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Abstract

In this paper we address the problem of matrix
factorization on compressively-sampled measure-
ments which are obtained by random projections.
While this approach improves the scalability of ma-
trix factorization, its performance is not satisfac-
tory. We present a matrix co-factorization method
where compressed measurements and a small num-
ber of uncompressed measurements are jointly de-
composed, sharing a factor matrix. We evaluate
the performance of three matrix factorization meth-
ods in terms of Cramér-Rao bounds, including: (1)
matrix factorization on uncompressed data (MF);
(2) matrix factorization on compressed data (CS-
MF); (3) matrix co-factorization on compressed
and uncompressed data (CS-MCF). Numerical ex-
periments demonstrate that CS-MCF improves the
performance of CS-MF, emphasizing the useful be-
havior of exploiting side information (a small num-
ber of uncompressed measurements).

1 Introduction

Matrix factorization is a decomposition method where a data
matrix X ∈ R

M×N is approximated as a product of two or
more factor matrices which uncover the latent structure of the
data. The 2-factor decomposition seeks latent factor matrices
U ∈ R

M×K and V ∈ R
N×K which minimize the following

objective function

JMF =
1

2
‖X −UV �‖2F , (1)

where ‖ · ‖F denotes the Frobenious norm. When columns in
X are treated as data points in M -dimensional space, U and
V are referred to be as basis matrix and encoding matrix, re-
spectively. Exemplary matrix factorization methods include
principal component analysis (PCA) [Jolliffe, 2002], non-
negative matrix factorization (NMF) [Lee and Seung, 1999],
probabilistic matrix factorization (PMF) [Srebro et al., 2005],
to name a few. Matrix factorization has established itself as
a powerful technique in various applications such as collab-
orative prediction [Koren et al., 2009], document clustering
[Xu et al., 2003; Yoo and Choi, 2010], music transcription
[Smaragdis and Brown, 2003], and brain wave analysis [Lee

and Choi, 2009]. In some of these applications such as col-
laborative prediction, the data matrix is sparse since most of
entries are missing or unobserved. Thus, matrix factoriza-
tion methods can be applied to a large scale problem without
much extra care, since only observed elements are used for
learning. On the other hand, data matrix is dense in some
applications where spectrograms of music or brain wave data
are analyzed. In such applications, it is not easy to handle
large-scale data.

Compressed sensing is a new sensing/sampling paradigm
which ensures near-optimal recovery of sparse signals from
a small number of linear measurements [Donoho, 2006;
Candes and Tao, 2006]. Compressed sensing is a promising
approach to handling a large-scale dense data matrix since
it is allowed to perform a processing (learning or data anal-
ysis) in the compressed domain (in which a compressively-
sampled matrix is much smaller than the original input data
matrix in size) rather than in the ambient space. Let Y ∈
R

P×N be the compressively-sampled data matrix which is
obtained by Y = ΦX , in which Φ ∈ R

P×M is a linear
sensing matrix which is often given by a random projection.
A direct application of the compressed sensing framework to
matrix factorization, referred to as CS-MF, yields the follow-
ing objective function

JCS-MF =
1

2
‖Y −ΦUV �‖2F . (2)

CS-MF determines U and V which minimize (2), improving
the scalability since Y and Φ requires less space in storage,
compared to X . Recently, nonnegative matrix factorization
(NMF) in the compressed domain, referred to as CS-NMF,
was presented in [O’Grady and Rickard, 2008], where (2) is
minimized with nonnegativity constraints imposed on factor
matrices U and V as well as the data matrix X . In contrast
to the standard compressed sensing framework where U is
known in advance, CS-MF or CS-NMF estimates both U and
V in the compressed-domain, which degrades the reconstruc-
tion performance.

Matrix co-factorization (MCF) is a technique that decom-
pose two or more data matrices jointly, sharing some factor
matrices in factorizations. In addition to the data matrix,
side information matrices are also considered for the joint
decomposition, including label information [Yu et al., 2005;
Lee et al., 2010], link information [Zhu et al., 2007], inter-
subject variations [Lee and Choi, 2009], and spectrograms
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of music [Yoo et al., 2010]. MCF was also applied to the
general entity-relationship models [Singh and Gordon, 2008;
Yoo and Choi, 2009] to learn the characteristics of each en-
tity from the relationships. In this paper we present a method
of MCF on compressively-sampled data, referred to as CS-
MCF, where we decompose the compressed data matrix and
a small portion of uncompressed original data jointly in or-
der to improve the performance of matrix factorization in
the compressed domain. We compute the Cramér-Rao bound
(CRB) for matrix factorization on uncompressed data (MF),
CS-MF, and CS-MCF in the case of Gaussian likelihood,
showing that CS-MCF indeed improves the performance over
CS-MF in terms of the reconstruction quality. We consider
alternating least squares (ALS) algorithms for MF, CS-MF,
and CS-MCF. In addition, we also consider multiplicative up-
dates, as in NMF, comparing NMF, CS-NMF (NMF in the
compressed domain), and CS-NMCF (nonnegative matrix co-
factorization in the compressed domain with small uncom-
pressed information).

