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Abstract

Data sets containing multi-manifold structures are
ubiquitous in real-world tasks, and effective group-
ing of such data is an important yet challenging
problem. Though there were many studies on this
problem, it is not clear on how to design principled
methods for the grouping of multiple hybrid man-
ifolds. In this paper, we show that spectral meth-
ods are potentially helpful for hybrid manifold clus-
tering when the neighborhood graph is constructed
to connect the neighboring samples from the same
manifold. However, traditional algorithms which
identify neighbors according to Euclidean distance
will easily connect samples belonging to different
manifolds. To handle this drawback, we propose a
new criterion, i.e., local and structural consistency
criterion, which considers the neighboring informa-
tion as well as the structural information implied by
the samples. Based on this criterion, we develop
a simple yet effective algorithm, named Local and
Structural Consistency (LSC), for clustering with
multiple hybrid manifolds. Experiments show that
LSC achieves promising performance.

1 Introduction

Data sets containing low-dimensional multi-manifold struc-
tures are ubiquitous in real-world tasks, and effective group-
ing of such data is an important yet challenging problem,
which is referred as manifold clustering [Souvenir and Pless,
2005; Wang et al., 2010]. Many important problems of practi-
cal interest can be properly formalized under this framework.
For instance, motion segmentation problem in computer vi-
sion, the point correspondences in a dynamic scene generally
contain several moving objects each can be represented as a
manifold; In classification of face images, the faces of the
same person lie on the same manifold while different persons
are associated with different manifolds.

Traditional clustering algorithms (e.g., K-means) have dif-
ficulty in effectively grouping multi-manifold data, which has
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attracted numerous researchers to study on manifold cluster-
ing during the last decade. Whereafter, several algorithms
have been proposed, which can be roughly classified into two
categories, i.e., linear and nonlinear. However, all linear al-
gorithms fail to deliver good performance in the presence of
nonlinear structures due to their linear nature. Thus, more at-
tention should be paid to nonlinear manifold clustering, since
a large number of recent research efforts have shown that the
distributions of many natural data are inherently nonlinear
[Saul and Roweis, 2004]. Existing nonlinear algorithms fo-
cus on dealing with well-separated manifolds or intersecting
manifolds. However, a more accurate and general description
of the real-life data is that samples are supported on a mixture
of hybrid manifolds. That is, the manifolds on which the data
points lie are (a) linear and/or nonlinear and (b) intersecting
and/or not intersecting, which is referred as hybrid nonlinear
manifold clustering [Wang et al., 2010]. Existing algorithms
either could not effectively deal with such situation, or are
quite heuristic. Therefore, an open and challenging problem
in manifold clustering is how to design more principled meth-
ods for the grouping of multiple hybrid manifolds.

Inspired by the practical successes and rapidly developing
theoretical underpinnings of spectral clustering algorithms, in
this paper, we try to design a new spectral-based algorithm to
the task of detecting multiple low-dimensional manifolds em-
bedded in high-dimensional point clouds. Firstly, we study
the potential of spectral methods for hybrid nonlinear man-
ifold clustering and our analysis reveals that they have the
potential only when the neighborhood graph is constructed
to connect the neighboring samples from the same manifold.
However, traditional spectral clustering algorithms [Shi and
Malik, 2000; Ng et al., 2001], which identify neighbors ac-
cording to Euclidean distance, are not suitable since samples
belonging to different manifolds may be close to each other,
especially near the intersection of different manifolds. To
handle this drawback, our basic idea is to take advantage of
additional structural information to identify the neighbors of
each point from the same manifold rather than the entire Eu-
clidean space. In doing that, we propose local and structural
consistency criterion, which considers the neighboring infor-
mation as well as the structural information implied by the
samples. Based on this new criterion, we develop a simple yet
effective spectral-based algorithm, named Local and Struc-
tural Consistency (LSC), for the task of detection of multiple
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hybrid manifolds. Experimental results on both synthetic and
real-world data show its superior performance over existing
manifold clustering algorithms.

The novelty of this work lies in: 1) the proposal of combin-
ing local consistency with structural consistency to address
the fundamental problem of neighborhood selection for man-
ifold clustering; 2) the method for constructing the local tan-
gent space when there are intersecting clusters. To the best
of our knowledge, we propose the first solutions to these two
challenging problems.

