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Abstract

Learning to rank has received great attention in re-
cent years as it plays a crucial role in informa-
tion retrieval. The existing concept of learning to
rank assumes that each training sample is associ-
ated with an instance and a reliable label. How-
ever, in practice, this assumption does not neces-
sarily hold true. This study focuses on the learn-
ing to rank when each training instance is labeled
by multiple annotators that may be unreliable. In
such a scenario, no accurate labels can be obtained.
This study proposes two learning approaches. One
is to simply estimate the ground truth first and then
to learn a ranking model with it. The second ap-
proach is a maximum likelihood learning approach
which estimates the ground truth and learns the
ranking model iteratively. The two approaches have
been tested on both synthetic and real-world data.
The results reveal that the maximum likelihood ap-
proach outperforms the first approach significantly
and is comparable of achieving results with the
learning model considering reliable labels. Further
more, both the approaches have been applied for
ranking the Web visual clutter.

1 Introduction

Learning to rank is a relatively new research area which has
emerged rapidly in the past decade. It plays a critical role in
information retrieval. In a problem related to learning to rank,
an instance is a set of objects and a label is a sorting applied
over the instance. Learning to rank aims to construct a rank-
ing model from training data. In the current scenario, each
label is assumed to be objective and reliable. This assump-
tion works well and is also used in other conventionally su-
pervised settings such as classification. Recently, many stud-
ies have highlighted that for many real-world tasks, it may
not be possible, or may be too expensive, to produce the ac-
curate training labels. Instead, multiple (possibly subjective
or noisy) labels can be provided by various experts or anno-
tators. For example, the Amazon Mechanical Turk (AMT)
allows the requesters to hire users from all over the world to
perform data labeling. Any AMT user can opt for the label-
ing tasks of the user’s own choices. Hence, this makes it easy

and fast for an AMT requester to hire multiple labelers. As
the AMT users have a little control, there is no guarantee of
objective and accurate labels. Thus, learning under multiple
annotators deserves a deep research.

A number of studies were carried out in the past to deal
with the setting involving multiple annotators. One of the
early works [Smyth et al., 1995] that was proposed involved
the estimation of the ground truth first and then use the es-
timated ground truth to learn a model. In 2010, a proba-
bilistic framework was presented [Raykar et al., 2010] to ad-
dress the classification, regression and ordinal regression al-
gorithms with multiple annotators. The probabilistic frame-
work was based a simple yet reasonable assumption that a
label by an annotator depends on both the true label and the
reliability of the annotator. Their experimental results show
that their framework is superior to the work by [Smyth et
al., 1995]. Donmez and Garnonell [Donmez and Garbonell,
2010] investigated the case when the reliability of annotators
is time-varying and developed a sequential Bayesian estima-
tion framework. There are some other related works that fo-
cus on somewhat different settings [Chen et al., 2010; Yan et
al., 2010].

The above studies paid little attention to learning to rank
under multiple annotator setting. To complement the existing
studies, this paper investigates the algorithms for learning to
rank involving multiple annotators. Indeed, this study is also
supported by a real world application as follows:

Visual clutter ranking for Webpages: Visual clutter
(VisC) determines the accessibility of webpages and is a crit-
ical factor for accessible Web search engines (e.g., Google
Accessible Search). Current VisC measuring algorithms are
designed for images only. Although the algorithms have been
claimed to be applicable for Web visual clutter ranking if a
Webpage is transformed into an image, the computational
load becomes very high because features are required to be
extracted on transformed images. Therefore, the question that
arises is whether some quick Webpage features (e.g., number
of texts) obtained merely from source codes achieve the same
or a comparable performance with the state-of-the-art algo-
rithms for images? The answer is very important for accessi-
ble Web search.

To answer the question above, a learning to rank algorithm
under multiple annotators is required. First, various state-of-
the-art images’ VisC measuring algorithms are taken as mul-
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tiple annotators to rank training pages 1. Then the algorithm
of learning to rank under multiple annotators is leveraged to
train the ranking model. If the performance of the ranking
model is close to the state-of-the-art image VisC measuring
algorithms, the answer to the posed problem is “Yes”.

