the target domain, and thus increase the accuracy of the clas-
sifier when evaluated on the target domain data.

In this paper, we present a novel ensemble-based approach
for domain adaptation, based on feature re-weighting. Our
method builds on the observation that when moving from the
source domain to the target domain, different features may
have different levels of distributional change. For instance, in
email spam detection, the distribution of content-based fea-
tures changes heavily over time as it is very easy for spam-
mers to revise the subject and body of a spam message. In
contrast, the distribution of features based on user-preference
or sender-IP does not change as much. This phenomenon
can be easily observed empirically, which we demonstrate in
Sec. 4.2. Intuitively, a classifier trained on distributionally
stable features is likely to behave more consistently than a
classifier based on an unstable feature group. Therefore, in
addition to the expressiveness of its feature space in predict-
ing the label, the importance of each classifier should also de-
pend on the distributional stability of its features. Given a set
of feature groups that capture this notion, where the group-
ing can be decided by domain knowledge or statistics derived
from unlabeled data, we first train individual classifiers sep-
arately using only the corresponding group of features. The
final model is a weighted ensemble of individual classifiers,
where the weights are tuned based on the performance of the
ensemble on a small amount of labeled target data. Com-
pared to the existing approaches, our method is unique in
that it considers the cross-domain behavior of different fea-
ture groups directly in terms of their classification accuracy.
Afterwards, instead of creating an instance distribution close
to the target domain, it adjusts the influence of features on the
final classifier by tuning their weights.

Our approach is supported both by a solid theoretical anal-
ysis and a strong empirical validation. We present a gener-
alization bound for the style of ensembles mentioned above
based on the dH -distance framework proposed by Ben-David
et al. [2007]. We show that ensembles provide an additional
degree of freedom in the form of tunable weights of individ-
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ual classifiers which can be leveraged to adapt to the target
domain. Empirically, when applied to the problems of senti-
ment analysis and spam detection, our approach outperforms
several state-of-the-art methods, as well as the strong baseline
that is trained simply on combined source and target data.

The rest of the paper is organized as follows. We first for-
malize the problem setting in Sec. 2. Then we show our algo-
rithm along with the theoretical analysis in Sec. 3, followed
by the experimental results in Sec. 4. Closely related work is
surveyed in Sec. 5 and Sec. 6 concludes the paper with some
discussion and future work.

2 Problem Setting

Let X = {0, 1}p be the feature space from which a p-
dimensional feature X = {X1, . . . , Xp} is sampled and let
Y = {−1, 1} be the output space. Suppose DS(x, y) and
DT (x, y) are two distributions over X × Y — the former is
called the source distribution and the latter, the target distri-
bution. Let LS and LT be labeled examples sampled from
DS and DT , respectively. In the setting of domain adaption,
usually |LS | � |LT |. Moreover, we assume that some unla-
beled data from the target domain, UT ∼ DT (x), is available.

Let Δ : � × � → {0, 1} be the standard zero-one loss
function: Δ(z1, z2) is zero if z1z2 ≥ 0, one otherwise.
The idea behind domain adaptation is to leverage LS and
UT , in addition to LT , to learn a hypothesis ht : X → Y
with low expected error on target, defined by ΔDT

(ht) =
E(x,y)∼DT

[Δ(ht(x), y)]. Of course, LS can help only if DS

and DT are not “too different”.
Although the feature space defined here is binary (i.e.,

X ⊆ {0, 1}p), our analysis and technique, by no means, are
restricted to discrete feature spaces. In the text applications
considered in this paper, such a setting is very common; for
example, the occurrences of unigrams or bigrams in the text
are encoded as binary features. Also, the number of features,
p, is typically much larger than the number of training exam-
ples.

Last, we assume that we have a decomposition of feature
vector X into r + 1 (possibly overlapping) feature vectors or
groups: X1, X2, . . . , Xr ⊂ X with X0 = X; that is, Xi

is a subset of features contained in X . Essentially, our ap-
proach considers ensembles of classifiers where each classi-
fier is trained on one particular feature group. The nature and
purpose of these groupings would become clear in section 3.

