
A General MCMC Method for Bayesian Inference
in Logic-Based Probabilistic Modeling

Taisuke Sato

Tokyo Institute of Technology

2-12-1 Ôokayama Meguro-ku Tokyo Japan 152-8552

Abstract

We propose a general MCMC method for Bayesian
inference in logic-based probabilistic modeling. It
covers a broad class of generative models including
Bayesian networks and PCFGs. The idea is to gen-
eralize an MCMC method for PCFGs to the one
for a Turing-complete probabilistic modeling lan-
guage PRISM in the context of statistical abduc-
tion where parse trees are replaced with explana-
tions. We describe how to estimate the marginal
probability of data from MCMC samples and how
to perform Bayesian Viterbi inference using an ex-
ample of Naive Bayes model augmented with a hid-
den variable.

1 Introduction

MCMC (Markov chain Monte Carlo) methods have been
widely used in Bayesian inference. They are the key tech-
nology being used for complex probabilistic models deal-
ing with high-dimensional data and there exist well-known
MCMC tools such as WinBugs [Lunn et al., 2000]. However,
mostly, they are designed for continuous models and there
are not many general-purpose MCMC methods for Bayesian
inference applicable to complex discrete models.

In this paper, we present such an MCMC method for
PRISM, a Turing-complete logic-based probabilistic mod-
eling language [Sato and Kameya, 2001]. It covers a
broad class of generative models including BNs (Bayesian
networks) and PCFGs (probabilistic context free grammars),
thereby eliminating the need of inventing and implementing
a new MCMC method for each model. We have only to
declaratively describe a probabilistic model by a set of
definite clauses. The marginal and posterior probability is
automatically estimated from MCMC samples generated by
the method integrated into PRISM. Note that models can be
arbitrarily complex as long as they are described by PRISM
programs. Thus Bayesian inference is possible at no extra
cost even if they go beyond traditional BNs and PCFGs.
Later we report Bayesian inference for a PLCG (probabilistic
left-corner grammar) which has not been attempted yet to
our knowledge.

The motivation behind our proposal is to develop an
MCMC method for an expressive declarative language.
Declarativeness is crucial. It abstracts away low level details
such as control and memory management and keeps readabil-
ity of complex models. In addition it separates models from
their inference and learning methods, and conversely, allows
us to combine them freely. PRISM uses logic programs to
specify models and the user can choose the best one from a
variety inference and learning methods such as MLE (max-
imum likelihood estimation), MAP (maximum a posterior)
inference, VB (variational Bayes), Viterbi inference and now
MCMC and associated Bayesian Viterbi inference.

There already exist MCMC based probabilistic model-
ing languages [Milch et al., 2005; McCallum et al., 2009;
Goodman et al., 2008]. Unlike these languages however, our
MCMC is logic-based and furthermore not the only inference
method but the latest one added to PRISM that works on top
of PRISM’s rich functionalities such as exact inference and
VB learning.

2 PRISM for statistical abduction

PRISM is a language for statistical abduction. We here re-
view the relationship between abduction and PRISM for self-
containedness. Abduction is a form of logical inference
which infers the best explanation E for a given observation
G such that DB,E � G where DB is a logic program con-
sisting of definite clauses and DB ∧ E is consistent. Usually
E is a conjunction of ground atoms called abducibles. When
there are multiple explanations E = {E1, . . . , EN} for G, all
equally entailing G, we have to select the best one. One pos-
sible way is to assign probabilities to abducibles and choose
E∗ = argmaxE∈EP (E | DB) that has the highest probabil-
ity as the best explanation for G. We assume here P (E | DB)
is computable from the probabilities assigned to abducibles
which we subsequently call parameters. However the real
problem starts here: how to obtain these parameters? Often-
times there are thousands of parameters. Statistical abduction
solves this problem by statistically learning them from data
by applying a parameter learning algorithm such as the EM
algorithm to logical formulas made up of abducibles.