The rest of this paper is organized as follows. Section 2
gives a brief review of the related works. Section 3 studies the
potential of spectral methods for hybrid nonlinear manifold
clustering and presents the LSC algorithm. Section 4 reports
experiments on both synthetic and real-world data. Finally,
we conclude in Section 5.

2 Related Work

Unlike classical clustering algorithms which are based on the
concept that a cluster is centered around a single point, mani-
fold clustering algorithms regard a cluster as a group of points
compact around a low-dimensional manifold [Souvenir and
Pless, 2005; Wang et al., 2010].

When only a mixture of linear or affine subspaces are used
to represent the clusters, the corresponding problem, i.e., lin-
ear manifold clustering, is much easier to address since there
are elegant representations for linear manifolds. Several lin-
ear manifold clustering algorithms have been proposed in the
past decade and successfully applied to many real-life situ-
ations. Generalized Principal Component Analysis (GPCA)
[Vidal et al., 2005] and K-planes [Tseng, 2000] learn a series
of offset vectors and basis vectors from the data to represent
the linear manifolds and then assign each point to the near-
est linear manifold. Local Subspace Affinity (LSA) [Yan and
Pollefeys, 2006] constructs an affinity matrix for any pair of
points based on principal subspace angles of the local esti-
mated tangent spaces to group the data. Spectral Curvature
Clustering (SCC) [Chen and Lerman, 2009] addresses lin-
ear manifold clustering by building a polar curvature affinity
matrix among certain fixed-size subset of the points to mea-
sure their possibilities of coming from the same manifold, and
then uses multi-way spectral methods to group the samples.

Unlike its simple linear counterpart, nonlinear manifold
clustering is more complex and difficult. The research on
this topic is divided into three branches: intersecting, sepa-
rated and hybrid. K-manifolds [Souvenir and Pless, 2005]

which begins by estimating geodesic distances between pair-
wise points and then employs a EM-like algorithm to cluster
samples in terms of geodesic distances, is primarily motivated
for dealing with unorganized data nearly lying on multiple
intersecting low-dimensional manifolds. When the observa-
tions are lying on or close to multiple well-separated mani-
folds, traditional spectral clustering algorithms [Shi and Ma-
lik, 2000; Ng et al., 2001] can be directly used to group the
data and several studies have shown their promising results.
MumCluster [Wang et al., 2010] is proposed to effectively
deal with the general hybrid nonlinear manifold clustering
problem where some data manifolds are separated but some

are intersected. However, it is quite heuristic and heavily re-
lies on the correct local dimension estimation. Up to now, it is
not clear on how to design principled methods for the group-
ing of multiple hybrid manifolds, which is the main focus of
this paper.

3 The Proposed Approach

The main focus of this section is to study the potential of
spectral methods for hybrid nonlinear manifold clustering and
then to design a new spectral-based algorithm to the task of
detecting multiple low-dimensional manifolds.

3.1 Preliminaries

Suppose that we are given a set of unorganized data points
X = {xi ∈ �D, i = 1, · · · , N}, which are sam-
pled from K > 1 distinct smooth manifolds {Ωj ⊆
�D, j = 1, 2, · · · , K} where each manifold has Nj points

(
∑K

j=1
Nj = N ). Moreover, some data manifolds are sepa-

rated but some are intersected [Wang et al., 2010]. The ob-
jective of manifold clustering is to assign each sample to the
manifold it belongs to. For simplicity, we restrict the discus-
sion to the case where all the underlying manifolds have the
same dimension d (0 < d < D), which, together with their
number K , is known.

To reveal the potential of spectral methods for hybrid non-
linear manifold clustering, we first review below the main
steps of Symmetrical Normalized Spectral Clustering with L-
nearest neighbor graph and Simple weight (SNSC-LS) [Ng et
al., 2001], which is the basis of our proposed approach:
Step 1. Constructing neighborhood graph G Put an edge
between xi and xj if xi is among the L-nearest neighbors of
xj according to Euclidean distance, and vice versa.
Step 2. Determining affinity matrix W If xi and xj are
connected by G, then wij = 1; otherwise, wij = 0.
Step 3. Spectral decomposition Extract U = [u1, · · · , uK ],
the top K eigenvectors of D−1/2WD−1/2, where the degree
matrix D = diag{W ∗1}. Then, re-normalize each row of U
to have unit length, obtaining matrix V .
Step 4. Clustering by K-means Apply K-means to the rows
of V (i.e., embedded data) to find K clusters. Finally, original
data points are grouped into K clusters.

