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Abstract

Compared with supervised learning for
feature selection, it is much more difficult
to select the discriminative features in un-
supervised learning due to the lack of
label information. Traditional unsuper-
vised feature selection algorithms usually
select the features which best preserve
the data distribution, e.g., manifold struc-
ture, of the whole feature set. Under the
assumption that the class label of input
data can be predicted by a linear classi-
fier, we incorporate discriminative anal-
ysis and �2,1-norm minimization into a
joint framework for unsupervised feature
selection. Different from existing unsu-
pervised feature selection algorithms, our
algorithm selects the most discriminative
feature subset from the whole feature set
in batch mode. Extensive experiment on
different data types demonstrates the ef-
fectiveness of our algorithm.

Introduction

In many areas, such as computer vision, pattern recognition
and biological study, data are represented by high dimen-
sional feature vectors. Feature selection aims to select a sub-
set of features from the high dimensional feature set for a
compact and accurate data representation. It has twofold role
in improving the performance for data analysis. First, the
dimension of selected feature subset is much lower, making
the subsequential computation on the input data more effi-
cient. Second, the noisy features are eliminated for a better
data representation, resulting in a more accurate clustering
and classification result. During recent years, feature selec-
tion has attracted much research attention. Several new fea-
ture selection algorithms have been proposed with a variety
of applications.

Feature selection algorithms can be roughly classified into
two groups, i.e., supervised feature selection and unsuper-
vised feature selection. Supervised feature selection algo-
rithms, e.g., Fisher score [Duda et al., 2001] , robust regres-
sion [Nie et al., 2010], sparse multi-output regression [Zhao

et al., 2010] and trace ratio [Nie et al., 2008], usually select
features according to labels of the training data. Because dis-
criminative information is enclosed in labels, supervised fea-
ture selection is usually able to select discriminative features.
In unsupervised scenarios, however, there is no label informa-
tion directly available, making it much more difficult to select
the discriminative features. A frequently used criterion in un-
supervised learning is to select the features which best pre-
serve the data similarity or manifold structure derived from
the whole feature set [He et al., 2005; Zhao and Liu, 2007;
Cai et al., 2010]. However, discriminative information is ne-
glected though it has been demonstrated important in data
analysis [Fukunaga, 1990].

Most of the traditional supervised and unsupervised feature
selection algorithms evaluate the importance of each feature
individually [Duda et al., 2001; He et al., 2005; Zhao and Liu,
2007] and select features one by one. A limitation is that the
correlation among features is neglected [Zhao et al., 2010;
Cai et al., 2010]. More recently, researchers have applied
the two-step approach, i.e., spectral regression, to super-
vised and unsupervised feature selection [Zhao et al., 2010;
Cai et al., 2010]. These efforts have shown that it is a
better way to evaluate the importance of the selected fea-
tures jointly. In this paper, we propose a new unsuper-
vised feature selection algorithm by simultaneously exploit-
ing discriminative information and feature correlations. Be-
cause we utilize local discriminative information, the mani-
fold structure is considered too. While [Zhao et al., 2010;
Cai et al., 2010] also select features in batch mode, our al-
gorithm is a one-step approach and it is able to select the
discriminative features for unsupervised learning. We also
propose an efficient algorithm to optimize the problem.

The Objective Function

In this section, we give the objective function of the proposed
Unsupervised Discriminative Feature Selection (UDFS) algo-
rithm. Later in the next section, we propose an efficient algo-
rithm to optimize the objective function. It is worth mention-
ing that UDFS aims to select the most discriminative features
for data representation, where manifold structure is consid-
ered, making it different from the existing unsupervised fea-
ture selection algorithms.

Denote X = {x1, x2, ..., xn} as the training set, where
xi ∈ R

d(1 ≤ i ≤ n) is the i-th datum and n is the total
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number of training data. In this paper, I is identity matrix.
For a constant m, 1m ∈ R

m is a column vector with all of its
elements being 1 and Hm = I − 1

m1m1
T
m ∈ R

m×m. For an

arbitrary matrix A ∈ R
r×p, its �2,1-norm is defined as

‖A‖2,1 =

r∑
i=1

√∑p

j=1
A2

ij . (1)

Suppose the n training data x1, x2, ..., xn are sampled from c
classes and there are ni samples in the i-th class. We define
yi ∈ {0, 1}c×1(1 ≤ i ≤ n) as the label vector of xi. The
j-th element of yi is 1 if xi belongs to the j-th class, and
0 otherwise. Y = [y1, y2, ..., yn]

T ∈ {0, 1}n×c is the label
matrix. The total scatter matrix St and between class scatter
matrix Sb are defined as follows [Fukunaga, 1990].