PRISM is a probabilistic extension of Prolog for statisti-
cal abduction [Sato and Kameya, 1997; 2001]. It provides

1472

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

msw1atoms as probabilistic abducibles to simulate basic prob-
abilistic events such as dice throwing, together with various
types of parameter learning procedures. An explanation in
PRISM, denoted by ε, is a conjunction of msw atoms. When
a goal G is given to a program DB, PRISM searches for
all explanations for G w.r.t. DB by top-down tabled search.
The resulting explanations are organized as a compact set of
AND/OR formulas called an explanation graph so that com-
mon subformulas are shared. This sharing mechanism makes
possible efficient probability computation of G by dynamic
programming applied to the generated graph. Every infer-
ence and learning procedure in PRISM works for it and the
user does not need to modify the program when he or she
changes to another inference and learning mode.

Here is a simple PRISM program for a PCFG that has two
rules S → SS and S → a.

values(s, [[s, s], [a]], set@[0.4,0.6]).

s(X, Z) :-

msw(s, RHS),
(RHS = [s, s] -> s(X, Y), s(Y, Z)
; RHS = [a] -> X = [a|Z] ; true).

Figure 1: A PCFG program for S → SS | a

values(s, [[s, s], [a]], set@[0.4, 0.6]) is a declaration which
introduces two probabilistic abducibles msw(s, [s, s]) and
msw(s, [a]) with parameters 0.4 and 0.6 respectively. They
represent a probabilistic choice of a CFG rule in {S →
SS, S → a}. In the program s(X, Z) means s spans a differ-
ence list X−Z. msw(s, RHS) returns RHS = [s, s] with proba-
bility 0.4 and [a] with probability 0.6. Figure 2 depicts part of
the explanation graph for the goal s([a, a, a], []) representing
a sentence “aaa”. The goal has two proofs corresponding to
the two disjuncts in Figure 2. They share the same subgoal
s([a, a], [a]). All explanations for s([a, a, a], []) are found by
transforming it into DNF using these if-and-only-if formulas.

s([a, a, a], []) ⇔

(s([a, a, a], [a, a]) ∧ s([a, a], []) ∧ msw(s, [s, s]))

∨ (s([a, a, a], [a]) ∧ s([a], []) ∧ msw(s, [s, s]))

s([a, a, a], [a, a]) ⇔ msw(s, [a])

s([a, a], []) ⇔ s([a, a], [a]) ∧ s([a], []) ∧ msw(s, [s, s])

· · ·

Figure 2: part of the explanation graph for s([a, a, a], [])

In general, a discrete random variable Xi taking a value
in Vi = {v1, . . . , vN} is represented in PRISM by a fam-
ily i of ground msw atoms {msw(i, v) | v ∈ Vi}. msw(i, v)
becomes exclusively true with probability (parameter) θi,v
(
∑

v∈Vi
θi,v = 1). Let DB be a program and θ the set of

all parameters in DB. In terms of the distribution semantics

1
msw is a short hand for “multi-valued switch.”

of PRISM [Sato and Kameya, 2001], PDB(G | θ), the proba-
bility of a goal G w.r.t. DB, is calculated as a sum-product of
parameters:

PDB(G | θ) =
∑

ε∈expl(G)

PDB(ε | θ)

PDB(ε | θ) =
∏

(i,v):msw(i,v)∈ε

θi,v
σi,v(ε)

where ε is an explanation for G such that ε,DB � V , expl(G)
the set of all explanations for G and σi,v(ε) the number of
times msw(i, v) appears in ε. Conversely it is also possible
to estimate θ from an iid sample given as a list of goals like
[s([a, a, a], []), s([a], []), . . .].

3 Bayesian PRISM

We now introduce priors over parameters and make Bayesian
inference. Let θi = θi,v1 , . . . , θi,vN be parameters associ-
ated with a family of msw atoms msw(i, v1), . . . , msw(i, vN)
and θ the set of all parameters in a program DB. As usual
we put a Dirichlet distribution PDir(θi | αi,v1 , . . . , αi,vN) ∝

θi,v1
αi,v1−1 · · · θi,vN

αi,vN
−1 over θi. αi = αi,v1 , . . . , αi,vN

are called the hyper parameters for θi. We use α for the set
of all hyper parameters in DB.