3 Feature Ensembles for Domain Adaptation

In this section, we propose FEAD, a Feature Ensembles ap-
proach for Domain Adaptation, which learns a classifier for
the target domain in the form of an ensemble of feature group
classifiers. The design of FEAD is motivated by a VC-style
generalization bound analysis for ensemble classifiers in the
context of domain adaptation. Compared to existing domain
adaption methods, FEAD provides an additional degree of
freedom to adjust the trade-off between the generalization er-
ror and domain distribution change of individual classifiers
trained on the corresponding feature groups. Although the se-
lection of the underlying learning algorithm is not restricted,

Algorithm 1 Algorithm for Feature Ensembles for Domain
Adaptation (FEAD)

1: Given: Data: LS and LT ; feature groups: X0, . . . , Xr;
hypotheses spaces: H0, . . . , Hr; convex loss function:
Δc

2: for i = 0 to r do
3: learn: hi

S ← argminh∈Hi
Δc

LS
(h)

4: end for
5: α← argminα′≥0

∑
(x,y)∈LT

Δ(
∑

i α
′
ih

i
S(x), y)

6: return wt =
∑r

i=0 αih
i
S

we give an interesting insight into FEAD via a concrete in-
stantiation of our ensemble approach when using logistic re-
gression.

3.1 Algorithm

Before introducing our algorithm, we first give some no-
tations that are useful throughout the whole section. Let
Δc : � × � → �+ be a convex loss function up-
per bounding Δ. For a set of labeled examples L,
Δc

L(f) = 1
|L|

∑
(x,y)∈L Δc(f(x), y) denotes the empirical

loss of the hypothesis f on L. Also, let ΔD(f, g) =
E(x,y)∼D[Δ(f(x), g(x))] be the expected zero-one loss be-
tween hypotheses f and g on a distribution D. Let H be the
hypothesis space being considered. For example, H can be
the space of all linear classifiers.

For a feature group Xi ⊆ X: let Di
S(x, y) =

DS(Xi=xi,y)
Zi

be the marginal source distribution over (Xi, y) where Zi is
chosen to making Di

S a valid distribution; let Hi be the space
of hypotheses defined over Xi (clearly H0 = H and for sev-
eral popular, including linear, hypothesis spaces, Hi ⊆ H);
and let hS

i = argminh∈Hi
Δc

LS
(h) be a classifier in Hi min-

imizing the loss on LS with Δc
LS

(hS
i ) = εSi .

We express the final classifier as an ensemble of classifiers
given by h(α) =

∑r
i=0 αih

S
i , where α = (α0, . . . , αr) ≥ 0.

α is learned by minimizing the empirical target error. The
whole learning procedure is delineated in Algorithm 1. On
line 5, we can use grid search to find a good α, given the
small search space. Empirically, we found that applying a
linear classification technique like logistic regression is more
efficient and performs well, which is used in our experiments.

Note that α ≥ 0 (Line 5) is not a restrictive assumption
as in the event some hS

i is rendered ineffectual on the target
domain due to drastic distribution change of Xi, αi can be
simply set to zero — it is highly unlikely for classification
decisions to be reversed for any feature group. Since Δ is
invariant to positive re-scaling, we assume that

∑
i αi = 1.

3.2 Theoretical Analysis

In order to present generalization results for feature groups-
based ensembles, we use a classifier-induced distance for dis-
tributions called the dH -distance — related to the generalized
Kolmogorov-Smirnov distance [Devroye et al., 1996] — in-
troduced for domain adaptation by Ben-David et al. [2007].1

1We slightly modify the notation to suit our analysis.
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Definition 1 (dH-distance [Ben-David et al., 2007]). Let H
be a set of hypotheses, mapping X to �. The dH -distance
between two distributions Q1 and Q2 over X is defined as

dH(Q1, Q2) = max
h,h′∈H

|ΔQ1(h, h
′)−ΔQ2(h, h

′)| .

Intuitively, dH(Q1, Q2) bounds how closely we can predict
the loss between two hypotheses on Q2 if we know their loss
on Q1. We first present two propositions regarding dH .

Proposition 1 (Convexity). For any distributions D,D1,
and D2 with Dλ = λD1 + (1− λ)D2, λ ≥ 0, we have

dH(D,Dλ) ≤ λdH(D,D1) + (1− λ)dH(D,D2) .

