
Angular Decomposition

Dengdi Sun1, Chris Ding2,1, Bin Luo1 and Jin Tang1

1 School of Computer Science and Technology, Anhui University, Hefei, 230039
2 CSE Department, University of Texas at Arlington, Arlington, TX 76019

sundengdi@163.com, chqding@uta.edu, luobin@ahu.edu.cn, ahhftang@gmail.com

Abstract

Dimensionality reduction plays a vital role in pat-
tern recognition. However, for normalized vector
data, existing methods do not utilize the fact that
the data is normalized. In this paper, we propose to
employ an Angular Decomposition of the normal-
ized vector data which corresponds to embedding
them on a unit surface. On graph data for sim-
ilarity/kernel matrices with constant diagonal ele-
ments, we propose the Angular Decomposition of
the similarity matrices which corresponds to em-
bedding objects on a unit sphere. In these angular
embeddings, the Euclidean distance is equivalent to
the cosine similarity. Thus data structures best de-
scribed in the cosine similarity and data structures
best captured by the Euclidean distance can both be
effectively detected in our angular embedding. We
provide the theoretical analysis, derive the compu-
tational algorithm, and evaluate the angular embed-
ding on several datasets. Experiments on data clus-
tering demonstrate that our method can provide a
more discriminative subspace.

1 Introduction

Dimensionality reduction is an important problem in pattern
recognition, and various methods have been proposed. From
the point of view of data embedding, there are two cate-
gories of embedding approaches. For vector data embedding,
Principal Component Analysis (PCA) for unsupervised data
and Linear Discriminate Analysis (LDA)[Duda et al., 2001;
Wang et al., 2010] for supervised data are the two most
widely used linear algorithms because of their relative sim-
plicity and effectiveness. For graph data embedding, Lapla-
cian Embedding (LE) [Hall, 1971; Belkin and Niyogi, 2003;
Luo et al., 2009] is a classical method; in addition, Manifold
learning also is one important class of popular approaches
such as Isomap [Tenenbaum et al., 2000], Locally Linear
Embedding (LLE) [Roweis and Saul, 2000], Local Tangent
Space Alignment (LTSA)[Zhang and Zha, 2004], Locality
Preserving Projections[He and Niyogi, 2003], etc.

The most widely used PCA projects data into a subspace
using a least square data representation error function. How-
ever, in many applications such as information retrieval, im-

age analysis, and genomics, normalized vector data come
naturally. PCA does not take advantage of this special nature
for the normalized data. Furthermore, in machine learning,
many graph data including pairwise similarities are produced
by kernel functions [Genton et al., 2001], such as the most
widely used RBF kernel, which usually have constant/unit
diagonal elements. Most existing embedding methods do
not utilize this property.

This motivate us to propose a new embedding method
called Angular Decomposition (also called angular embed-
ding) to deal with normalized data or graphs/kernels with
constant diagonal elements. The decompositions correspond
to embedding data onto a low-dimensional spherical surface.
Although Angular Decomposition is best suited to normal-
ized vector data and graph data with constant diagonal el-
ements, it also applies to un-normalized data or graph data
with non-constant diagonal. One important feature of angular
embedding is that because the embedded data are on the unit
sphere, the cosine similarity is equivalent to the Euclidean
distance. Thus data structures best described in the cosine
similarity and data structures best captured by the Euclidean
distance can both be effectively detected in our angular em-
bedding.

Below, we first introduce Angular Decomposition for vec-
tor data and Angular Decomposition for graph data. We then
derive computational algorithms for each decomposition re-
spectively. We evaluate these new data decompositions for
unsupervised learning. We perform angular embedding on
several common datasets. Experiment results demonstrate the
effectiveness of these new decompositions as compared to ex-
isting approaches.

2 Angular Decomposition

We start with a brief discussion of PCA, which is the most
widely used dimensionality reduction method. Let the input
data matrix X = (x1, · · · , xn) ∈ �p×n contains the collec-
tion of n data column vectors in p dimension space. In im-
age processing, each column xi is a linearized array of pix-
els’ gray levels; in text processing, xi is a document. PCA
finds the optimal low-dimensional (k-dim) subspace defined
(spanned) by the principal directions U = (u1, · · · , uk) ∈
�p×k. The projected data points in the new subspace are
V = (v1, · · · , vn) ∈ �k×n. PCA finds U and V by mini-

1505

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

mizing

min
U,V

JPCA = ‖X − UV ‖2F . (1)

The global optimal solution is the rank-k singular value de-
composition, X ≈ UΣV . We absorb Σ into V in Eq(1).