3.2 Potential

Recall that the performance of clustering depends on the
adopted algorithm as well as the data. When the clustering
algorithm is fixed, the performance mainly relies on the data.
Unlike traditional clustering where clustering algorithm (e.g.,
K-means) is directly performed on the data, the grouping pro-
cedure of spectral clustering is performed on the embedded
data. While the embedded data are obtained by performing
spectral analysis on the affinity matrix of the neighborhood
graph which in turn is determined by the L-nearest neigh-
bors of each point. This fact reveals that the performance
of spectral clustering is essentially relied on how to identify
neighbors. In fact, we have the following Proposition.
Proposition 1 If the L-nearest neighbors of each point are
from the same manifold and L is large enough to ensure that
the points from the same manifold are connected, then spec-
tral clustering gives the perfect underlying manifolds.
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Proof. Without loss of generality, we assume that a permu-
tation of indices of the data have been done such that all the
points in the k-th manifold appear before the (k+1)-th man-
ifold, k = 1, · · · , K − 1. Since the neighbors of each point
are from the same manifold, pair-wise points xi and xj be-
longing to different manifolds could not be L-nearest neigh-
bors of each other, hence their affinity value wij = 0. Then,
the affinity matrix W is block-diagonal with K blocks, each
block corresponding to one of the manifolds. It is easy to

show that D−1/2WD−1/2 is also block-diagonal which has
the largest eigenvalue 1 of multiplicity K under the restric-
tion that each manifold is connected. Moreover, the top K
eigenvectors associated with eigenvalue 1 can be described
as:

U = D1/2

⎛
⎜⎜⎝

1N1
0 · · · 0

0 1N2
· · · 0

...
...

. . .
...

0 0 · · · 1NK

⎞
⎟⎟⎠RT ∈ �N×K , (1)

where 1Nk
denotes the Nk-dimensional vector of ones and

R = (r1, r2, · · · , rK) ∈ �K×K is an orthonormal matrix. As
a direct consequence of the row normalization of U , for all
k = 1, · · · , K and l = 1, · · · , Nk, V ’s rows satisfy

V k
l = rk. (2)

In other words, the K clusters are mapped to K mutually
orthonormal points in �K . Then, the followed K-means will
give grouping result corresponds exactly to the “true” cluster-
ing of the original manifolds. #

For the general case where not all the L-neighbors are from
the same manifold, we have the following Theorem:

Theorem 1 [Arias-Castro, 2009] For k = 1, · · · , K , let
Ik denotes the index set of the k-th cluster and Wk denotes
the submatrix of W corresponding to Ik. Define D̂k

i =∑
j∈Ik

wij and D̃k
i =

∑
j /∈Ik

wij as within-cluster connec-

tion and between-cluster connection of i ∈ Ik, respectively.
Then, under the following conditions, there are K orthonor-
mal vectors r1, r2, · · · , rK such that V ’s rows satisfy∑K

k=1

∑
i∈Ik

∥∥V k
i − rk

∥∥2
2
≤ 8CNδ−2[K2ε1+Kε22]. (3)

(A1) There exists δ > 0 such that, for all k = 1, · · · , K , the
second largest eigenvalue of Wk is bounded above by 1− δ.

(A2) There is some fixed ε1 > 0, so that for all k, l ∈
{1, · · · , K} with k �= l,

∑
i∈Ik

∑
j∈Il

w2
ij/D̂

k
i D̂

l
j ≤ ε1.

(A3) For some fixed ε2 > 0, for all k = 1, · · · , K and i ∈ Ik,

D̃k
i /D̂

k
i ≤ ε2

(∑
s,t∈Ik

w2
st/D̂

k
s D̂

k
t

)−1/2

.

(A4) There is some constant C > 0, so that for all k =
1, · · · , K and i, j ∈ Ik, D̂k

i � CD̂k
j .

From the viewpoint of neighbors, Theorem 1 suggests that
when each point has more neighbors (or a higher connection)
with its own group than with the others, then the embedded
data (i.e., the rows of V ) will form tight clusters around K
well-separated points. Obviously, the followedK-means per-
formed on the embedded data will easily give grouping result
corresponds to the “true” clustering of the original manifolds.