St =

n∑
i=1

(xi − μ)(xi − μ)T = X̃X̃T (2)

Sb =
∑c

i=1
ni(μi − μ)(μi − μ)T = X̃GGT X̃T (3)

where μ is the mean of all samples, μi is the mean of samples
in the i-th class, ni is the number of samples in the i-th class,

X̃ = XHn is the data matrix after being centered, and G =
[G1, ..., Gn]

T = Y (Y TY )−1/2 is the scaled label matrix. A
well-known method to utilize discriminative information is
to find a low dimensional subspace in which Sb is maximized
while St is minimized [Fukunaga, 1990].

Recently, some researchers proposed two different new
algorithms to exploit local discriminative information
[Sugiyama, 2006; Yang et al., 2010b] for classification and
image clustering, demonstrating that local discriminative in-
formation is more important than global one. Inspired by this,
for each data point xi, we construct a local set Nk(xi) com-
prising xi and its k nearest neighbors xi1 , ..., xik . Denote
Xi = [xi, xi1 , ..., xik ] as the local data matrix. Similar to (2)

and (3), the local total scatter matrix S
(i)
t and between class

scatter matrix S
(i)
b of Nk(xi) are defined as follows.

S
(i)
t = X̃iX̃i

T
; (4)

S
(i)
b = X̃iG(i)G

T
(i)X̃i

T
, (5)

where X̃i = XiHk+1 and G(i) = [Gi, Gi1 , ..., Gik ]
T . For

the ease of representation, we define the selection matrixSi ∈
{0, 1}n×(k+1) as follows.

(Si)pq=

{
1 if p = Fi{q};

0 otherwise,
(6)

where Fi = {i, i1, ..., ik}. In this paper, it remains unclear
how to define G because we are focusing on unsupervised
learning where there is no label information available. In or-
der to make use of local discriminative information, we as-
sume there is a linear classifier W ∈ R

d×c which classi-
fies each data point to a class, i.e., Gi = WTxi. Note that
Gi, Gi1 , ..., Gik are selected from G, i.e., G(i) = ST

i G. Then
we have

G(i) = [Gi, Gi1 , ..., Gik ]
T = ST

i G = ST
i X

TW. (7)

It is worth noting that the proposed algorithm is an unsuper-
vised one. In other words, G defined in (7) is the output of
the algorithm, i.e., Gi = WTxi, but not provided by the
human supervisors. If some rows of W shrink to zero, W
can be regarded as the combination coefficients for differ-
ent features that best predict the class labels of the training
data. Next, we give the approach which learns a discrimina-
tive W for feature selection. Inspired by [Fukunaga, 1990;
Yang et al., 2010b], we define the local discriminative score
DSi of xi as

DSi = Tr
[
(S

(i)
t + λI)−1

S
(i)
b

]
= Tr

[
G

T
(i)X̃i

T
(X̃iX̃

T
i + λI)−1

X̃iG(i)

]
= Tr

[
W

T
XSiX̃i

T
(X̃iX̃

T
i + λI)−1

X̃iS
T
i X

T
W

]
,

(8)

where λ is a parameter and λI is added to make the term

(X̃iX̃
T
i + λI) invertible. Clearly, a larger DSi indicates that

W has a higher discriminative ability w.r.t. the datum xi. We
intend to train a W corresponding to the highest discrimina-
tive scores for all the training data x1, ..., xn. Therefore we
propose to minimize (9) for feature selection.∑n

i=1

{
Tr[GT

(i)Hk+1G(i)]−DSi

}
+ γ ‖W‖2,1 (9)

Considering that the data number in each local set is usually
small, GT

(i)Hk+1G(i) is added in (9) to avoid overfitting. The

regularization term ‖W‖2,1 controls the capacity of W and

also ensures that W is sparse in rows, making it particularly
suitable for feature selection. Substituting DSi in (9) by (8),
the objective function of our UDSF is given by

min
WT W=I

∑n

i=1
Tr{W T

XSiHk+1S
T
i X

T
W−

[W T
XSiX̃i

T
(X̃iX̃

T
i + λI)−1

X̃iS
T
i X

T
W ]}+ γ ‖W ‖2,1

(10)

where the orthogonal constraint is imposed to avoid arbitrary
scaling and avoid the trivial solution of all zeros. Note that
the first term of (10) is equivalent to the following1:

Tr{W T
X{

n∑
i=1

[Si(Hk+1 − X̃i

T
(X̃iX̃

T
i + λI)−1

X̃i)S
T
i ]}XT

W }

Meanwhile we have

Hk+1 − X̃i

T
(X̃iX̃

T
i + λI)−1

X̃i

=Hk+1 −Hk+1X̃
T
i (X̃iX̃

T
i + λI)−1

X̃iHk+1

=Hk+1 −Hk+1(X̃
T
i X̃i + λI)−1

(X̃T
i X̃i + λI)X̃T

i (X̃iX̃
T
i + λI)−1

X̃iHk+1

=Hk+1 −Hk+1(X̃
T
i X̃i + λI)−1

X̃
T
i X̃iHk+1

=Hk+1 −Hk+1(X̃
T
i X̃i + λI)−1(X̃T

i X̃i + λI − λI)Hk+1

=λHk+1(X̃
T
i X̃i + λI)−1

Hk+1

Therefore, the objective function of UDFS is rewritten as

min
WT W=I

Tr(W T
MW ) + γ ‖W ‖2,1 (11)

1It can be also interpreted in regression view [Yang et al., 2010a].
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where

M = X

[
n∑

i=1

(
SiHk+1(X̃

T
i X̃i + λI)−1

Hk+1S
T
i

)]
X

T
(12)

Denote wi as the i-th row of W , i.e., W = [w1, ...wd]T , the
objective function shown in (11) can be also written as

min
WT W=I

Tr(W T
MW ) + γ

∑d

i=1

∥∥∥wi
∥∥∥
2
. (13)

We can see that many rows of the optimal W corresponding
to (13) shrink to zeros 2. Consequently, for a datum xi, x

′
i =

WTxi is a new representation of xi using only a small set
of selected features. Alternatively, we can rank each feature
fi|di=1 according to

∥∥wi
∥∥
2

in descending order and select top
ranked features.

Optimization of UDFS Algorithm

The �2,1-norm minimization problem has been studied in
several previous works, such as [Argyriou et al., 2008;
Nie et al., 2010; Obozinski et al., 2008; Liu et al., 2009;
Zhao et al., 2010; Yang et al., 2011]. However, it remains
unclear how to directly apply the existing algorithms to op-
timizing our objective function, where the orthogonal con-
straint WTW = I is imposed. In this section, inspired by
[Nie et al., 2010], we give a new approach to solve the op-
timization problem shown in (11) for feature selection. We
first describe the detailed approach of UDFS algorithm in Al-
gorithm 1 as follows.

Algorithm 1: The UDFS algorithm.

1 for i = 1 to n do

2 Bi = (X̃T
i X̃i + λI)−1

3 Mi = SiHk+1BiHk+1S
T
i ;

4 M = X

(
n∑

i=1

Mi

)
XT ;

5 Set t = 0 and initialize D0 ∈ R
d×d as an identity matrix;

6 repeat
7 Pt = M + γDt;
8 Wt = [p1, ..., pc] where p1, ..., pc are the

eigenvectors of Pt corresponding to the first c
smallest eigenvalues;

9 Update the diagonal matrix Dt+1 as

Dt+1 =

⎡
⎢⎣

1
2‖w1

t ‖2

...
1

2‖wd
t ‖

2

⎤
⎥⎦ ;

10 t = t+ 1;

11 until Convergence;

12 Sort each feature fi |di=1 according to
∥∥wi

t

∥∥
2

in
descending order and select the top ranked ones.

Below, we briefly analyze Algorithm-1 proposed in this
section. From line 1 to line 4, it computes M defined in

2Usually, many rows of the optimal W are close to zeros.

(12). From line 6 to line 11, it optimizes the objective func-
tion shown in (13). Next, we verify that the proposed iterative
approach, i.e., line 6 to line 11 in Algorithm 1, converges to
the optimal W corresponding to (13). We begin with the fol-
lowing two Lemmas.

Lemma 1. For any two non-zero constants a and b, the
following inequality holds [Nie et al., 2010].

√
a− a

2
√
b
≤

√
b− b

2
√
b
. (14)

Proof . The detailed proof is similar as that in [Nie et al.,
2010]. �

Lemma 2. The following inequality holds provided that
vit|ri=1 are non-zero vectors, where r is an arbitrary number
[Nie et al., 2010].