This study proposes two learning approaches. One is very
direct: estimating the ground truth using rank aggregation
techniques and learning with the estimated ground truth. The
other is to use a maximization likelihood framework which is
used in [Raykar et al., 2010]. Nevertheless, unlike the stud-
ies in [Raykar et al., 2010], here, each training instance is a
set of objects and each label is an ordering applied over the
instance. This gives rise to several new challenges and as a re-
sult, methods in [Raykar et al., 2010] cannot be simply inher-
ited. In our maximization likelihood framework, a new gen-
eralized ranking model based on both two existing probabilis-
tic ranking models is introduced to describe the relationships
among the true labels, annotators’ labels, and annotators’ ex-
pertise. A new EM procedure is introduced to iteratively es-
timate the ground truth, the expertise of each annotator, and
the parameters of the ranking model to be learned.

Our main contributions can be summarized as follows:

1. Unlike existing studies of learning under multi-annotators
focus on classification, ordinal regression, and regres-
sion, this study focuses on learning to rank. As both
learning to rank and labeling under multiple non-expert
annotations will be more applied, our work will benefit
related applications much.

2. Two learning approaches are proposed. The maximiza-
tion likelihood approach, that jointly learns probabilistic
true labels and ranking function, has been proved to be
effective by experiments.

3. Finally, we have examined whether several quick features
are enough to construct an effective VisC ranking func-
tion for Webpages or not.

The rest of the paper is organized as follows. Section 2 re-
views related work. Section 3 introduces the methodologies.
Section 4 describes the learning algorithms for the maximum-
likelihood approach. Section 5 reports experimental results.
Finally, conclusions are given in Section 6.

2 Related work

2.1 Notation and Definitions

Let X be the input space whose instances are sets of objects,
Y be the output space whose elements are the orderings of

objects in the instance. An instance x(i) is represented by

(x
(i)
1 , · · · , x

(i)

n(i)), where n(i) denotes the number of objects in

x(i); A label y(i) ∈ Y represented by (y
(i)
1 , · · · , y

(i)

n(i)), where

y
(i)
j is the rank assigned to object x

(i)
j . For convenience, π

and σ also denote orderings, where π(i) (σ(i)) is the rank
assigned to the i-th object and π−1(i) (σ−1(i)) is the object
index of the i-th rank. Let Sn be the set of all orderings over
n objects, and |Sn| = n!. Let d : Sn × Sn → R be the
distance function between two orderings.

1It is impractical to recruit people as annotators to rank Web-
pages’ visual clutter because people may find the job to be tedious
when the number of training pages is large.

Figure 1: Two different generative processes.

2.2 Two probabilistic ranking models

This subsection reviews two probabilistic ranking models ap-
plied in our study. The first is the Mallows model [Mallows,
1957], which is also a typical distance-based ranking model.
Given a truth ordering π and the expertise indicator parameter
θ of an annotator, the Mallows model generates an ordering
σ given by the annotator according to the formula:

P (σ|π, θ) =
1

Z(π, θ)
exp(θ · d(π, σ)) (1)

where Z is a normalizing constant,

Z(π, θ) =
∑

σ∈Sn

exp(θ · d(π, σ)) (2)

The parameter θ is a non-positive quantity and the smaller
the value of θ, the more expertise the annotator is said to be
processing. When θ = 0, the distribution is uniform meaning
that the ordering by the annotator is independent of the truth
and can have any values.

An extension of Mallows model was proposed as follows
[Lebanon & Lafferty, 2002]:

P (π|σ,Θ) =
1

Z(σ,Θ)
P (π) exp(

K∑

i=1

θi · d(π, σi)) (3)

where σ = (σ1, · · · , σK) belongs to SK
n ; Θ = (θ1, · · · , θK)

belongs to RK ; p(π) is a prior; and

Z(σ,Θ) =
∑

π∈Sn

P (π) exp(

K∑

i=1

θi · d(π, σi)) (4)

In this extended model, each orderingσi is a quantity returned
by an annotator for a particular set of objects. The free param-
eter θi represents the expertise degree of the i-th annotator.
Equation (3) calculates the probability of that the truth order-
ing is π, given the orderings from the annotators and degrees
of their expertise.