Suppose an iid sample of goals G = G1, . . . , GT is given.
Let εt denote an explanation for Gt (1 ≤ t ≤ T). Put E =

ε1, . . . , εT and σi,v(E) =
∑T

t=1 σi,v(εt). Then the marginal
likelihood of E and that of G are respectively calculated as

PDB(E | α)

=

∫ (
T∏

t=1

PDB(εt | θ)

)∏
i

PDir(θi | αi) dθi

=
∏
i

Z−1
i

(∏
v∈Vi

Γ(σi,v(E) + αi,v)

Γ(
∑

v∈Vi
σi,v(E) + αi,v)

)
(1)

where Zi =

∏
v∈Vi

Γ(αi,v)

Γ(
∑

v∈Vi
αi,v)

PDB(G | α)

=
∑

E∈expl(G1)×···×expl(GT)

PDB(E | α) (2)

where Γ(·) is the gamma function. It is immediate from the
equation (2) that exact computation of PDB(G | α) is in-
tractable due to the summation of combinatorially many Es.
We avoid this difficulty by switching to MCMC and perform
approximate Bayesian inference.

Bayesian inference treated in this paper is the compu-
tation of the marginal likelihood PDB(G | α) which is
useful for model selection and Bayesian Viterbi inference
that computes the Bayesian Viterbi explanation ε∗new =
argmaxεnew∈expl(Gnew)PDB(εnew | Gnew,G,α) for a new

goal Gnew. The latter is applied to classification problems.
We notice the following equations.

1473

PDB(G | α)

=
PDir(θ | α)PDB(G | θ)∑

E PDB(θ | E ,α)PDB(E | G,α)
(3)

argmaxεnew∈expl(Gnew)PDB(εnew | Gnew,G,α)

= argmaxεnew∈expl(Gnew)PDB(εnew | G,α) (4)

PDB(εnew | G,α)

=
∑
E

PDB(εnew | E ,α)PDB(E | G,α) (5)

Here θ in (3) is arbitrary. PDB(θ | E ,α) is the poste-
rior distribution of PDir(θ | α) given E and E ranges over
expl(G1) × · · · × expl(GT). (3), (4) and (5) assure that, as
we show later, we can approximately compute the marginal
likelihood of G and the Bayesian Viterbi explanation if we get
enough samples from PDB(E | G,α).

We sample E ∼ PDB(E | G,α) by MCMC follow-
ing the work done by Johnson et al. [Johnson et al., 2007].
They construct a Markov chain for Bayesian PCFGs by M-
H (Metropolis-Hastings) sampling whose state is a vector of
parse trees for each sentence. A sate transition occurs by ran-
domly choosing a sentence and by replacing according to the
M-H acceptance probability its parse tree in the current state
with a new one that is sampled from the set of parse trees of
the sentence using inside probabilities. The M-H sampling
algorithm for PRISM is obtained by generalizing sentences
to goals and parse trees to proof trees, or equivalently to ex-
planations for goals (because proof trees are recoverable from
explanations).

Let G = G1, . . . , GT be observed goals and E(k) =

ε
(k)
1 , . . . , ε

(k)
T their corresponding explanations constituting a

state at step k. We denote by E
(k)
−t E(k) with ε

(k)
t deleted and

put θ̄
(k)
−t = E[θ | E

(k)
−t ,α] which is the average of parameters

by the posterior conditioned on E
(k)
−t . We construct a Markov

chain over Es by M-H sampling as follows.

[Initialize] Set E(0) = ε
(0)
1 , . . . , ε

(0)
T for appropriate ε

(0)
t s.

[Repeat] for k = 0, 1, . . .

Let E(k) = ε
(k)
1 , . . . , ε

(k)
T be the current state.

Choose randomly t in [1, T].

Sample a new explanation ε′t ∼ PDB(ε
′
t | Gt, θ̄

(k)
−t).

Let E ′ be E(k) with ε
(k)
t replaced by ε′t.

Compute the acceptance probability

A = min

(
1,

PDB(E|E′,α)PDB(E′|G,θ̄
(k)
−t

,α)

PDB(E′|E,α)PDB(E|G,θ̄
(k)
−t

,α)

)
.

Move to a new state E(k+1) = E ′ with probability A

else E(k+1) = E(k).

Figure 3: M-H sampling for PRISM

Sampling ε′t ∼ PDB(ε
′
t | Gt, θ̄

(k)
−t) is carried out exactly as

in [Johnson et al., 2007] but we use generalized inside proba-

bilities in PRISM [Sato and Kameya, 2001] instead of inside
probabilities for PCFGs (details omitted).