∑
i

∥∥∥vit+1

∥∥∥
2
−

∑
i

∥∥vit+1

∥∥2

2

2 ‖vit‖2

≤
∑
i

∥∥∥vit∥∥∥
2
−

∑
i

∥∥vit∥∥2

2

2 ‖vit‖2

(15)

Proof . Substituting a and b in (14) by
∥∥vit+1

∥∥2
2

and
∥∥vit∥∥22

respectively, we can see that the following inequality holds
for any i.

∥∥vit+1

∥∥
2
−

∥∥vit+1

∥∥2
2

2
∥∥vit∥∥2 ≤ ∥∥vit∥∥2 −

∥∥vit∥∥22
2
∥∥vit∥∥2

(16)

Summing (16) over i, it can be seen that (15) holds �.
Next, we show that the iterative algorithm shown in

Algorithm-1 converges by the following theorem.
Theorem 1. The iterative approach in Algorithm 1 (line

6 to line 11) monotonically decreases the objective function

value of min
WTW=I

Tr(WTMW ) + γ
∑d

i=1

∥∥wi
∥∥
2

in each it-

eration3.
Proof . According to the definition of Wt in line 8 of Al-

gorithm 1, we can see that

Wt = argmin
WT W=I

Tr[WT (M + γDt)W ] (17)

Therefore, we have

Tr[WT
t (M + γDt)Wt] ≤ Tr[WT

t−1(M + γDt)Wt−1]

⇒ Tr(WT
t MWt) + γ

∑
i

∥∥wi
t

∥∥2
2

2
∥∥wi

t−1

∥∥
2

≤ Tr(WT
t−1MWt−1) + γ

∑
i

∥∥wi
t−1

∥∥2
2

2
∥∥wi

t−1

∥∥
2

3When computing Dt+1, its diagonal element dii = 1

2‖wi
t‖2

.

It is worthy noting that in practice,
∥∥wi

t

∥∥
2

could be very close to

zero but not zero. However,
∥∥wi

t

∥∥
2

can be zero theoretically. In this
case, we can follow the traditional regularization way and define
dii =

1

2‖wi
t‖2+ς

, where ς is a very small constant. When ς → 0 it

is easy to see that 1

2‖wi
t‖2+ς

approximates 1

2‖wi
t‖2

.
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Then we have the following inequality

Tr(WT
t MWt) + γ

∑
i

∥∥wi
t

∥∥
2

−γ(
∑
i

∥∥wi
t

∥∥
2
−
∑
i

∥∥wi
t

∥∥2

2

2
∥∥wi

t−1

∥∥
2

)

≤ Tr(WT
t−1MWt−1) + γ

∑
i

∥∥wi
t−1

∥∥
2

−γ(
∑
i

∥∥wi
t−1

∥∥
2
−
∑
i

∥∥wi
t−1

∥∥2
2

2
∥∥wi

t−1

∥∥
2

)

Meanwhile, according to Lemma 2,
∑
i

∥∥wi
t

∥∥
2

−
∑
i

‖wi
t‖2

2

2‖wi
t−1‖2

≤ ∑
i

∥∥wi
t−1

∥∥
2
− ∑

i

‖wi
t−1‖2

2

2‖wi
t−1‖2

. Therefore,

we have the following inequality:

Tr(WT
t+1AWt+1) + γ

∑
i

∥∥wi
t+1

∥∥
2

≤ Tr(WT
t AWt) + γ

∑
i

∥∥wi
t

∥∥
2
,

which indicates that the objective function value of

min
WTW=I

Tr(WTMW ) + γ
∑d

i=1

∥∥wi
∥∥
2

monotonically de-

creases using the updating rule in Algorithm 1. �
According to Theorem 1, we can see that the iterative ap-

proach in Algorithm 1 converges to the optimal W corre-
sponding to (13). Because k is much smaller than n, the time
complexity of computing M defined in (12) is about O(n2).
To optimize the objective function of UDFS, the most time
consuming operation is to perform eigen-decomposition of
Pt. Note that Pt ∈ R

d×d. The time complexity of this opera-
tion is O(d3) approximately.

Experiments

In this section, we test the performance of UDFS proposed
in this paper. Following [He et al., 2005; Cai et al., 2010],
we test the performance of the proposed algorithm in terms
of clustering.