Klementiev et al. [Klementiev et al., 2008] proved that if
the distance is right-invariant, the following generative pro-
cess can be derived based on Eq. (3):

P (π,σ|Θ) = P (π)

K∏

i=1

P (σi|π, θi) (5)

This generative process can be described by Fig. 1(a). π is
first drawn from prior P (π). Then σ is generated by drawing
σ1, · · · , σK independently from K mallows models accord-
ing to Eq. (1) with the same truth ordering π.

The second probabilistic ranking model is the Plackett-
Luce (P-L) model [Plackett, 1975 and Luce, 1959]. P-L
model is a distribution over orderings. It is parameterized
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by a vector v = (v1, · · · , vM ), where vi(> 0) is associated
with index i:

P (π|v) =
M∏

i=1

vπ−1(i)

vπ−1(i) + vπ−1(i+1) + · · ·+ vπ−1(M)

(6)

The meaning and value of v depend on application settings.
P-L model has been applied in many machine learning prob-
lems [Cheng et al., 2010].

The difference between Mallows model and P-L model is
that the former refers to the relationships between orderings,
while the latter refers to the probability about a single order-
ing.

2.3 Learning to rank

Previous studies carried out in learning to rank can be divided
into three categories: position-based, pairwise, and listwise
[Cao et al., 2007]. A detailed survey of learning to rank can
be found in [Liu, 2009]. This study in particular focuses on
the listwise approach as it is the most suitable approach for
information retrieval as compared to others.

The first step of listwise learning to rank is to define a loss
function over a truth ordering and a predicted ordering. Fol-
lowing the definition of loss function, the parameters of the
ranking function are learned according to the minimization
of training loss. The ranking function is usually assumed lin-
ear on features:

f(x) =< w, x >= wTx (7)

Xia et al. [Xia et al., 2008] proposed an effective listwise
approach called ListMLE. Actually, ListMLE minimizes the
sum of likelihood losses with respect to all the training sam-
ples. The likelihood loss function can be defined as follows:

l(f(x), y) = − logP (y|f, x) (8)

where P (y|x; f) is calculated by the P-L model:

P (y|f, x) =

N∏

i=1

exp(f(xy−1(i)))∑M

k=i exp(f(xy−1(k)))
(9)

ListMLE chooses linear Neural Network (parameterized
by w) as the ranking model, and utilizes Stochastic Gradient
Descent as the algorithm for computing the (local) optimal
parameter w. The detailed steps can be found in [Xia et al.,
2008].

3 Methodologies

As presented earlier, each instance is labeled by G an-
notators. Hence, the training set is denoted as D =

{(x(i), y
(i)
1 , · · · , y

(i)
G )}Ni=1, which contains N independently

and identically distributed (i.i.d) samples. Our task is to
achieve the value of the parameter w (in Eq. (7)) as well as
the values of Θ which is the annotators’ degrees of expertise.

3.1 Direct approach

This approach is very intuitive. The Mallows model is applied
to fuse together the orderings by the annotators to estimate
the ground truth and the degrees of expertise of the annotators
[Klementiev et al., 2008]. Then conventional learning to rank
algorithm (e.g., ListMLE) is used to train a ranking model
based on the estimated ground truth. This approach is called
LTRMA-D for simplicity.

3.2 Maximum-likelihood approach

Let Ω = (w,Θ). The likelihood function of the parameters
based on the observation D can be factored into:

P (D|Ω) =
N∏
i=1

P (x(i), y
(i)
1 , · · · , y

(i)
G |Ω)

=
N∏
i=1

P (y
(i)
1 , · · · , y

(i)
G |x(i),Ω)P (x(i))

∝
N∏
i=1

P (y
(i)
1 , · · · , y

(i)
G |x(i),Ω)

=
N∏
i=1

∑
y(i)∈Sn

[P (y
(i)
1 , · · · , y

(i)
G |y(i),Θ)P (y(i)|x(i),w)]

(10)
The above equation integrates both the Mallows

model (P (y
(i)
1 , · · · , y

(i)
G |y(i),Θ)) and the P-L model

(P (y(i)|x(i),w)). The maximum-likelihood estimator is
attained by taking the logarithm of the likelihood and
maximizing it, that is,

Ω̄ML = {w,Θ} = argmax
Ω

{lnP (D|Ω)}. (11)

This approach is called LTRMA-ML for simplicity. The
following section introduces the learning algorithm in detail.