Proof.

dH(D,Dλ) = max
h,h′∈H

|ΔD(h, h′)−ΔDλ
(h, h′)|

= max
h,h′∈H

| (λ+ (1− λ))ΔD(h, h′)

− (λΔD1
(h, h′) + (1− λ)ΔD2

(h, h′)) |
≤ max

h,h′∈H

(
λ|ΔD(h, h′)−ΔD1

(h, h′)|
+(1− λ)|ΔD(h, h′)−ΔD2

(h, h′)|)

≤ max
h,h′∈H

λ|ΔD(h, h′)−ΔD1
(h, h′)|

+(1− λ) max
h,h′∈H

|ΔD(h, h′)−ΔD2
(h, h′)|

= λdH(D,D1) + (1− λ)dH(D,D2) .

Proposition 2 (Triangle inequality). For any distributions
D1, D2 and D′ we have

dH(D1, D2) ≤ dH(D1, D
′) + dH(D′, D2) .

Proof. Similar to the proof of proposition 1.

We now have the following bound, which is similar to The-
orem 3 in [Ben-David et al., 2010].

Theorem 1. For all h =
∑

i αih
S
i with αi ≥ 0 ∀i and∑

i αi = 1, the following bound holds with probability at
least 1− δ for δ > 0 and for all β ∈ [0, 1]

ΔDT
(h) ≤ (1− β)

(
ε∗ +

∑
i

αi

(
εSi + dH(DS , D

i
S)

+dH(Di
S , DT )

))
+ ε(pH , β, δ) (1)

+βΔLT
(h) (2)

where Di
S(x, y) = DS(Xi=xi,y)

Zi
is the normal-

ized marginal source distribution over (Xi, y),
ε∗ = argminh′∈H(ΔDT

(h′) + ΔDS
(h′)) and

ε(pH , β, δ) = 2
√

β2

η + (1−β)2

1−η

√
2pH log(2(m+1))+2 log( 8

δ )

m

where m = |LS | + |LT |, η = |LT |
m , and pH is the VC

Dimension of H .

Proof. Using D′ =
∑

i αiD
i
S in Proposition 2 and then using

Proposition 1 yields

dH(DS , DT ) ≤
∑
i

αi

(
dH(DS , D

i
S) + dH(Di

S , DT )
)

.

Substituting the above in the second step of the proof of The-
orem 3 in [Ben-David et al., 2010], along with the fact that
Δ ≤ Δc and the convexity of Δc yields the result.

Theorem 1 gives a bound on the expected error (ΔDT
(h))

on target in terms of empirical source errors (εSi ) of individual
feature group classifiers, empirical error (ΔLT

(h)) of the en-
semble on target, and the dH -distance of each feature group
distribution with the source

(
dH(DS , D

i
S)
)

and the target(
dH(Di

S , DT )
)
. In addition, it also provides several inter-

esting theoretical insights, which we discuss below.
By using the triangle inequality for dH -distance (Proposi-

tion 2), we have not loosened the bound in Theorem 1 in the
sense that by setting α0 = 1, we can recover the bound for a
single classifier based on X and trained on LS . Furthermore,
the above bound provides free parameter α = (α0, . . . , αr),
in addition to β, which can be tuned to obtain a lower target
error. While most domain adaptation algorithms (e.g., [Ben-
David et al., 2010]) operate by tuning β, which controls the
weight of the error on LT vs. the error on LS through instance
weighting, FEAD focuses on minimizing the target error by
tuning α instead. Simultaneously, terms in Eq. (1) can be kept
bounded by considering feature groups that allow a low error
on source domain data and have a low dH -distance from DS

and DT (i.e. they generalize well across domains).
This analysis naturally motivates an approach that is even

simpler than FEAD — picking a single “best” feature group
classifier (BFG) for the target domain, where the notion of
“best” can be decided by the user. Although the ensemble
approach is clearly more expressive than the BFG approach,
as the former’s output space is a superset of the latter, it
is valid to ask whether the additional expressiveness indeed
earns FEAD a lower error than BFG. In general, there is no
reason to expect that the expected target error or its upper
bound given by Theorem 1 is minimized when only one of the
classifiers is picked (in this case the result will be the same as
the BFG approach.)