Experiment Setup

In our experiment, we have collected a diversity of 6 pub-
lic datasets to compare the performance of different unsu-
pervised feature selection algorithms. These datasets in-
clude three face image datasets, i.e., UMIST4, FERET5 and
YALEB [Georghiades et al., 2001], one gait image dataset,
i.e., USF HumanID [Sarkar et al., 2005], one spoken letter
recognition data, i.e., Isolet16 and one hand written digit im-
age dataset, i.e., USPS [Hull, 1994]. Detailed information of
the six datasets is summarized in Table 1.

We compare UDFS proposed in this paper with the follow-
ing unsupervised feature selection algorithms.

4http://images.ee.umist.ac.uk/danny/database.html
5http://www.frvt.org/FERET/default.htm
6http://www.ics.uci.edu/ mlearn/MLSummary.html

Table 1: Database Description.

Dataset Size # of Features # of Classes

UMIST 575 644 20

FERET 1400 1296 200

YALEB 2414 1024 38

USF HumanID 5795 2816 122

Isolet 1560 617 26

USPS 9298 256 10

• All Features which adopts all the features for clustering.
It is used as the baseline method in this paper.

• Max Variance which selects the features corresponding
to the maximum variances.

• Laplacian Score [He et al., 2005] which selects the fea-
tures most consistent with the Gaussian Laplacian ma-
trix.

• Feature Ranking [Zhao and Liu, 2007] which selects fea-
tures using spectral regression.

• Multi-Cluster Feature Selection (MCFS) [Cai et al.,
2010] which selects features using spectral regression
with �1-norm regularization.

For LS, MCFS and UDFS, we fix k, which specifies the
size of neighborhood, at 5 for all the datasets. For LS and
FR, we need to tune the bandwidth parameter for Gaussian
kernel, and for MCFS and UDFS we need to tune the reg-
ularization parameter. To fairly compare different unsuper-
vised feature selection algorithms, we tune these parame-
ters from {10−9, 10−6, 10−3, 1, 103, 106, 109}. We set the
number of selected features as {50, 100, 150, 200, 250, 300}
for the first five datasets. Because the total feature number
of USPS is 256, we set the number of selected features as
{50, 80, 110, 140, 170, 200} for this dataset. We report the
best results of all the algorithms using different parameters.
In our experiment, each feature selection algorithm is first
performed to select features. Then K-means clustering algo-
rithm is performed based on the selected features. Because
the results of K-means clustering depend on initialization, it
is repeated 20 times with random initializations. We report
the average results with standard deviation (std).

Two evaluation metrics, i.e., Accuracy (ACC) and Normal-
ized Mutual Information (NMI), are used as evaluation met-
rics in this paper. Denote qi as the clustering results and pi as
the ground truth label of xi. ACC is defined as follows.

ACC =

∑n
i=1 δ(pi,map(qi))

n
(18)

where δ(x, y) = 1 if x = y; δ(x, y) = 0 otherwise, and
map(qi) is the best mapping function that permutes cluster-
ing labels to match the ground truth labels using the Kuhn-
Munkres algorithm. A larger ACC indicates better perfor-
mance. Given two variables P and Q, NMI is defined in (19).

NMI(P,Q) =
I(P,Q)√
H(P )H(Q)

, (19)

where I(P,Q) is the mutual information between P and Q,
and H(P ) andH(Q) are the entropies of P and Q [Strehl and
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Table 2: Clustering Results (ACC% ± std) of Different Feature Selection Algorithms

All Features Max Variance Laplacian Score Feature Ranking MCFS UDFS
UMIST 41.9 ± 3.0 46.2 ± 2.3 46.3 ± 3.3 48.1 ± 3.7 46.5 ± 3.5 49.2 ± 3.8

FERET 22.0 ± 0.5 20.1 ± 0.3 22.4 ± 0.5 22.8 ± 0.5 25.1 ± 0.7 26.1 ± 0.6

YALEB 10.0 ± 0.6 9.6 ± 0.3 11.4 ± 0.6 13.3 ± 0.8 12.4 ± 1.0 14.7 ± 0.6

USF HumanID 23.1 ± 0.6 20.9 ± 0.5 18.8 ± 0.3 10.1 ± 0.1 23.2 ± 0.6 24.6 ± 0.8

Isolet 57.8 ± 4.0 56.6 ± 2.6 56.9 ± 2.9 57.1 ± 2.9 61.1 ± 4.4 66.0 ± 3.6

USPS 62.9 ± 4.3 63.4 ± 3.1 63.5 ± 3.2 63.6 ± 3.1 65.3 ± 5.4 65.8 ± 3.3

Table 3: Clustering Results (NMI% ± std) of Different Feature Selection Algorithms