2.1 Angular Decomposition of vector data

Our primary focus is the normalized vector data, i.e., ‖xi‖
2 =

1, i = 1, · · · , n. Here for simplicity, we assume data are
normalized into unit length. We note that many data came
naturally normalized. Our starting point is that PCA is not
specifically designed to work on normalized vector data, i.e.,
in general, the projection in the PCA subspace ‖vi‖

2 �= 1.
Although we can show

1 = ‖xi‖
2 ≈ ‖Uvi‖

2 = vTi U
TUvi = vTi vi = ‖vi‖

2. (2)

This means that for normalized data, the projection (in the
PCA subspace) vi is not normalized, but is approximately
normalized if the subspace dimension k is sufficiently large.

To fully take advantage of the special nature of the normal-
ized data, we propose the following Angular Decomposition

min
U,V

J1 = ‖X − UV ‖2 s.t. ‖vi‖
2 = 1, UTU = I, (3)

where I is the identical matrix.
One improvement can be made. Because the ranks of U, V

are low, we introduce an overall scale α to improve the data
representation. Furthermore, to distinguish the normalized
variable, we use H instead of V as

V → HT = [h1, . . . , hn] ∈ �k×n,

Please note we use the transposition HT following conven-
tion. Thus the final Angular Decomposition is defined as

min
α,H,U

J2 = ‖X − αUHT ‖2 (4)

s.t. (HHT)ii = 1, UTU = I.

Note that (HHT)ii = ‖hi‖
2 is the length of embedding vec-

tor.
The most important advantage of Angular Decomposition

is that in the embedding space, the (k− 1) dimension sphere,
the Euclidean distance is equivalent to the cosine similarity:

Theorem 1: In Angular Decomposition, the Euclidean dis-
tance is equivalent to the cosine similarity.

Proof: The cosine similarity for vector hi and hj is defined
as cos θ(hi, hj) = hi · hj/‖hi‖‖hi‖. The Euclidean distance
between vectors hi and hj is

‖hi − hi‖
2 = ‖hi‖

2 + ‖hi‖
2 − 2‖hi‖‖hi‖ cos θ(hi, hj)

= 2− 2 cos θ(hi, hj)

where ‖hi‖ = 1 in our Angular Decomposition. Further-
more, large dij corresponds to small cos θ(hi, hj). Thus Eu-
clidean distance is equivalent to cosine similarity. QED

This equivalence is useful because the Euclidean distance
captures some intrinsic properties for some datasets while the
cosine similarity captures the essential properties for some
other datasets. It makes the angular embedding to be a more
suitable low-dimensional embedding of vector data.

The computational algorithm will be given in Section 3.1.
Here we note that the algorithm updatesα,U,H one at a time;
and each of them is computed from a closed-form optimal
solution.

2.2 Angular Decomposition for Graph Data

In many applications, the input data are pairwise similarities
which are generally viewed as edge weights between nodes of
an undirected graph [Yan et al., 2007]. We wish to embed the
graph data. Most graph data are pairwise similarity matrices
Sij that describe similarity between objects i and j.

Consider the linear kernel (the Gram matrix) constructed
from the normalized vector data above. The similarity be-
tween i, j is

Sij = xT
i xj . (5)

Note that Sii = 1 for i = 1 · · ·n.
Additionally, many kernel functions such as RBF kernel

have unit diagonal elements: Kii = 1, i = 1 · · ·n.
For any positive semi-definite (p.s.d.) kernel matrix

K (rank(K)= r), it can be exactly embedded in full r-
dimensional space using the r eigenvectors. Based on spec-
tral expansion, the full space (r-dimensional space) embed-
ding of object i is

zi = [
√
λ1v1(i), · · · ,

√
λrvr(i)]

T , (6)

where vl(i) is the i-th element of eigenvector vl, l = 1 · · · r.
Define the dissimilarity between i, j as

dij = Kii +Kjj − 2Kij . (7)