We give a simple artificial example which elucidates this
point. Consider the following setting: We have two features
(x1, x2) ∈ �2 and a label y ∈ {−1, 1}, which we wish to
predict. The features are conditionally independent given the
label i.e. P (x1, x2|y) = P (x1|y)P (x2|y). Moreover, we
are given the following description of the distribution: (1)
P (y = 1) = P (y = 0) = 1

2 ; (2) DS(x1|y) = DS(x2|y) =
N (y, 1); (3) DT (x1|y) = N (y, 1); 4) DT (x2|y) = N (y, 2),
where DS and DT describe distributions on source and target,
respectively, andN (μ, σ2) represents a Gaussian distribution
with mean μ and variance σ2.

It is easy to see that the asymptotically optimal classifiers
for source domain are given by x1 and x1 + x2 when consid-
ering feature groups x1 and (x1, x2), respectively; similarly,
the bayes optimal classifier for the target domain and the fea-
ture group (x1, x2) is given by x1 +

1
2x2.
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If we consider two feature groups: (x1, x2) and x1, the
BFG approach would, asymptotically, dictate picking the best
of x1+x2 and x1 for the target domain; clearly, both of these
classifiers give higher error on the target domain than the op-
timal classifier: x1 + 1

2x2. However, the WPoE approach
would be able to produce the optimal classifier x1 + 1

2x2

as x1 + 1
2x2 = 1

2 (x1 + x2) +
1
2 (x1). This example illus-

trates how additional expressiveness of feature group ensem-
bles can help outperform the BFG approach.

Overall, our theoretical analysis shows that FEAD is a flex-
ible algorithm that directly tackles domain change — it al-
lows for minimizing error on LT while keeping the error
on LS bounded. Although the focus of this paper is not on
techniques for deciding the “best” feature groups, we demon-
strate in Sec. 4 that by adapting simple heuristics to deter-
mine the feature grouping, based on statistical measures or
domain knowledge, FEAD can yield strong empirical results
in a number of real-world domain adaption tasks.

3.3 FEAD as Product of Experts

When considering a specific setting where H is the space
of all linear classifiers and Δc is the log-loss given by
Δc(h(x), y) = log(1 + exp(−yh(x))), our analysis in this
section provides an interesting probabilistic perspective of
FEAD. Let wi

S be a weight vector learned for feature group
Xi via logistic regression. Given a feature vector x, the
probability of output y, as per wi

S, is given by

Pr(y|x,wi
S) =

exp(ywi
S · x)

1 + exp(ywi
S · x)

,

which implies that the odds ratio of y = 1 and y = −1 for
this instance is given by

Odds(x|wi
S) =

Pr(y = 1|x,wi
S)

Pr(y = −1|x,wi
S)

= exp(2wi
S · x) .

FEAD expresses the final linear classifier for the target do-
main, wt, as

∑
i αiw

i
s, which is equivalent to expressing the

odds for any instance as a weighted product of odds given
by individual classifiers. In this sense, our approach is sim-
ilar to the Product-of-Experts framework proposed by Hin-
ton [1999], wherein classifiers based on feature groups can
be thought of as experts.

4 Experiments

We evaluate our approach empirically on two domain adap-
tion tasks — sentiment analysis and email spam detection —
and compare with other state-of-the-art approaches.

4.1 Sentiment Classification

Sentiment analysis is the task of classifying textual reviews
into positive or negative based on the expressed “senti-
ment” [Pang et al., 2002; Blitzer et al., 2007]. Reviews for
different categories of products tend to be different in terms
of vocabulary and writing style. Consequently, a sentiment
classifier trained on one domain (e.g., books) suffers from
considerable performance degradation when applied to an-
other domain (e.g., electronics), thus necessitating a need for
domain adaption methods.

In this set of experiments, we use the benchmark dataset
released by Blitzer et al. [2007], which consists of reviews of
four different product categories: books, DVDs, electronics,
and kitchen appliances, collected from Amazon.com. Along
with the IMDB movie reviews released by Pang et al. [2002],
we generate all 20 possible source–target pairs for the em-
pirical evaluation. For all the methods we tested, we follow
the same data split and experimental procedure. Each do-
main contains 2000 instances and is randomly split into a
training/testing set of 1600/400 examples. Furthermore, we
randomly select 160 instances from the training set of each
domain to serve as a validation set. For each source–target
adaptation setting, we use the training set of source as LS

(labeled source training data), the validation set of target as
LT (labeled target training data), and the remaining training
examples of target as UT (unlabeled target data.) Features
extracted from each review are the unigrams and bigrams oc-
curring at least twice in LS ∪ LT ∪ UT , encoded as binary
features. We perform 30 such random splits for each setting
and report the averaged accuracy when evaluating the model
on the target testing data.