Proposition 1 and Theorem 1 reveal the potential of spec-
tral methods for hybrid nonlinear manifold clustering, i.e.,

we should try our best to identify the neighboring samples of
each point from the same manifold. Moreover, they also make
clear the invalidation of traditional spectral clustering algo-
rithms to multiple intersecting or even hybrid manifolds. Tra-
ditional algorithms identify neighbors according to Euclidean
distance, thus samples belonging to different manifolds will
easily be connected by the neighborhood graph (especially
those near the intersection of different manifolds), thus dif-
fusing information across the wrong manifolds.

Therefore, in order to extend spectral-based algorithms to
the task of detection of multiple hybrid manifolds, new and
effective criteria to identify neighbors are specially desired.

3.3 Local and Structural Consistency

Our analysis in the previous subsection reveals that the key
to extend spectral-based algorithms to the task of detection
of multiple hybrid manifolds is trying to identify the neigh-
bors of each point from the same manifold rather than the
entire Euclidean space. To this end, our basic idea is to take
advantage of the nature of manifolds to incorporate some ge-
ometric information encoded in the sampled data to identify
the neighbors and then to find the correct clusters.

The type of geometric information incorporated in our pro-
posed approach is local tangent space, based on the follow-
ing observations: (a). Though the samples are from globally
highly nonlinear distribution, locally, each data point and its
neighbors are lying on a linear patch of the manifold [Saul
and Roweis, 2004]. (b). Local tangent space at each point
provides a reasonable approximation to the local geometric
structure of the nonlinear manifold [Zhang and Zha, 2005].
(c). Near the intersection of different manifolds, the points
from the same manifold have similar local tangent spaces
(i.e., they are structural consistency) while the points belong-
ing to different manifolds have dissimilar tangent spaces.

However, it should be noted that only structural consis-
tency (i.e., neighbors have similar local tangent spaces) is not
enough to be used to determine neighbors. One counterexam-
ple is that the points on the right-and-left corners of S-curve
in Figure 2 (a) have similar local tangent spaces to the points
on the vertical affine plane yet they are from different man-
ifolds. This fact suggests that neighbors should not only be
structural consistency, but also should be local consistency,
that is they should be close to each other.

In doing that, we have a simple criterion (named as local
and structural consistency criterion) to identify neighbors,
which selects L neighbors of each point using the following
measure of distance:

Dis(xi, xj) = ‖xi − xj‖
2

2
+ λ ∗ ‖Θi −Θj‖

2

F , (4)

where Dis(xi, xj) is our measure of distance, ‖xi − xj‖2 is
the Euclidean distance between xi and xj , and ‖Θi −Θj‖F
is the projection F-norm distance between the local tangent
spaces of xi and xj (denoted as Θi and Θj , respectively). In
(4), λ is a parameter which balances the contribution of local
consistency and structural consistency.

After the L-nearest neighbors have been identified by our
new measure of distance, the following procedures to group
clusters are the same as traditional spectral clustering algo-
rithms, thus our method to the task of detection of multi-
ple hybrid manifolds is named as Local and Structural Con-
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sistency (abbreviated as LSC). The pseudo-code of LSC is
shown in Figure 1.

3.4 Implementation

From (4) and Figure 1, we can see that the key to implement
local and structural consistency criterion and the LSC algo-
rithm are boiled down to effectively approximate the local
tangent space at each sample, which will be discussed below.

Our basic idea to approximate the local tangent spaces is
based on the following facts: (a). Globally nonlinear man-
ifolds can locally be well-approximated by a series of local
linear manifolds [Saul and Roweis, 2004]. (b). Probabilistic
principal component analyzers [Tipping and Bishop, 1999]

can successfully pass across the intersecting linear manifolds.
(c). The points approximated by the same probabilistic an-
alyzer usually have similar local tangent spaces which can
be well-approximated by the principal subspace of the corre-
sponding analyzer. Thus, we can train a set of probabilistic
analyzers to approximate the nonlinear manifolds, and then
determine the local tangent space of a given sample as the
principal subspace of its corresponding analyzer.