We have
Theorem 2: For any p.s.d. kernel matrix K with Kii = 1,
their dissimilarity can be expressed exactly as

dij = ‖zi − zj‖
2. (8)

Furthermore, the embedding is unit-normalized: ‖zi‖ = 1.
Proof: A p.s.d. kernel has a spectral expansion

K =
r∑

l=1

λlvlv
T
l , λl ≥ 0. (9)

Thus dij = Kii +Kjj − 2Kij

= Kii +Kjj − 2Kij

=

r∑
l=1

λl[vl(i)
2 + vl(j)

2 − 2vl(i)vl(j)]

=

r∑
l=1

[zi(l)− zj(l)]
2 = ‖zi − zj‖

2

(10)

proving Eq.(8). From the definition of zi, we have

‖zi‖
2 =

r∑
l=1

λlvl(i)vl(i) = Kii = 1. QED

In real application, embedding to low-dimensional space
is useful because it reveal the inherent structure of the data.
Thus we embed the kernel matrix in a k-dimensional space
where k is in general close to the number of distinct clusters,
which is much smaller than r. Therefore, for any kernel ma-
trix K , we have

min
Z

J3 = ‖K − ZZT ‖2, s.t. (ZZT)ii = 1.

1506

because zi = (Zi1, · · · , Zik)
T , thus ‖zi‖

2 =
∑k

l=1 Z
2
il =

(ZZT)ii = 1 retains the unit-normalization property. Intu-
itively, our Angular Decomposition is very natural since both
K and ZZT have identical diagonal elements.

In this paper, we view graph data, the similarity matrix S,
as from a kernel with unit diagonal elements. By introducing
α to compensate the fact that the embedding space dimension
is k which is far less than rank(S), the final Angular Decom-
position is defined as,

min
α,H

J4 = ‖S − αHHT ‖2, s.t. (HHT)ii = 1. (11)

The computational algorithm is given in Section 3.2.

Figure 1 shows the synthetic data points which contain 6
clusters and corresponding Angular Decomposition Embed-
ding result. With Angular Decomposition, the data structures
and distributions are generally more apparent. We will show
in experiments that our methods also achieve better results.

2.3 Brute-force Angular Embedding (BAE)

We note that for embedding data on spherical surface can be
done in a brute-force (naive) way: simply normalize the em-
bedding vectors H . More specifically, this consists of two
steps. For vector data, we (1) compute the low-dimensional
represents V via SVD(X) = UΣV T , and (2) normalize each
column of ΣV T to unit length as the final embedding vector.
For graph data, we also (1) compute eigenvectors of simi-
larity matrix as S = V ΣV T and (2) normalize embedding

coordinates rows of V Σ1/2 to unit length.

The experiments in Section 4 will demonstrate that com-
pared to the brute-force approaches, our more vigorous ap-
proaches of Eq.(4) and (11) provide embedding coordinates
which (a) are better data representation/approximation (in the
same sense that PCA is a data representation/approximation
method too), (b) provide better machine learning results such
as clustering accuracy .

3 Algorithms and analysis

Here we provide algorithms and accompanying analysis for
the two Angular Decomposition methods presented above.

3.1 Angular Decomposition of vector data

We optimize the objective function of Eq.(4) via an iterative
updating algorithm that alternatively updatesα, H , andU one
at a time. We give the closed-form solution for each of them
explicitly. The algorithm starts with initialization of U,H .

Step (V0). Initialization.

Compute first k terms of SVD(X) = UΣV T . Set U0 =
U,H0 = V Σ.

We then update α,H,U one at a time in Steps (V1 - V3).
They are repeated until convergence.

Step (V1). Compute α while fixing U and H .

From Eq.(4), the optimal solution for α is given by

α∗ =
1

n
tr(UTXH). (12)

Proof we write the objective function of Eq.(4) as

J2 =tr(α2HUTUHT − 2αUTXH +XT)

=tr(α2HHT − 2αUTXH +XXT)

=α2n− tr(2αUTXH +XXT),

(13)

since UTU = I and (HHT)ii = 1.
For variable α, the optimization is unrestricted. We set

gradient to zero

∂J2
∂α

= −2tr(UTXH) + 2nα = 0,

and obtain the optimal solution in Eq.(12). QED.