We compare four approaches – logistic regression (LR),
multiview transfer learning (Multi-T), easy adapt (EA) and
our feature ensemble approach (FEAD). As the baseline ap-
proach, LR is a model trained over all the features. We first
find the best Gaussian smoothing prior by training the model
on the source training set (LS) and testing it on the valida-
tion set (LT .) The final model is learned on the entire la-
beled data (LS ∪ LT ) using the selected prior. Proposed re-
cently by Blitzer et al. [2009], Mutlti-T is an enhanced ver-
sion of structural correspondence learning (SCL) [Blitzer et
al., 2007], which has been tested previously on the sentiment
dataset2. We conduct the experiments using the exact setting
as reported in their paper. Another state-of-the-art method,
EA [Daumé III, 2007] projects the source and target exam-
ples to a new expanded feature space first, and then trains
the classifier on the new labeled examples in a way similar
to the baseline LR approach. Finally, FEAD uses two groups
of features. The first one is the trivial group that contains all
the features — call this feature group total. For the second
feature group, we aim to have features that lead to low dH -
distance and empirical error. We adapt a heuristic similar to
the one used in [Blitzer et al., 2007] based on mutual infor-
mation. For each feature appearing in LS , we first compute
its mutual information compared with the label. For a feature
to be included in this group, its mutual information needs to
be higher than at least half of the features in LS and it needs
to occur at least once in the target data (LT ∪ UT ). We call
this feature group common. Notice that this by no means pro-
vides the best feature grouping for our approach. Instead, we
demonstrate that even with simple groups of features selected
following the principle suggested by our theoretical analysis,
a significant improvement can be observed empirically.

Table 1 shows the averaged accuracy of different methods
for each source–target adaptation setting. As can be seen

2We use the software package provided by the authors. Personal
communication confirms that the results of Multi-T and SCL-MI are
comparable.
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Setting Algorithms
Src-Tgt LR Multi-T EA FEAD
B-D 81.10 80.01† 78.63† 81.80
B-E 78.88 78.82 79.38 79.34
B-K 82.29 79.60† 81.66 82.26
B-M 80.23 77.91† 79.25† 80.70

D-B 81.60† 79.91† 80.14† 82.46
D-E 81.27 81.09 80.34 81.54

D-K 82.95 81.83† 82.08† 82.81
D-M 82.53 79.50† 81.53† 82.53

E-B 75.34 72.74† 75.85 75.60
E-D 75.85† 75.86 74.78† 76.76

E-K 86.50† 83.77† 85.33† 87.59

E-M 72.60† 70.86† 72.63 73.54

K-B 74.74† 75.47 74.78† 75.75

K-D 75.93 76.97 75.21† 76.88
K-E 84.90 84.57 83.81† 85.24

K-M 72.38 71.02† 70.45† 72.62

M-B 77.11† 77.06† 76.07† 78.88

M-D 77.76† 77.94† 76.20† 79.52

M-E 76.45† 80.18 76.50† 77.62†

M-K 76.72† 79.41 76.48† 77.59†
Avg. 78.86 78.23 78.06 79.55

Table 1: Results on sentiment classification of the baseline
(LR), multiview transfer (Multi-T), easy adapt (EA), and our
ensemble approach (FEAD). Numbers in bold-face font are
the best performing method in their source–target setting.
Numbers with † are statistically significantly worse than the
best performing method. Statistical significance is based on
paired-t test with the p-value less than 0.05.

clearly, FEAD yields the best results for most of the settings.
Among them, FEAD performs statistically significantly bet-
ter than both EA and Multi-T in 8 cases, and better than all
competing approaches in 4 cases. Even when FEAD does not
achieve the highest accuracy, the difference compared with
the best performing method is not statistically significant, ex-
cept for pairs M-E and M-K. Table 2 shows the normalized
(i.e. weights for total and common features groups sum to 1)
values of the weight assigned to the common feature group.
From the table, it can be infered that the common feature
group plays a significant role in the final classifier. Notice
that the baseline (LR), when provided with some amount of
labeled target data, is notoriously hard to defeat [Daumé III,
2007; Chang et al., 2010]; our experiments corroborate this.
Overall, the experiments on the sentiment analysis empiri-
cally show that FEAD is a simple yet powerful algorithm for
domain adaptation.