As the initial state, we select (non-Bayesian) Viterbi expla-

nations. Namely we put ε
(0)
t = argmaxεt∈expl(Gt)PDB(εt |

Gt, θ̄VB) (1 ≤ t ≤ T) where θ̄VB is the posterior mean of
θ by the approximate posterior distribution of PDB(θ | G)
computed by the VB routine in PRISM.

4 Estimating marginal likelihood

In this section we estimate the marginal likelihood of real and
artificial data.

It follows from (3) in Section 3 that the marginal likelihood
is computed in terms of three quantities appearing in (3), i.e.
PDir(θ | α), PDB(G | θ) in the enumerator and the denom-
inator. The first two are easy to compute. The third one, the
denominator, is also not difficult to deal with. We can ap-
proximate it using samples E1, . . . , EK from PDB(E | G,α)
generated by the proposed MCMC method as follows.

∑
E

PDB(θ | E ,α)PDB(E | G,α) ≈

∑K

m=1 PDB(θ | Em,α)

K

With a necessary tool being prepared, we estimate the
marginal likelihood of real data. Hereafter we use ML as a
shorthand for “marginal likelihood” to save space. We put
θ = θ̄VB in (3) and choose as a dataset the ATR corpus
[Uratani et al., 1994] which contains 10,995 Japanese con-
versational sentences. There is a manually developed CFG
containing 860 rules. Using this CFG, we conduct two ex-
periments of estimating the ML, one for a PCFG model and
the other for a PLCG model2. Due to space limitations how-
ever, we only report the latter because there is no literature on
estimating the ML of PLCG model as far as we know.

A PRISM program for the PLCG model is comprised of
2,500 non-unit clauses and 21,000 unit clauses. Consider-
ing computational difficulty caused by such a large model, at
each #Sentence, i.e. the number of given sentences, we run
the MCMC algorithm for 1,000 iterations and use samples
from the last 100 iterations to estimate the log ML of the ATR
corpus. We repeat this process 10 times and take the average.
The result is shown in Table 1, together with the average (of
10 times trials) of log VFE (variational free energy) computed
by the VB routine in PRISM.

2A PLCG constructs a parse tree in a bottom-up manner. Parsing
conflicts such as shift-reduce are resolved by a probabilistic choice.

#Sentence Log ML Log VFE
ave. std. ave. std.

10 -627.27 5.77 -642.56 0.87
100 -4597.84 27.79 -4738.51 3.44

1000 -37249.42 29.59 -37320.85 26.08
5000 -176296.93 63.98 -175999.83 74.90
10000 -333198.23 23.44 -333056.56 105.22

Table 1: Average log marginal likelihood and log variational
free energy of the ATR corpus by the PLCG model

1474

It is seen from Table 1 that ML and VFE are very close
though ML is always higher than VFE (this is convincing be-
cause VFE is a lower bound of ML). Also the effect of intro-
ducing prior is visible, witnessed by the non-linearity of MLs
w.r.t. #Sentence. I.e. when #Sentence is small, the log ML is
offset more positively3.

Estimating ML is indispensable in Bayesian model selec-
tion. We next take up a profile-HMM and examine how the
ML of data changes with the size of the HMM. A profile-
HMM is a variant of HMM designed for multiple alignment
of biological sequences. As illustrated in Figure 4, it has a
base HMM (bottom layer) which is augmented with insert
and del(-ete) states to simulate probabilistic changes in evo-
lution. The model length, i.e. the number of states in the base
HMM, must be tuned when aligning biological sequences and
from a Bayesian viewpoint, it should maximizes the ML of
the sequences.

start end

insert

match

del del del

insert insert insert

match match

Figure 4: Profile-HMM

Using Rose [Stoye et al., 1998] with true length set to 10,
we randomly generate artificial protein sequences of size 100.
They have varying length and the 64% of the sequences have
length 10. We estimate the log ML of the data by running
a PRISM program for a profile-HMM while changing the
model length from 2 to 25. At each length, we run the MCMC
algorithm for 6, 000 iterations and use the last 1, 000 samples
to estimate the log ML and repeat this process 10 times.

-3200

-3100

-3000

-2900

-2800

-2700

 5 10 15 20 25

A
ve

ra
ge

 lo
g

m
ar

gi
na

l l
ik

el
ih

oo
d

Length

True length = 10

Estimated log ML
Variable free energy

Figure 5: Average log ML vs. model length

3The same tendency is observed with the PCFG model but to a
less degree.