Step V2: Compute H while fixing α and U .
We update H using the following:
Lemma 1. Given fixed α and U in Eq.(4), the optimization

for H in Eq.(4) has close form solution:

H∗
ij =

(UTX)ij√
(XTUUTX)ii

. (14)

Proof. This is an optimization with equality constraints.
We use Lagrangian multiplier method, where the λi is the
Lagrangian multiplier to the condition function (HTH)ii =
1. From Eq.(13), the Lagrangian function is

L(H) = α2n− tr(2αUTXH +XXT)

−2

n∑
i=1

λi[(HHT)ii − 1].

Setting the derivatives of the Lagrangian function to zero,

∂L(H)

∂Hij
= −2α(UTX)ij − 2λiHij = 0,

we obtain

Hij =
α(UTX)ij

λi
. (15)

Now, we need to find the values of the Lagrangian multipliers.
Multiply Hij and sum over j for above equation we have:

1 =
∑
j

H2
ij =

α2
∑

j(U
TX)2ij

λ2
i

=
α2[(UTX)T (UTX)]ii

λ2
i

.

This gives the values of Lagrangian multipliers:

λi = α
√
(XTUUTX)ii. (16)

Substituting this into Eq.(15), we obtain Eq.(14). QED

Step V3: Update U while fixing α, H .
We compute U using the following:
Lemma 2. Given fixed α and H in Eq.(4), the optimization

for U in Eq.(4) has close-form solution:

U = ABT , (17)

where A,B are obtained from the singular value decomposi-
tion of the p-by-k matrix XH :

SVD(XH) = AΣBT , (18)

1507

−5

0

5

−4
−2

0
2

4
6

−6

−4

−2

0

2

4

−1

−0.5

0

0.5

1
−1

−0.5
0

0.5
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1
−1

−0.5
0

0.5
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: The 3D synthetic data points and two views of the 3D Angular Decomposition embedding

where A ∈ �p×k contains the left singular vectors and
B ∈ �k×k contains the right singular vectors. Without loss
of generality, we assume p ≥ k.

Proof. From the last equation of Eq.(13), the minimization
of J2(U) becomes

max
U

tr(UTXH), s.t. UTU = I.

Substituting XH = AΣBT from Eq.(14), this becomes

max
U

J(U) = tr(BTUTAΣ), s.t. UTU = I. (19)

We now prove that U∗ = ABT is the optimal solution.
The proof is complete if we can prove that tr(Σ) is an up-

per bound of J(U): for any feasible solution U , we have

tr(BTUTAΣ) ≤ tr(Σ). (20)

With this, U∗ = ABT is a global optimal solution because
J(U∗) = tr(Σ) reaches the upper bound and therefore no
other solution has better objective function value.

To prove the upper bound Eq.(20), we prove that every el-
ement of matrix (BTUTA) is less than 1, i.e.,

|(BTUTA)sl| ≤ 1, (21)

because if this is the case, we have

tr(BTUTAΣ) =

k∑
l=1

(BTUTA)llσl ≤

k∑
l=1

σl = tr(Σ)

proving the upper bound Eq.(20).
To prove the inequality of Eq.(21), we note that there ex-

its the complement space A⊥ ∈ �p×(p−k) such that ma-

trix [A,A⊥] forms a complete basis: [A,A⊥]T [A,A⊥] =
[A,A⊥][A,A⊥]T = I . Thus we have

(BT
U

T [A,A
⊥])(BT

U
T [A,A

⊥])T = B
T
U

T
UB = B

T
B = I.

This implies for any s, 1 ≤ s ≤ k, we have

1 =

p∑
l=1

(BTUT [A,A⊥])2sl =

p∑
l=1

([BTUTA,BTUTA⊥])2sl

=
k∑

l=1

(BTUTA)2sl +

p∑
l=k+1

(BTUTA⊥)2sl

implying the inequality of Eq.(21) must be true. QED.

3.2 Angular Decomposition of graph data

We provide the algorithm for computing the Angular Decom-
position for an input graph data S (the similarity matrix) us-
ing Eq.(11). The embedding coordinates on the sphere are
computed via an iterative updating algorithm that alterna-
tively updates α,H, λ one at a time, where λ are Lagrangian
multipliers for enforcing the constraints when we update H
according to Eq.(11). Step (G0) is the initialization. Steps
(G1 - G3) update α,H, λ and are repeated until convergence.