4.2 Email Spam Detection

Spam detection is a problem of classifying email messages to
either spam or good. Compared with the typical binary classi-
fication setting, the main challenge of spam detection comes
from its adversarial nature. As spammers often quickly re-
act to a newly deployed filter by modifying the spam mes-
sages [Lowd and Meek, 2005b; 2005a], the sample distri-

�������Src
Tgt Book DVD Elec. Kitchen Movie

Book - 0.45 0.18 0.20 0.41
DVD 0.35 - 0.29 0.27 0.22
Elec. 0.26 0.24 - 0.47 0.20

Kitchen 0.33 0.34 0.54 - 0.22
Movie 0.55 0.52 0.37 0.42 -

Table 2: The weights assigned to frequent feature groups by
FEAD in different sentiment classification settings.

bution from the testing period often dramatically changes.
As argued previously by Jiang and Zhai [2007], such phe-
nomenon can be treated as a domain adaptation scenario due
to the temporal difference between the source and target do-
mains, and thus is a good application for our approach.

We use real-world email spam data in the experiment. The
dataset contains real email messages received by users of Hot-
mail. The sampling process randomly picks emails sent to the
volunteer users and asks them to label the messages as either
spam or good. Among the total 915,000 labeled messages,
we treat the 765,000 messages received from July-01-2005
to Nov-30-2005 as the source training set (LS). The target
set consists of 150,000 messages received from Dec-01-2005
and Dec-15-2005, where we keep the first 30,000 examples
for training and tuning (LT ) and the rest for testing. Note that
we are making a distinction between source and target data by
cutting off a continuous timeline at an arbitrarily picked point.
We assume that this distinction is a good enough approxima-
tion to the ‘source-target’ setting of domain adaptation.

Although spam detection is primarily treated as a text-
classification problem, several non-textual types of features
have been proven useful in previous work, such as the sender
information [Leiba et al., 2005] or the distribution of email
received by specific users [Chang et al., 2008]. These fea-
tures not only capture very distinctive information, but also
behave differently in the domain adaptation setting. For ex-
ample, while it is easy for spammers to change email content,
switching to a new server farm to send spam is relatively dif-
ficult. As a result, each specific type of features has noniden-
tical distribution change and leads to classifiers with different
changes in expected errors.

In order to show how different feature groups undergo dif-
ferent changes in their discriminative power, we compare the
performance of two classifiers: one trained only on features
from email-content (content features) and the other trained
only on features based on sender information (sender fea-
tures.) For each set of features, we used two different set-
tings: random and time-shifted. The random setting is the
control group that tests the scenario when the training and
testing data come from the same distribution. In this set-
ting, we train the classifiers on randomly chosen 765,000 in-
stances, tune on randomly chosen 50,000, and test on the re-
maining 100,000. In contrast, the time-shifted setting simu-
lates the domain adaptation scenario, where we train the clas-
sifiers on first (chronologically) 765,000 instances, tune on
the next 50,000, and test on the final 100,000. Fig. 1 shows
the comparisons of the content and sender based classifiers
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Figure 1: ROC curves of classifiers based on content-features
and sender-features in the random and time-shifted settings.
It can be observed that the performance degradation of the
content-based filter is greater than that of the sender-based fil-
ter, which could imply that the distribution of content-features
changes more drastically over time.

in these two settings, using the ROC analysis. A large per-
formance drop in the time-shifted setting compared to the
random setting can be explained by a drastic distribution or
domain change. The performance degradation is more signif-
icant for content-features compared to sender-features, which
empirically shows they undergo different distribution change.

In the experiments, we leverage this background knowl-
edge to form the feature grouping used by FEAD. In addi-
tion to content and sender features, we have two other feature
groups: user features and a trivial feature group that contains
all the features. The content features are words in the sub-
ject and body of the email that occur at least three time in the
source set. The sender features include the first 16 bits, the
first 24 bits, and the entire IP address of the sender. Finally,
the user features are simply the recipient ids.