We plot a curve of average (10 times trials) of log ML and
that of log VFE w.r.t. model length as shown in Figure 5. As
in the PLCG case, ML is higher than VFE and has a larger
standard deviation at each data-point. It draws a rather ragged
line and decreases more gently than VFE. However both lines
have a peak near Length=10, the true model length.

5 Viterbi inference and classification

In this section, we deal with Viterbi inference that computes
the Bayesian Viterbi explanation. We apply it to a variant of
Naive Bayes model that has a hidden class variable HC as il-
lustrated in Figure 6. The new Naive Bayes model is referred
to as NBH hereafter. The idea of HC is to make attributes
interdependent through HC thus relaxing the independence
assumption of Naive Bayes. Similar improvement is reported
in [Zhang et al., 2005] but NBH is much simpler.

When building an NBH model, we have to decide #HC,
the number of hidden classes. This is a model selection prob-
lem and we can solve it by estimating the log ML of data w.r.t.
the NBH model varying #HC.

In the following, we first explain how Bayesian Viterbi ex-
planation is computed in PRISM and then using the NBH
model for a dataset in the UCI repository, we show how it
is applied to classification problems.

5.1 Reranking

Suppose we have observed goals G and a new goal Gnew is
given. We wish to know the Bayesian Viterbi explanation
ε∗new for Gnew computed by the equations (4) and (5). Just
like the case of estimating the ML, we can approximate it by
using MCMC samples E1, . . . , EK from PDB(E | G,α) as
follows.

ε∗new

= argmaxεnew∈expl(Gnew)PDB(εnew | G,α) (6)

PDB(εnew | G,α)

≈

∑K

m=1 PDB(εnew | Em,α)

K
(7)

PDB(εnew | Em,α) in (7) is easy to compute as it has a
closed form but unfortunately (6) requires the computation
of PDB(εnew | G,α) for every explanation in expl(Gnew),
which is virtually impossible except small problems. To make
this computation feasible we take a reranking approach.

In our reranking approach, we use (6) but replace
expl(Gnew) with its small subset S called a candidate set that
possibly contains ε∗new. The choice of S is critical because it
needs to be likely to contain ε∗new but must not be too big.

Expecting non-Bayesian Viterbi explanations for Gnew and
their Bayesian counterparts overlap enough, we choose as S
the top M explanations ε1, . . . , εM (∈ expl(Gnew)) in the
descending order of PDB(ε | θ̄VB, Em,α). Here θ̄VB is the
approximate posterior mean of θ as explained before.

When Gnew is non-ground and contains free variables as in
the next subsection, we consider all possible ground instan-
tiations and all their possible explanations. We order them
as in the ground case and take the top M explanations as the
candidate set to compute ε∗new.

1475

�

���

��

��

Figure 6: Bayesian network for an NBH
model of the Voting Record dataset

-3400

-3300

-3200

-3100

-3000

-2900

-2800

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 lo
g

m
ar

gi
na

l l
ik

el
ih

oo
d

Number of hidden classes

Estimated log ML
Variable free energy

Figure 7: Average log marginal likelihood

 86

 88

 90

 92

 94

 96

 98

 100

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Number of hidden classes

MCMC
VB
EM

Figure 8: Average accuracy

5.2 Classification by the NBH model

We here apply Bayesian Viterbi inference to an NBH model
to solve a classification problem of the the Voting Record
dataset in the UCI repository. The dataset contains 435 tuples
and each tuple has 16 binary attributes (yes, no) and a class
(democrat, republican). Some attributes are missing. The size
of the candidate set is set to 2.

Consider an NBH model in Figure 6. A PRISM program
DBnbh for the NBH model defines a predicate nbh(C, As) that
represents our observation where As is a vector (list) of 16
attributes and C denotes a class to which As belongs. Each
tuple in the dataset is represented by a ground goal such as
nbh(democrat, [yes, . . . , no]).

Suppose a set of ground nbh atoms G′ is given as ob-
servations and we would like to predict the class of new
data [a1, . . . , a16] based on G′. To do so, we put Gnbh =
nbh(C, [a1, . . . , a16]) (C is a variable and the ais are constant)
and obtain the Bayesian Viterbi explanation ε∗nbh for Gnbh

using G′ as explained in the previous subsection. Since ε∗nbh
uniquely entails a ground instantiation of Gnbh, it uniquely
determines the ground instantiation of C as well, either to
democrat or to repbulican as the predicted class of the
data [a1, . . . , a16]. Thus we can solve the problem of classi-
fying voting records into democrat or republican by the NBH
model.