Step (G0). Initialization.
Compute first k terms of eigen-decomposition S =

V ΣV T . Set H0 = V Σ
1

2 .
We update α,H, λ alternately one at a time where λ are

Lagrangian multipliers for enforcing the constraints when we
update H according to Eq.(11) until convergence.

Step (G1): Update α while fix H
We update parameter α using this formula:

α∗ =
tr(HTSH)

tr(HHTHHT)
. (22)

Proof. Setting the gradient of J4 of Eq.(11) to zero,

∂J4
∂α

= −2tr(SHHT) + 2αtr(HHTHHT) = 0,

we obtain optimal α∗ in Eq.(22). QED.

Step (G2): Update Lagrangian multipliers λ while fixing
α,H .

When updatingH according to Eq (11), we use Lagrangian
multipliers {λi} to enforce the constraints, (HHT)ii = 1.

We compute λi using the following rule:

λi = α2(HHTHHT)ii − α(SHHT)ii (23)

Proof: This is derived from the KKT condition for con-
strained optimization. The Lagrangian function of J4 is

L(H) = tr(α2HHTHHT − 2αHTSH + S2)

−2

n∑
i=1

λi[(HHT)ii − 1]

1508

Setting the derivatives to zero, we have

4α2(HHTH)ij − 4α(SH)ij − 4λiHij = 0.

Multiply Hij and sum over j, we obtain

α2(HHTHHT)ii − α(SHHT)ii = λi(HHT)ii.

Using the constraint (HHT)ii = 1, we obtain λi as Eq.(23).

Step (G3): Update H while fixing α and λ
We update H using gradient descent method,

Hij ← Hij − η ∂L(H)
∂Hij

, more specifically,

Hij = Hij − η[α2(HHTH)ij − α(SH)ij − λiHij], (24)

where parameter η adjusts the stepsize the solution goes along
the negative gradient direction while the Lagrangian multi-
plier term enforces the solution on unit sphere. We typi-

cally set η = 0.01
(∑

ij |Hij |
)
/
(∑

ij |
∂L(H)
∂Hij

|
)
. The con-

vergence is demonstrated in experiments (see Fig.2).

�� �� �� ��

��

��

��

��

��

��

��

	
��
��
������
��
���������

�
��
��

���
��

��

�
��
��
��

� �� �� ��

���

���

���

�

���

���

���

���

	
��
��
������
� ����
�����

!"#"

� �� �� ��

��

��

��

��

$�

	
��
��
������
��
���������

�
��
��

���
��

��

�
��
��
��

� �� �� �� �� ��

����

��

����

��

����

	
��
��
������
� ����
�����

%
������

� �� �� �� �� ��

��

��

��

��

��

��

	
��
��
������
��
���������

�
��
��

���
��

��

�
��
��
��

�� �� �� ��

��

����

����

����

����

��

����

	
��
��
������
� ����
�����

&�
��

� �� �� �� �� ��

�'��

��

����

��

����

��

����

��

	
��
��
������
��
���������

�
��
��

���
��

��

�
��
��
��

�� �� �� �� �� �� $�

����

��

����

�$

�$��

��

	
��
��
������
� ����
�����

(�)�

�� �� �� �� �� ��

����

�$

�$��

��

����

�'

	
��
��
������
��
���������

�
��
��

���
��

��

�
��
��
��

�� �� �� ��

�

���

���

���

���

���

	
��
��
������
� ����
�����

*+(,

� �� �� �� ��

�$

�$��

��

����

�'

�'��

��

����

	
��
��
������
��
���������

�
��
��

���
��

��

�
��
��
��

� �� �� �� �� �� ��

���

�

���

���

���

���

�

���

	
��
��
������
� ����
�����

,����

!-���
� ����
�����
!-���
��
��������

Figure 2: Algorithm convergence. The object functions de-
crease with iterations for both vector data and graph algo-
rithms on the six datasets.

4 Experiments

We apply Angular Decomposition on six real-world datasets,
including vector data and graph data.