We compare the performance of FEAD with two other ap-
proaches, logistic regression (LR) and easy adapt (EA)3. LR
and EA do not take advantage of the background knowledge

3We attempted to include multiview transfer learning (Multi-T).
Unfortunately, it does not seem to scale well to a large amount of
training data, and failed to produce the final model due to memory
issues, even after increasing the heap size to 20GB.

����

����

����

����

���	

���


����

�� ����� ����� ����� ����
 ���

��
�
�
��
�
��
��
�
�
��
�
��

�������������������

����
��
��

Figure 2: The ROC curves of the baseline (LR), easy adapt
(EA) and our ensemble approach (FEAD) when the false-
positive rate (FPR) is less than 0.1. The normalized AUC
scores of LR, EA and FEAD in this region are 0.592, 0.602
and 0.677, respectively.

of feature grouping and are trained on all (i.e. content, sender,
and user) features put together. The experimental settings are
the same as described in the experiments on sentiment anal-
ysis (Sec. 4.1). To compare performance, we report the ROC
curves and the normalized AUC values in a low false-positive
rate (FPR) region, as the cost of losing good email is much
higher than receiving spam. Normalized AUC for FPR ≤ δ
is defined as 1

δ AUC(δ) where AUC(δ) is the area under the
curve for FPR between 0 and δ. As can be observed from
Fig. 2, FEAD performs better than LR and EA consistently
in this region, and has a much higher normalized AUC score.
In comparison, although EA indeed performs better than the
baseline LR, the improvement gain is relatively small and
its ROC curve in fact crosses that of LR. This empirical re-
sult suggests that FEAD can effectively leverage the domain
knowledge of the feature grouping, which is valuable in im-
proving the model performance for domain adaptation.

5 Related Work

The problem of domain adaptation has been studied exten-
sively from both the theoretical perspective and algorithmic
sides. To understand formally the characteristics of the prob-
lem, Ben-David et al. [2007; 2010] proposed the dH -distance
framework, which was later extended to a wider variety of
loss functions by Mansour et al. [2009]. Although the idea of
feature grouping was never discussed previously, their work
provides a solid foundation for the theoretical analysis of our
ensemble approach.

A variety of algorithm-centric domain adaption methods
have also been proposed. For example, EasyAdapt [Daumé
III, 2007] uses feature-replication to implicitly capture the
domain-invariant and domain-specific aspects of features.
Blitzer et al. [2006] proposed Structural Correspondence
Learning (SCL), which projects features to a latent space such
that these latent features exhibit roughly the same distribu-
tion across source and target domains. Alternatively, Finkel
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and Manning [2009] and Jiang and Zhai [2006] propose ap-
proaches based on imposing priors over individual features,
where the priors can be decided directly based on the gener-
alizability of the features. FEAD is related to these works as
it massages the weights of different features in terms of their
contribution to the final prediction function. However, unlike
these approaches, the feature weights in FEAD are tweaked
after creating the classifiers.

The use of feature grouping in FEAD is analogous to
adaptation from multiple sources [Mansour et al., 2008;
Ben-David et al., 2010], where feature groups can be thought
of as different sources created artificially. However, adap-
tation from multiple sources typically assumes that the in-
stances from different sources are independent, which is
clearly not the case in our setting. Finally, we share the idea of
using ensemble-like learning for domain adaptation with Dai
et al. [2007], who use boosting for the same purpose. How-
ever, our approach considers ensembles over different feature
groups, whereas they create ensembles by re-weighting in-
stances.

6 Conclusion

In this paper, we introduced a technique that leverages the
expressiveness of ensembles to adapt to distribution change
between domains. Building on this notion, we presented a
simple and easy-to-implement method based on re-weighting
classifiers learned on different feature groups. Our approach
provides the flexibility to re-adjust the influence of different
feature groups on the target domain classifier based on their
cross-domain distributional stability. This design is motivated
by our theoretical analysis, and its empirical effectiveness is
demonstrated through experiments on the benchmark senti-
ment analysis task and spam detection, where our approach
outperforms several state-of-the-art methods.

Although in this work we showed that by using simple sta-
tistical measures or domain knowledge to generate the feature
grouping, our approach can lead to significant improvement,
it is nevertheless interesting to find automatically the best fea-
ture grouping for the task. We leave that as future work.
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