All Features Max Variance Laplacian Score Feature Ranking MCFS UDFS

UMIST 62.9 ± 2.4 63.6 ± 1.8 65.1 ± 2.0 64.9 ± 2.6 65.9 ± 2.3 66.3 ± 2.0

FERET 62.7 ± 0.4 62.3 ± 0.4 63.2 ± 0.3 63.3 ± 0.5 64.8 ± 0.5 65.6 ± 0.4

YALEB 14.2 ± 0.7 13.1 ± 0.4 18.4 ± 1.0 21.3 ± 0.9 18.8 ± 1.1 25.4 ± 0.9

USF HumanID 50.9 ± 0.4 49.1 ± 0.4 47.5 ± 0.2 29.3 ± 0.3 50.6 ± 0.4 51.6 ± 0.5

Isolet 74.2 ± 1.8 73.2 ± 1.1 72.0 ± 1.1 72.5 ± 1.7 75.5 ± 1.8 78.1 ± 1.3

USPS 59.2 ± 1.5 59.6 ± 1.1 60.2 ± 1.3 59.6 ± 1.1 61.2 ± 1.7 61.6 ± 1.5

Ghosh, 2002]. Denote tl as the number of data in the cluster
Cl (1 ≤ l ≤ c) according to clustering results and t̃h be the
number of data in the h-th ground truth class (1 ≤ h ≤ c).
NMI is defined as follows [Strehl and Ghosh, 2002]:

NMI =

∑c
l=1

∑c
h=1 tl,h log(

n·tl,h
tl t̃h

)√(∑c
l=1 tl log

tl
n

) (∑c
h=1 t̃h log

t̃h
n

) , (20)

where tl,h is the number of samples that are in the intersection
between the cluster Cl and the h-th ground truth class. Again,
a larger NMI indicates a better clustering result.

Experimental Results and Discussion

First, we compare the performance of different feature selec-
tion algorithms. The experiment results are shown in Table
2 and Table 3. We can see from the two tables that the clus-
tering results of All Features are better than those of Max
Variance. However, because the feature number is signifi-
cantly reduced by performing Max Variance for feature selec-
tion, resulting in the subsequential operation, e.g., clustering,
faster. Therefore, it is more efficient. The results from other
feature selection algorithms are generally better than All Fea-
tures and also more efficient. Except for Max Variance, all
of the other feature selection algorithms are non-linear ap-
proaches. We conclude that local structure is crucial for fea-
ture selection in many applications, which is consistent with
previous work on feature selection [He et al., 2005]. We can
also see from the two tables that MCFS gains the second best
performance. Both Feature Ranking [Zhao and Liu, 2007]

and MCFS [Cai et al., 2010] adopt a two-step approach, i.e,
spectral regression, for feature selection. The difference is
that Feature Ranking analyzes features separately and selects
features one after another but MCFS selects features in batch-
mode. This observation validates that it is a better way to an-
alyze data features jointly for feature selection. Finally, we

observe that the UDFS algorithm proposed in this paper ob-
tains the best performance. There are two main reasons for
this. First, UDFS analyzes features jointly. Second, UDFS
simultaneously utilizes discriminative information and local
structure of data distribution.

Next, we study the performance variation of UDFS with re-
spect to the regularization parameter γ in (11) and the number
of selected features. Due to the space limit, we use the three
face image datasets as examples. The experimental results
are shown in Fig.1. We can see from Fig.1 that the perfor-
mance is not very sensitive to γ as long as it is smaller than 1.
However, the performance is comparatively sensitive to the
number of selected features. How to decide the number of
selected features is data dependent and still an open problem.

Conclusion

While it has been shown in many previous works that discrim-
inative information is beneficial to many applications, it is not
that straightforward to utilize it in unsupervised learning due
to the lack of label information. In this paper, we have pro-
posed a new unsupervised feature selection algorithm which
is able to select discriminative features in batch mode. An
efficient algorithm is proposed to optimize the �2,1-norm reg-
ularized minimization problem with orthogonal constraint.
Different from existing algorithms which select the features
which best preserve data structure of the whole feature set,
UDFS proposed in this paper is able to select discriminative
feature for unsupervised learning. We show that it is a better
way to select discriminative features for data representation
and UDFS outperforms the existing unsupervised feature se-
lection algorithms.
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Figure 1: Performance variation of UDFS w.r.t different parameters.
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