4 Learning for LTRMA-ML

As the cardinality of an ordering space is large, Eq. (11) is in-
tractable optimized directly. To estimate Ω, the EM algorithm

[Demspster et al., 1977] is utilized. The truth labels (y(i)) are
taken as missing data. Then the true labels and Ω can be es-
timated iteratively. Once a certain number of criterions are
met, the iteration is stopped. At first, a new log-likelihood is
written as:

lnP (D,y|Ω) ∝ ln

N∏

i=1

P (y
(i)
1 , · · · , y

(i)
G , y(i)|x(i),Ω) (12)

4.1 Inference

To factorize Eq. (12), a new generalized ranking model is
proposed:

P (y
(i)
1 , · · · , y

(i)
G , y(i)|x(i),Ω)

= P (y(i)|x(i),w)
G∏

j=1

P (y
(i)
j |y(i), θj)

(13)

This model can be described by Fig. 1(b), where y(i) is π,

y
(i)
j is σj , and K = G. This generative process differs from

the process by Eq. (5) (shown in Fig. 1(a)) in the sense that
in Fig. 1(a), the distribution of the ground-truth y(i) (or π) is

dependent on a prior probabilityP (π), while in Fig. 1(b), y(i)

is assumed to be dependent on the parameter w and x(i). This
assumption is reasonable and inherited from [Raykar, 2010],
which was proved to be working well through experiments.

Based on Fig. 1(b) and the properties of the Mallows
model, the following equation is obtained:

P (y(i)|y
(i)
1 , · · · , y

(i)
G , x(i),w,Θ)

=
P (y

(i)
1 ,··· ,y

(i)
G

,y(i)|x(i),w,Θ)

P (y
(i)
1 ,··· ,y

(i)
G

)

= P (y(i)|x(i),w) 1

Z(Θ,w,x(i),y
(i)
1 ,··· ,y

(i)
G

)
exp(

G∑
j=1

θjd(y
(i), y

(i)
j ))

(14)
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where p(y(i)|x(i),w) is obtained from P-L model and calcu-
lated in a way similar to Eq. (9). Equation (14) will be used
in the following algorithm.

Eq. (12) can be represented by

ln
N∏
i=1

P (y
(i)
1 , · · · , y

(i)
G , y(i)|x(i),Ω)

= ln
N∏
i=1

{P (y
(i)
1 , · · · , y

(i)
G |y(i), θj)P (y(i)|x(i),w)}

= ln
N∏
i=1

{
G∏

j=1

P (y
(i)
j |y(i), θj)P (y(i)|x(i),w)}

(15)

When using EM, the first step is to define:

Q(w,Θ;w′,Θ′)

= E(ln
N∏
i=1

{
G∏

j=1

P (y
(i)
j |y(i), θj)P (y(i)|x(i),w)}|D,w′,Θ′)

(16)
At first, we have the following Lemma:

Lemma 1:

Q(w,Θ;w′,Θ′) =
∑

(y(i),...,y(N))∈SN
n

L(w,Θ)U(w′,Θ′)

(17)
where

L(w,Θ) =
N∑
i=1

lnP (y(i)|x(i),w)−N
G∑

j=1

lnZ(θj)

+
N∑
i=1

G∑
j=1

θjd(y
(i), y

(i)
j )

(18)

U(w′
,Θ′) =

N∏

i=1

P (y(i)|y
(i)
1 , · · · , y

(i)
G , x

(i)
,w

′
,Θ′) (19)

To maximize Eq. (17), we have the following Lemmas.
Lemma 2: For any w, the maximization of Q by Θ is

attained by Θ = (θ1, · · · , θG) such that

Eθj (d) =
∑

(y(1) ,...,y(N))∈SN
n

(
1

N

N∑

i=1

d(y(i) , y
(i)
j ))U(w′,Θ′)