We draw curves for the average log ML and the average
log VFE of the Voting Record dataset (20 times trials at each
data point) varying the number of hidden classes #HC as in
Section 4. We run the MCMC algorithm for 2,000 iterations
and use samples from the last 1,000 iterations to estimate the
log ML. They are shown in Figure 7. What is noticeable here
is that the plotted curves are much smoother than those for
the profile-HMM in Section 5. Intuitively this is because the
NBH is much simpler and has much less parameters than the
profile-HMM but a detailed analysis is left for future research.
We also notice that while the log VFE curve has a global acute
peak at #HC=3, the log ML curve has a very broad peak
around #HC=12. As #HC increases, the gap between the
two monotonically widens, which might suggest the quality
of approximation by VB monotonically deteriorates.

Finally we compare classification accuracy of three clas-

sification methods applied to the NBH model, each tem-
porarily referred to as MCMC, VB and EM respectively.
MCMC means the classification by Bayesian Viterbi in-
ference. VB means usual (non-Bayesian) Viterbi infer-
ence which uses the posterior mean θ̄VB to compute
argmax

C
PDBnbh

(nbh(C, As)) | θ̄VB) to decide the class C.
EM is similar to VB but uses parameters learned by the EM
algorithm. We vary #HC between 2 and 20 and at each #HC,
we repeat 10-fold CV (cross-validation) 10 times to take the
average of classification accuracy for each method. As a base
line, we measure the average accuracy of Naive Bayes by 10-
fold CV which turns out to be 90.1%.

The average classification accuracy for the three methods is
plotted in Figure 8. Among the three, EM shows the poorest
performance except for small #HC. Comparatively MCMC
and VB demonstrate stable performance, around 96% accu-
racy through all values of #HC. The highest accuracy 97.0%
is achieved by MCMC at #HC=12 which coincides with a
broad peak in the average log ML curve. Contrastingly, al-
though the average log VFE curve has its peak at #HC=3, the
average accuracy curve for VB does not have a peak around
that point. Nonetheless all three methods exhibit much better
performance than Naive Bayes whose accuracy is 90.1%. Our
experiment suggests the effectiveness of introducing a hidden
variable to Naive Bayes though more experiments are needed
to conclude it.

6 Related work

Our work belongs to the lineage of SRL (statistical rela-
tional learning) [Getoor and Taskar, 2007] and PLL (prob-
abilistic logic learning)[De Raedt and Kersting, 2008] that
have been intensively studied in the past decade. They up-
grade feature-based probabilistic modeling to more struc-
tured and complex modeling with the help of relation and
logic. However complex models often require intractable
probabilistic inference and MCMC sampling has been used
to overcome the intractability problem across a variety of for-
malisms. In logic programming for example Angelopoulos
and Cussens studied MCMC sampling in SLPs (stochastic
logic programs)[Muggleton, 1996] to give priors for struc-
tured objects [Angelopoulos and Cussens, 2008]. In BNs,

1476

Milch and Russell proposed a generic MCMC algorithm for
a BN-based modeling language BLOG in which proposal
distributions are plugged in by the user [Milch and Russell,
2006]. Turning to undirected graphical models, FACTORIE,
a software library for a strongly-typed functional language
Scala, performs MCMC sampling on imperatively defined
factor graphs [McCallum et al., 2009]. Church is another
example of the use of MCMC sampling in a functional lan-
guage [Goodman et al., 2008]. It is a stochastic extension of a
higher-order functional language Scheme, and supports con-
struction of non-parametric Bayesian models such as Dirich-
let process.

Recently Cussens proposed an approximation method for
Bayesian inference in PRISM which is quite different from
our MCMC [Cussens, 2010]. He adapted an ABC (approxi-
mate Bayesian computation) SMC (sequential Monte Carlo)
method to PRISM. Since it does not need to compute the
likelihood of data, much less of computational burden is ex-
pected.