4.1 Datasets Description

The method is tested on six datasets, involving three available
image datasets, one textual dataset, one genomic dataset and
one physical dataset.

AT&T Faces Dataset contains ten different images of each
40 distinct persons and the size of each image is 92×112 pix-
els, with 256 grey levels per pixel. In our experiment, each
face image was resized into 32×32 and reshaped into a vector
of 1024 dimension.

Binary Alphabet Dataset contains 26 handwritten alpha-
bets A∼Z. Each sample is a 20 × 16 binary image. We select
30 images for every alphabet and reshape each image into one
vector of 320 dimension.

MNIST Hand-written Digit Dataset is consisted of 8-bit
gray-scale images of digits from “0”to “9”, about 6000 exam-
ples of each class (digit). Each image is centered on a 28 ×28
grid. Here, we randomly choose 100 images from each digit,
and convert them to vectors of 784 dimension.

Twenty Newsgroups Dataset is a collection of approxi-
mately 20,000 message documents, partitioned evenly across
20 different newsgroups. Each message is described by bi-
nary data of 100 words. Here, one hundred messages from
each of the twenty newsgroups were chosen at random and
converted to a binary vector.

LUNG Dataset contains in total 203 samples in five
classes. Each sample has 12600 genes. We removed the
genes with standard deviations smaller than 50 expression
units, and then obtained a data set with 3312 genes.

Glass Identification Dataset describes main characteris-
tics of the glass dataset and its attributes. It is consisted of
214 observation containing examples of the chemical analy-
sis of 7 different types of glass. Every sample has 9 features.

The data from above datasets are vector data. To convert
them into graph data, the similarity matrix Sij , we choose

RBF kernel Sij = e−γ‖xi−xj‖
2

, where γ = 0.7/d2, d =∑
ij ‖xi − xj‖/n(n− 1).

4.2 Algorithm convergence

We first show the convergence of the proposed algorithms on
the six datasets. The results are shown in Figure 2. The algo-
rithms converge after around 50 iterations.

4.3 Data Reconstruction

We compare the data representation/reconstruction capabil-
ity of Angular Decomposition (hereinafter “AD”) with the
brute-force angular embedding (BAE, see §2). We compute
the residual of data representation in Eqs.(4)and (11) and the
corresponding residual for BAE for the two kinds of data.

For vector data, the residual for BAE is computed by
choosing β that minimizes the object function,

J5 = ‖X − βUQT ‖2, (25)

where Q is obtained from the normalized embedding coordi-
nate directly as described in §2.3. For graph data, the residual
for BAE objective function is computed by optimizing β that
minimizes

J6 = ‖S − βQQT ‖2. (26)

BAE for
vector data

AD for
vector data

BAE for
graph data

AD for
graph data

AT&T 3.949 2.302 17.396 16.612

BinAlp 16.579 14.183 24.060 23.026

Mnist 10.328 9.583 24.590 22.869
News 18.664 15.110 34.023 29.012

Lung 1.887 0.956 18.600 16.429

Glass 4.206 2.798 14.210 12.643

Table 1: Comparison of Object functions between BAE and
proposed Angular Decomposition (AD) on six Datasets.

1509

The obtained residual results are shown in Table 1 for six
datasets. These results show that AD has consistently lower
residual than BAE in all cases. This indicates our vigorous
approach is more effective in preserving the structure of data.

4.4 Clustering

We evaluate the unsupervised learning on Angular Decompo-
sition. We use Angular Decomposition to embed vector data
and graph data on the unit sphere, and then perform the K-
means clustering on these embedding coordinates. For com-
parison purposes, we also show clustering results on the orig-
inal high-dimensional data X and the PCA projection data.
Additionally, we use BAE do subspace embedding for vector
data and graph data (with the same parameters as our Angular
Decomposition) and run clustering on the embedded data. To
get robust statistics, we run K-means 50 times using different
random starts and computed the average as the final results.

������

������

������

������

������

������

������

	
�
 �
��� ��
	�� ���� ��
� �����

�����
�������
 !	��"#����
�
�	$�%&��'�(�&������
�	$�%&������)�����
	*�%&��'�(�&������
	*�%&������)�����

Figure 3: Clustering accuracies for six datasets. Six different
methods are compared.