(20)
Proof. Omitted due to lack of space. The proof procedure

is similar to that in [Klementiev et al., 2008].
Lemma 3: For any Θ, the maximization of Q by w is

equivalent to the minimization of the cross-entropy as fol-
lows:

CE = −
∑

(y(i),...,y(N))∈SN
n

{ln[
N∏
i=1

P(y(i)|x(i),w)]

×
N∏
i=1

P(y(i)|y
(i)
1 , ..., y

(i)
G , x(i),w′,Θ′)}

(21)

Proof.

Q(w,Θ;w′,Θ′) =
∑

(y(i),...,y(N))∈SN
n

{ln[
N∏
i=1

P(y(i)|x(i),w)]

×
N∏
i=1

P(y(i)|y
(i)
1 , ..., y

(i)
G , x(i),w′,Θ′)}+ g(w′,Θ′,Θ)

(22)
The following subsection describes the detailed steps of solv-
ing Eqs. (20) and (21) to infer w and Θ.

4.2 Algorithm

In each iteration of EM, Θ is updated by solving Eq. (20)
while w is updated by minimizing Eq. (21). In Eq. (20),
Eθj (d) is:

Eθj (d) =
neθj

1− eθj
−

n∑

l=1

lelθj

1− elθj
(23)

where n is the number of objects in each instance. This func-
tion is monotonous. The right-hand side of Eq. (20) cannot
be calculated in practice. We adopted the sampling method
introduced in [Klementiev et al., 2008] to obtain the approx-
imate value of the right-hand side of Eq. (20). Thereafter, Θ
can be obtained by a binary search approach. The steps are
shown below in Algorithm 1.

Algorithm 1 Update Θ

Input: D, Θ(t), w(t), k = 1,Ns, π(i){1}, i = 1, · · · , N .

Output: Θ(t+1).
Steps:

1. For each π(i){k}, i ∈ [1, N ], choose two indices p, q random,

and exchange the p-th and q-th elements of π(i){k} to form a

new ordering σ(i).

2. Calculate αi =
P (σ(i)|y

(i)
1 ,...,y

(i)
R

,x(i),w(t),Θ(t))

P (π(i){k}|y
(i)
1 ,...,y

(i)
R

,x(i),w(t),Θ(t))
. For each i ∈

[1, N ], if αi > 1, π(i){k+1} = σ(i); else π(i){k+1} = π(i){k}

with probability 1 − αi and otherwise π(i){k + 1} = σ(i). If
k < Ns, k = k + 1 and goto 1.

3. Calculate βj = 1
N·Ns

N∑
i=1

Ns∑
k=1

d(π(i){k}, y
(i)
j ), j = 1, · · · , G.

4. Apply binary search to obtain θ
(t+1)
j according to ne

θj

1−e
θj
−

n∑
l=1

le
lθj

1−e
lθj

= βj , j = 1, · · · , G.

Minimizing Eq. (21) is similar to determining the param-
eter w based on the cross-entropy loss introduced in [Cao et
al., 2007]. However, the computational complexity of mini-
mizing Eq. (21) is O(n!N). Instead, we introduce a heuristic
yet an efficient solution2. Note that Eq. (21) measures the
distance between two conditional distributions. Both distri-
butions have only one maximum value. If their maximum
values are equal, their distance is likely to be quite small. As-

sume p(y(i)|y
(i)
1 , · · · , y

(i)
G , x(i),w′,Θ′) attains its maximum

value at π
(i)
∗ . Then to minimize Eq. (21), we apply a trans-

formation to maximize the following function:

ln
N∏

i=1

P (π
(i)
∗ |x(i),w) (24)

So ListMLE3 can be leveraged to achieve a new value of w.

2The solution is the same as the strategy used in [Raykar et al.,
2010]: the estimated ground truth in each iteration is used to train a
prediction model.