Specifically, we train M mixtures of probabilistic princi-
pal component analyzers [Tipping and Bishop, 1999], each
of which is characterized by the model parameters θm =
{μm, Vm, σ2

m}, m = 1, · · · ,M , where μm ∈ �D is the mean
vector, Vm ∈ �D×d and σ2

m is a scalar. Under the m-th an-
alyzer, observed data x is related to a corresponding latent
variable y ∼ N (0, I) and noise εm ∼ N (0, σ2

mI) as:

x = Vmy + μm + εm. (5)

Then, the marginal distribution of x is given in the form

p(x |m ) =

(2π)−D/2|Cm|−1/2
exp

{
− 1

2
(x− μm)

T
C−1

m (x− μm)
}
,

(6)
where Cm = σ2

mI + VmV T
m . Moreover, the log-likelihood of

observing the data set X for M analyzers is:

L =
∑N

i=1
ln

{∑M

m=1
πmp(xi |m )

}
, (7)

where πm ≥ 0 is the mixing proportion with
∑M

m=1
πm = 1.

We can learn all the model parameters μm, Vm, and σ2
m

by developing an iterative EM algorithm (initialized with K-
means) to maximize (7). Due to page limitation, the principal
steps of this EM learning procedure are omitted, more details
can be found in [Tipping and Bishop, 1999].

Then, we group sample xi into the j-th probabilistic ana-
lyzer, which maximizes the posterior responsibility of xi:

p(j |xi ) = max
m

p(m |xi ), (8)

where the posterior responsibility p(m |xi ) is given by

p(m |xi ) = p(xi |m)πm

/∑M
m=1

p(xi |m )πm
. (9)

Finally, the local tangent space of xi is approximated by

Θi = span(Vj). (10)

The reconstruction error of using M probabilistic analyzers

Algorithm Local and Structural Consistency (LSC)

Input: Data set X, number of clusters K, dimension of the

manifolds d, number of mixture models M , number

of neighbors L, balance parameter λ.

Steps: 1: Compute the local tangent space of each point.

2: Identify L-nearest neighbors of each point according

to (4).

3-5: Same as steps 2-4 of the SNSC-LS algorithm.

Output: A partition of the data into K clusters.

Figure 1: Pseudo-code of the LSC algorithm

to approximate the underlying manifolds is:

error(M) =
∑M

j=1

∑mj

l=1
(xj

l − μj)
T

(I−VjVj
T)(xj

l−μj),

(11)

where xj
l , l = 1, · · · ,mj are the mj (

∑M
j=1

mj = N ) points

which are grouped into the j-th probabilistic analyzer.

3.5 Complexity Analysis

Since the computational complexity of a clustering algorithm
is much important to its applicability, let us briefly analyze
the time complexity of the LSC algorithm.

The computational complexity of estimating the local tan-
gent space of each point is O(NDM(t1 + dt2)), where t1
and t2 are the number of iterations before K-means and
EM to convergence, respectively. Moreover, the complex-
ity of computing the projection F-norm distances between
any two local tangent spaces are O(M2Dd2). Steps 2-5 of
LSC have the same time complexity as SNSC-LS, which is
O(N3 + N2D + NK2t3) where t3 is the number of itera-
tions before K-means to convergence in step 5. Therefore,
the total time complexity of the LSC algorithm is

O(N3+N2D+N(DM(t1+dt2)+K2t3)+M2Dd2). (12)

4 Experimental Results

In this section, we investigate the performance of LSC us-
ing a series of synthetic and real-world data sets. We also
compare it with several state-of-the-art algorithms. All of our
experiments are performed on a PC machine configured with
Intel Dual Core based system with 4∗2.6 GHz CPU and 8GB
RAM memory under Matlab platform.

4.1 Visual Comparison

We first visually compare LSC with SNSC-LS to the task
of detection of multiple hybrid manifolds. The data points,
as shown in Figure 2 (a), are sampled from three syntheti-
cally generated hybrid nonlinear manifolds: one S-curve, one
two-dimensional affine plane, and one Swiss-roll in �3. The
numbers of points are 1000, 500 and 1000, respectively. The
connections among different points, as well as the grouping
results of our LSC and SNSC-LS are shown in the last four
sub-figures of Figure 2. Note that, to help the visualization of
the connections, we have ordered the points so that all points
belonging to the first manifold appear firstly and the points in
the second manifold secondly.