7 Conclusion

We proposed a general MCMC method for Bayesian infer-
ence in a logic-based Turing-complete language PRISM. It is
applicable to any PRISM program (and hence to a broad class
of generative models) and probabilistically samples possible
explanations in statistical abduction for observations given as
goals. Samples are used to estimate the marginal likelihood
of the observations and to infer the best explanation for a new
goal in Bayesian sense. We applied the new MCMC method
to a PCFG and a PLCG for the ATR corpus, a profile-HMM
and a variant of Naive Bayes augmented with a hidden vari-
able.

References

[Angelopoulos and Cussens, 2008] N. Angelopoulos and
J. Cussens. Bayesian learning of Bayesian networks
with informative priors. Annals of Mathematics and
Artificial Intelligence, 54(1-3):53–98, 2008.

[Cussens, 2010] J. Cussens. Approximate Bayesian compu-
tation for the parameters of Prism programs. In Pro-
ceedings of the 20th International Conference on Induc-
tive Logic Programming (ILP’10), pages –, 2010.

[De Raedt and Kersting, 2008] L. De Raedt and K. Kersting.
Probabilistic inductive logic programming. In L. De
Raedt, P. Frasconi, K. Kersting, and S. Muggleton, edi-
tors, Probabilistic Inductive Logic Programming - The-
ory and Applications, Lecture Notes in Computer Sci-
ence 4911, pages 1–27. Springer, 2008.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar, editors.
Introduction to Statistical Relational Learning. MIT
Press, Cambridge, MA, 2007.

[Goodman et al., 2008] N.D. Goodman, V.K. Mansinghka,
D. Roy, K. Bonawitz, and J.B. Tenenbaum. Church:
a language for generative models. In Proceedings of the
Twenty fourth Conference on Uncertainty in Artificial
Intelligence (UAI’08), 2008.

[Johnson et al., 2007] M. Johnson, T. Griffiths, and S. Gold-
water. Bayesian inference for PCFGs via Markov chain
monte carlo. In Proceedings of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL’07), pages 139–146, 2007.

[Lunn et al., 2000] D.J. Lunn, A. Thomas, N. Best, and
D. Spiegelhalter. Winbugs – a Bayesian modelling
framework: concepts, structure, and extensibility.
Statistics and Computing, 10:325–337, 2000.

[McCallum et al., 2009] A. McCallum, K. Schultz, and
S. Singh. Factorie: Probabilistic programming via im-
peratively defined factor graphs. In Advances in Neural
Information Processing Systems 22, pages 1249–1257,
2009.

[Milch and Russell, 2006] B. Milch and S. Russell. General-
Purpose MCMC Inference over Relational Structures.
In Proceedings of the 22nd Annual Conference on Un-
certainty in Artificial Intelligence (UAI’06), pages 349–
358, 2006.

[Milch et al., 2005] B. Milch, B. Marthi, S. Russell, D. Son-
tag, D.L. Ong, and A. Kolobov. BLOG: Probabilistic
models with unknown objects. In Proceedings of the
19th International Joint Conference on Artificial Intelli-
gence (IJCAI’05), pages 1352–1359, 2005.

[Muggleton, 1996] S. Muggleton. Stochastic logic pro-
grams. In L. De Raedt, editor, Advances in Inductive
Logic Programming, pages 254–264. IOS Press, 1996.

[Sato and Kameya, 1997] T. Sato and Y. Kameya. PRISM: a
language for symbolic-statistical modeling. In Proceed-
ings of the 15th International Joint Conference on Arti-
ficial Intelligence (IJCAI’97), pages 1330–1335, 1997.

[Sato and Kameya, 2001] T. Sato and Y. Kameya. Parame-
ter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research,
15:391–454, 2001.

[Stoye et al., 1998] J. Stoye, D. Evers, and F. Meyer.
Rose: generating sequence families. Bioinformatics,
14(2):157–163, 1998.

[Uratani et al., 1994] N. Uratani, T. Takezawa, H. Matsuo,
and C. Morita. ATR integrated speech and language
database. Technical Report TR-IT-0056, ATR Interpret-
ing Telecommunications Research Laboratories, 1994.
In Japanese.

[Zhang et al., 2005] H. Zhang, L. Jiang, and J. Su. Hidden
naive Bayes. In Twentieth National Conference on Arti-
ficial Intelligence, pages 919–924. AAAI Press, 2005.

1477