3In fact, any other linear or un-linear learning to rank algorithms
which aim of minimizing the likelihood loss can be used in the pro-
posed algorithm. In this study, ListMLE is chosen due to its com-
peting performances reported in previous literature.
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In our algorithm, π
(i)
∗ is selected from orderings according to

the same sampling steps as mentioned in Algorithm 1.
The steps of LTRMA-ML are as follows.

Algorithm 2 Steps of LTRMA-ML

Input: D, Ns, w(0) and Θ(0), τ1, τ2, t = 0, MaxT .
Output: w, Θ.
Steps:

1. Calculate Θ(t+1) using Algorithm 1.

2. Repeat the sampling steps 1 and 2 in Algorithm 1 to obtain an

ordering set for each x(i).

3. Select the maximum elements in the sampling sets for each x(i).
These maximum elements are the estimated ground truth order-
ings for this particular iteration.

4. Update w using ListMLE with estimated ground truth.

5. If t > MaxT , or ||Θ(t)−Θ(t+1)|| < τ1 and ||w(t)−w(t+1)|| <

τ2, return w
(t+1) and Θ(t+1); else t = t+ 1, goto 1.

5 Experiments

5.1 Experimental setup

As there have been no benchmark data sets for learning to
rank under multiple annotators, two data sets (a synthetic
data set and a real data set) that are popular in learning to
rank literature are used. To simulate multiple annotators, sev-
eral ordering labels are generated based on the ground truth
for each instance. The two proposed algorithms are imple-
mented on training and validation sets to search optimal pa-
rameters. Then the learned model is used to rank the test data.
Finally, the mean average precision (MAP) [Liu, 2009] and
normalized discounted cumulative gain (NDCG) [Liu, 2009]
are calculated. The higher their values, the better the results.
In total, three learning strategies are compared: LTRMA-D,
LTRMA-ML, and ListMLE that are based on ground truth
orderings. In each experiment, for Algorithm 1, Ns is set
to 500. For Algorithm 2, τ1 and τ2 are set to 0.01 ∗ G and
0.01 ∗ m, respectively, where G is the number of annotators

and m is the feature dimension; each entry of w(0) is set to

1/m; Θ(0) is randomly initialized; MaxT is set to 200.

5.2 Results on synthetic data

The rule of creating the synthetic data is the similar to that in
[Xia et al., 2008]. First, a point is randomly sampled accord-
ing to the uniform distribution on a square area [0, 1]× [0, 1].
Then a score is assigned to the point using the following rule,
y = x1 + 10x2 + ε, where ε is a random variable normally
distributed with zero mean and a standard deviation of 0.005.
In total, 15 points associated with scores are generated in this
way. The permutation on their scores forms the ranking of
the points. The process is repeated to make 100 training in-
stances, 100 validation instances, and 500 testing instances.
When calculating MAP, top-5 items are consider as relevant.
When calculating NDCG, the i-th (i = 1, · · · , 15) ranked
item’s relevance score is 16− i.

Assume there are G annotators. Their labels are simulated
as follows: for the i-th annotator, two elements of a ground-
truth label are exchanged, and the process repeated 2× i+ 1

Figure 2: Performance comparison on Synthetic data.

Figure 3: Performance comparison on OHSUMED data.

times. In our experiment, G ranges from 3 to 15. The ex-
periment is repeated ten times and average results are re-
ported. Figures 2(a) and 2(b) shows the results of NDCG@3
and NDCG@5, respectively. Figure 2(c) shows the results of
MAP when top-5 items are taken as relevant. It can be ob-
served that the results of LTRMA-ML are very close to those
of ListMLE when true ground-truth labels are employed.

Further more, LTRMA-D does not appear to be robust. For
example, when the number of simulated annotators is 12, the
performance of LTRMA-D is satisfactory. However, when
the number is 9 or 10, LTRMA-D performs badly. According
to Fig. 2(d), LTRMA-ML also outperforms LTRMA-D in
terms of the estimated expertise of simulated annotators.

5.3 Results on OHSUMED data

The OHSUMED data collection is a benchmark set for learn-
ing to rank and is provide in LETOR [Liu et al., 2007]. The
data consists of query-document pairs upon which relevance
judgments are made. The degree of relevance is divided into
three categories: definitely relevant (score of 3), possibly rel-
evant (score of 2), and not relevant (score of 1). The data
split by LETOR is used to conduct five-fold cross validation.
In MAP calculation, only definitely relevant objects are taken
as relevant.