As can be seen from Figure 2 (d) and (e), the performance
of the proposed LSC which uses the new measure of distance
(4) to select neighbors is surprisingly good: LSC identifies
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Figure 2: Grouping results of different methods on multiple hybrid manifolds: (a) Data points sampled from multiple hy-
brid manifolds where some manifolds are separated but some are intersected. (b) Connection relationships of SNSC-LS. (c)
Grouping result of SNSC-LS. (d) Connection relationships of LSC. (e) Grouping result of LSC.

neighbors of each point generally from the same manifold
and reliably finds clusters consistent with different manifolds.
While SNSC-LS which selects neighbors according to Eu-
clidean distance has many neighbors from different manifolds
(Figure 2 (b)) and thus confuses points from the two intersect-
ing manifolds though it can correctly partition the separated
Swiss-roll (Figure 2 (c)).

These visual experiments validate our study of the potential
of spectral methods for hybrid nonlinear manifold clustering
and the effectiveness of the proposed LSC algorithm.

4.2 Parameter Influence

There are three adjustable parameters in LSC, i.e., M , L, and
λ. In this subsection, we examine their influence to the per-
formance of LSC and then try to give some default values to
their setting. The results performed on the hybrid nonlinear
manifolds of Figure 2 (a) over 10 independent trials are plot-

ted in Figure 3. Note that, we set λ = λ̂ ∗mLnn(X), where
mLnn(X) is the mean squared Euclidean distance of all sam-

ples’s L-th nearest neighbors in X and λ̂ is a scalar. This
setting is based on two concerns: 1) to balance the magni-
tude between Euclidean distance and projection F-norm dis-
tance; 2) the most importantly, as revealed by our analysis,
the key to the success of manifold clustering is to identify
the neighbors of each point from the same manifold/cluster,
and thus the added projection F-norm distance should ensure
that the smallest “distance” between two inter-cluster points
is larger than the “distance” between any point and its L-th
intra-cluster nearest neighbors, which motivates us to bring
mLnn(X) into the setting of λ.

As can be seen from Figure 3, LSC achieves significantly
better results than traditional spectral clustering over a large
range of parameter setting. In detail, we have the following
observations: (a). LSC works well when the number of mix-
ture models M is large enough (see Figure 3 (a)), which can
be explained from Figure 3 (d): as the number of mixture
models increasing, the average approximation error decreas-
ing which means that the approximation to the local linear
patches of the manifolds and the local tangent space of each
sample become more faithful. Therefore, better clustering ac-
curacy is given since LSC relies on the correct estimation of
these tangent spaces. (b). The performance of LSC is robust
for a range of values of L, as long as it is neither too small nor
too large. This phenomenon is consistent with many exist-
ing observations [Saul and Roweis, 2004] since there may be
many disconnected sub-clusters when L is too small, while
local consistency will lose when it is too large. (c). LSC

works well when λ̂ is relatively large but not too large. The

reason is that the larger λ̂, the more structural consistency is

100 200 300

40

60

80

100

Number of mixture models (M)

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
%

)

Best accuracy of SNSC−LS
Average accuracy of LSC
Best accuracy of LSC

(a) Different mixture models M

10 20 30 40 50

40

60

80

100

Number of nearest neighbors (L)

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
%

)

Best accuracy of SNSC−LS
Average accuracy of LSC
Best accuracy of LSC

(b) Different neighbors L

0 1 2 3 4

40

60

80

100

Balance parameter

C
lu

st
er

in
g 

ac
cu

ra
cy

 (
%

)

Best accuracy of SNSC−LS
Average accuracy of LSC
Best accuracy of LSC

(c) Different λ̂ values

100 200 300
0

100

200

300

400

500

600

Number of mixture models (M)

A
pp

ro
xi

m
at

io
n 

er
ro

r

Average approximation error

150 200 250 300

2

4

(d) Reconstruction error

Figure 3: Influence of parameters for LSC.

incorporated. However, local consistency becomes relatively

small as λ̂ is too large. This fact confirms the validity of bal-
ancing between local consistency and structural consistency.

Finally, we can give some recommended values to the
setup of these parameters which will be generally used to
give the reported results. As a general recommendation we
suggest to work with M = �N/(7d), L = 2 �log(N)

and λ̂ = 1.2. We can work with a relative small M , e.g.,
M = 3K , when all the manifolds are linear.