Clustering accuracy measures the percentage of data points
correctly clustered. It is obtained by first computing the con-
fusion matrix. The Hungarian algorithm is then used to per-
mutate columns of confusion matrix to maximize the sum of
the diagonal elements, which is the clustering accuracy.

Results of clustering on the six datasets are shown in Figure
2. Six different methods are compared and shown in Fig.2.
From the experimental results, we observed the following:

(F1) Embedding into low-dimensional subspace improves
the performance. On all six datasets, for both vector data and
graph data, using either BAE or AD, the K-means clustering
results are better than in original high-dimensional data. That
PCA embedding improves K-means clustering is analyzed in
[Ding and He, 2004]; the improvements for graph embedding
can be viewed as kernel PCA improves kernel K-means clus-
tering [Ding and He, 2004].

(F2) Graph data produces better results than the vector data
for the same dataset. This is consistent on all six datasets. It
is likely due to the flexibility of graph representation, as com-
pared to K-means clustering in vector space with a objective
function that favors ball-shaped clusters.

(F3) AD perform consistently better than BAE.

5 Conclusions

Angular Decomposition embeds high-dimensional data into
a low-dimensional spherical space. This takes advantage
of the special nature of the normalized data and integrating
the cosine similarity and the Euclidean distance at the same

time, and yields a more discriminative subspace for high-
dimensional data. Two efficient algorithms are developed to
solve the proposed Angular Decomposition problems for vec-
tor data and graph data respectively. Extensive experiments
on six real datasets show that angular embedding is more
effective to exhibit class structures than other related meth-
ods. The experiments almost show that (1) clustering in low-
dimensional embedding space consistently outperform those
in original high dimensional data and (2) Using graph data
gives better results than using vector data.

Acknowledgment

The research of D.Sun, J.Tang, B.Luo are supported by
the NSFC 61073116, 61003038,61003131. C.Ding is sup-
ported by NSF-CCF-0830780, NSF-DMS-0915228, NSF-
CCF-0917274.

References
[Belkin and Niyogi, 2003] M. Belkin and P. Niyogi. Lapla-

cian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation, 15(6):1373–1396, 2003.

[Ding and He, 2004] C. Ding and X. He. K-means clustering
via principal component analysis. In Int’l Conf. Machine
Learning (ICML), 2004.

[Duda et al., 2001] R.O. Duda, P.E. Hart, and D.G. Stork.
Pattern Classification (2nd ed). Wiley Interscience, New
York, 2001.

[Genton et al., 2001] M.G. Genton, N. Cristianini, J.S. Tay-
lor, and R. Williamson. Classes of kernels for machine
learning: a statistics perspective. Journal of Machine
Learning Research, 2:299–312, 2001.

[Hall, 1971] K. M. Hall. R-dimensional quadratic placement
algorithm. Management Science, 17:219–229, 1971.

[He and Niyogi, 2003] X. He and P. Niyogi. Locality pre-
serving projections. In NIPS 2003, 2003.

[Luo et al., 2009] D. Luo, C. Ding, H. Huang, and T. Li.
Non-negative laplacian embedding. In ICDM, pages 337–
346, 2009.

[Roweis and Saul, 2000] S.T. Roweis and L.K. Saul. Nonlin-
ear dimensionality reduction by locally linear embedding.
Science, 290(22):2323–2326, 2000.

[Tenenbaum et al., 2000] J.B. Tenenbaum, V.de. Silva, and
J.C. Langford. A global geometric framework for nonlin-
ear dimensionality. Science, 290(22):2319–2323, 2000.

[Wang et al., 2010] H. Wang, C. Ding, and H. Huang. Multi-
label linear discriminant analysis. In ECCV, pages 126–
139, 2010.

[Yan et al., 2007] S. Yan, D. Xu, B. Zhang, H. Zhang,
Q. Yang, and S. Lin. Graph embedding and extensions:
a general framework for dimensionality reduction. IEEE
Trans. Pattern Anal. Mach. Intellig, 29(1):40–51, 2007.

[Zhang and Zha, 2004] Z. Zhang and Z. Zha. Principal man-
ifolds and nonlinear dimensionality reduction via tangent
space alignment. SIAM J. Scientific Computing, 26:313–
338, 2004.

1510