The ground-truth labels are constructed similar to [Xia et
al., 2008]: one perfect permutation is randomly selected for
each query among all the possible perfect permutations based
on the ground truth. The labels by annotators are simulated
using a similar rule as applied on the Synthetic data. The
number of annotators G ranges from 5 to 15.

Figures 3(a) and 3(b) shows the results of NDCG@3 and
NDCG@5, respectively. Figure 3(c) shows the results of
MAP. Observations similar to Figs. 2(a) and (b) can be
made. The performances of LTRMA-ML are close to those of
ListMLE and significantly better than LTRMA-D. According
to Fig. 3(c), LTRMA-ML achieves the highest MAP values
under different annotators. According to Fig. 3(d), LTRMA-
ML slightly outperforms LTRMA-D in terms of the estimated
expertise of the simulated annotators.

5.4 Web visual clutter ranking

In this experiment, 2000 homepages were collected, mainly
from the websites of company and university as well as some
personal sites. For each page, eight simple features are ex-
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Figure 4: Results on Web visual clutter ranking

tracted: number of texts, number of linked texts, number of
fonts, average font size, number of tables, number of back-
ground colors, number of images, and aspect ratio. All the
collected pages were divided into 200 subsets and each sub-
set consisted of ten pages. Three state-of-the-art image visual
clutter measuring algorithms were taken as three annotators.
They are Subband Entropy (SE), Feature Congestion (FC),
and Segment Measuring (SM). Further details about them can
be referred to from [Bravo and Farid, 2008] and [Rosenholtz
et al., 2007]. Consequently, each subset corresponds to three
orderings as given by the three algorithms.

The 200 subsets are randomly divided into two heads: one
for training and the other for testing. To evaluate the results
on the test set, ten random subsets are selected and scored by
seven volunteers aging from 20 to 30. The score ranges from
0 to 5 and the higher the score, the lower the visual clutter.
The training and testing process is repeated ten times. The
averaging values of NDCG are reported.

The performances of LTRMA-ML and LTRMA-D are
shown in Fig. 4. The NDCG values of the three visual clutter
measuring algorithms are also presented in Fig. 4. It was ob-
served that LTRMA-ML outperforms LTRMA-D. LTRMA-
ML is close to the visual clutter measuring algorithms on
NDCG@3, NDCG@4, and NDCG@5.

5.5 Discussion

Based on the experimental results, LTRMA-ML is signif-
icantly better than LTRMA-D. The partial reason is that
LTRMA-ML unifies both ground truth estimation and model
learning in a probabilistic formulation, which better models
their relationships. We also note that LTRMA-ML is more
robust than LTRMA-D against the variation in the number of
annotators. The partial reason is that in LTMA-D the model
learning is very sensitive the ground truth estimation, while
in LTRMA-ML, the model learning can bring feedback to the
ground truth estimation in the next iteration. The results on
the Web visual clutter data indicate that considering various
simple and quick features can lead to a performance close
to state-of-the-art algorithms that are based on image con-
tent analysis. Hence, if an application involving Web visual
clutter ranking is time-sensitive, consideration of only some
quick features is likely to be very helpful.

6 Conclusion

This paper has investigated learning to rank under multiple
annotators providing labels that are not absolutely accurate.
Two algorithms, namely, LTRMA-D and LTRMA-ML, are
proposed. LTRMA-D is a direct approach that first estimates
the ground truth and then uses conventional algorithms (e.g.,
ListMLE) to train a ranking model based on the estimated

ground truth. LTRMA-ML integrates both ground truth esti-
mation and ranking model learning by a maximum likelihood
framework. Experiments suggest that LTRMA-ML outper-
forms LTRMA-D and is very close to ListMLE when true
ground truth labels are employed. The experiment on Web
visual clutter data indicates that based on LTRMA-ML, we
can construct a ranking model whose performance is close to
the state-of-the-art image visual clutter measuring algorithms,
by considering only simple features.
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