4.3 Comparison on Benchmark Data Sets

In this subsection, we compare LSC algorithm with a consid-
erable amount of state-of-the-art algorithms in manifold clus-
tering: GPCA [Vidal et al., 2005], K-planes [Tseng, 2000],
LSA [Yan and Pollefeys, 2006], SCC [Chen and Lerman,
2009], K-manifolds [Souvenir and Pless, 2005], SNSC-LS
[Ng et al., 2001] and mumCluster [Wang et al., 2010]. We
compare all these algorithms on four benchmark data sets
with a wide variety of structures which cover all aspects of
manifold clustering: three linear planes [Vidal et al., 2005]

in �3, two well-separated circles [Ng et al., 2001] and two
intersecting spirals [Souvenir and Pless, 2005] in �2, and the
hybrid data as shown in Figure 2 (a).

The average clustering accuracy with the corresponding
standard deviation and the average computation time over 10
independent runs are tabulated in Table 1. The best average
accuracy are boldfaced. The results reveal several interest-
ing observations: (a). Different from many state-of-the-art
algorithms which are designed for a specific manifold clus-
tering problem, such as linear algorithms (i.e., GPCA, K-
planes, LSA and SCC) for linear manifold clustering and K-
manifolds for intersecting manifolds, both mumCluster and
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Table 1: Comparison of the clustering accuracy (mean±std.) and the average computation time (in seconds) of different
algorithms on four synthetic data sets with their characteristics (N , D, d) in the parentheses.

Data set
Three-planes (1200, 3, 2) Two-circles (600, 2, 1) Two-spirals (1000, 2, 1) Hybrid data (2500, 3, 2)

accuracy time accuracy time accuracy time accuracy time

GPCA 0.983±0.000 0.01 0.502±0.000 0.01 0.543±0.000 0.01 0.458±0.000 0.02

K-planes 0.944±0.124 0.01 0.502±0.002 0.01 0.538±0.001 0.01 0.351±0.008 0.05

LSA 0.976±0.000 56.03 0.502±0.000 11.60 0.519±0.000 35.03 0.569±0.000 304.74

SCC 0.984±0.001 1.41 0.502±0.001 0.42 0.516±0.014 0.60 0.570±0.085 3.49

K-manifolds 0.793±0.164 511.04 0.529±0.028 49.55 0.701±0.226 90.84 0.417±0.017 3670.26

SNSC-LS 0.405±0.001 1.37 1.000±0.000 0.23 0.708±0.003 1.29 0.702±0.000 8.57

mumCluster 0.984±0.000 6.13 1.000±0.000 1.31 0.859±0.004 4.74 0.984±0.000 34.09

LSC 0.985±0.002 3.51 1.000±0.000 2.24 0.996±0.003 6.09 0.987±0.040 28.96

the proposed LSC give promising performance to all cases of
manifold clustering. (b). The proposed LSC performs better
than SNSC-LS when there are intersecting manifolds in the
data and it always achieves the best results. (c). Generally, as
we have expected, the running time of LSC is comparable to
many of other algorithms.

4.4 Experiments on Real Data

In this subsection, we compare the performance of LSC with
the state-of-the-art algorithms on a well-known yet challeng-
ing object recognition database, i.e., the processed COIL-20
database [Nene et al., 1996]. As illustrated in Figure 4, the
objects have a wide variety of complex geometric, appearance
and reflectance characteristics. Several studies have shown
that this task can be viewed as a manifold clustering problem
[van der Maaten and Hinton, 2008].

Figure 4: Twenty images from the COIL-20 database.

The whole database (N = 1440) and three objects subject
to the same topic (N = 216), i.e., three different cars, are
used in our experiments. The original resolution of these im-
ages is 32 × 32. Here, for computational efficiency, all the
algorithms are executed in 10-dimensional principal compo-
nents space, except that GPCA is executed in 5-dimensional
space since it requires a low-dimensional space to work prop-
erly [Vidal et al., 2005]. The results for all the algorithms are
shown in Table 2, which show that LSC is superior to other
algorithms, especially on the coil-three-cars data set.

5 Conclusion

In this paper, we study the potential of spectral methods for
hybrid nonlinear manifold clustering. Then, we propose LSC
algorithm to the task of detection of multiple hybrid mani-
folds. Experimental results validate its effectiveness.
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