2 Matrix Co-Factorization on Compressively

Sampled Data

Compressed sensing [Donoho, 2006; Candes and Tao, 2006]

is a new framework which performs the measurement and
compression simultaneously to reduce computation required
in the measurement process. The fundamental theoretical re-
sults of compressed sensing is based on the sparsity of the
representation of given data, which makes possible to reduce
the required number of measurement less than the amount
computed from the classical Shannon-Nyquist sampling the-
orem. Compressed sensing assumes that the basis which
sparsely represents the given data is known, however, the ap-
propriate representation basis for given data is usually not
known in advance. In that cases we have to learn a repre-
sentation matrix from a given data, however, the problem of
learning representation basis from the compressed measure-
ment has not been studied much.

Matrix factorization in the compressed domain considers
a decomposition of the compressively-sampled data matrix
Y = ΦX where Φ ∈ R

P×M is a random projection. Thus

given X and Φ, CS-MF seeks Y ≈ ΦUV �, determining
factor matrices U and V which minimizes (2). In contrast
to the compressed sensing framework where the basis matrix
U is known in advance, CS-MF should estimate both U and
V given compressed data Y . We believe that this explains
the poor reconstruction performance of CS-MF in our exper-
iments.

Now we explain matrix co-factorization in the compressed
domain with exploiting partial uncompressed data. We par-
tition the data matrix X ∈ R

M×N into two sub-matrices
Xc ∈ R

M×C and Xu ∈ R
M×(N−C). Assuming that

C > (N−C), the sub-matrix Xc is compressed by a random
projection Φ, leading to Y = ΦXc with the abuse of nota-
tion. CS-MCF considers a joint decomposition of the com-
pressed data matrix Y and partial uncompressed data Xu,
minimizing the following objective function:

JCS-MCF =
1

2
‖Y −ΦUV �‖2F +

λ

2
‖Xu −UW�‖2F , (3)

c
X

X Φ U

U W
�

V
�

=

=

u
X

u
X

Y

Figure 1: Pictorial illustration of CS-MCF. The input data
matrix X is partitioned into Xc (to be compressed) and Xu

(partial uncompressed data). Then Y = ΦXc and Xu are
jointly decomposed, sharing the factor matrix U , leading to

Y ≈ ΦUV � and Xu ≈ UW�.

where the factor matrix U ∈ R
M×K is shared, capturing

the common characteristics in representing both Y and Xu,

and V ∈ R
C×K and W ∈ R

(N−C)×K capture individual
characteristics. The parameterλ controls the balance between
two decomposition. Pictorial illustration of CS-MCF is given
in Fig. 1.

2.1 ALS Updates

ALS updates for U ,V ,W are easily derived by solving

∂JCS−MCF

∂U
= 0,

∂JCS−MCF

∂V
= 0,

∂JCS−MCF

∂W
= 0,

for U ,V ,W , respectively, and the corresponding gradients
of (3) are calculated as

∂JCS−MCF

∂U
= −Φ

�Y V +Φ
�
ΦUV �V

−λXuW + λUW�W ,

∂JCS−MCF

∂V
= −Y �

ΦU + V U�
Φ

�
ΦU ,

∂JCS−MCF

∂W
= −XuU +WU�U ,

leading to ALS updates

vec(U) ← ((V �V )⊗ (Φ�
Φ) + λ(W�W )⊗ IM )−1

vec(Φ�Y V + λXuW ),

V ← Y �
ΦU(U�

Φ
�
ΦU)−1,

W ← Xu�U(U�U)−1,

where IM is the identity matrix with size M ×M , vec(U) =
[u�

1 , . . . ,u
�
K ]� is the ’vec’ operator which creates a column

vector from the matrix U by stacking columns of U , and ⊗
denotes the Kronecker product (tensor product).
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Table 1: Algorithm description for ALS updates and multiplicative updates.
Model Updates Model Updates

MF U ← XV (V �V )−1 NMF U ← U � XV
UV �V

V ← X�U(U�U)−1 V ← V � X�U
V U�U

CS-MF vec(U) ← ((V �V )⊗ (Φ�
Φ))−1vec(Φ�Y V ) CS-NMF U ← U � Φ

�Y V
Φ

�
ΦUV �V

V ← Y �
ΦU(U�

Φ
�
ΦU)−1 V ← V � Y �

ΦU
V U�

Φ
�

ΦU

CS-MCF vec(U) ← ((V �V )⊗ (Φ�
Φ) + λ(W�W )⊗ IM )−1 CS-NMCF U ← U � Φ

�Y V +λXu�W
Φ

�
ΦUV �V +λUW�W

vec(Φ�Y V + λXuW )

V ← Y �
ΦU(U�

Φ
�
ΦU)−1 V ← V � Y �

ΦU
V U�

Φ
�
ΦU

W ← Xu�U(U�U)−1 W ← W � Xu�U
WU�U

2.2 Multiplicative Updates

As in NMF, we derive multiplicative updates for U ,V ,W
which iteratively minimize (3) with nonnegativity constraints
imposed on factor matrices, given the nonnegative data ma-
trix. Our derivation follows the technique used in [Yoo and
Choi, 2008] where the gradient of an objective function J is
decomposed as

∂J

∂Θ
=

[
∂J

∂Θ

]+
−

[
∂J

∂Θ

]−
,

where
[
∂L
∂Θ

]+
> 0 and

[
∂L
∂Θ

]−
> 0, and then multiplicative

updates for parameters Θ are given by

Θ ← Θ�

[
∂J
∂Θ

]−[
∂J
∂Θ

]+ ,

where � denotes Hadamard product (element-wise product)
and the division is done in an element-wise manner. Applying
this technique to the minimization of (3) yields

U ← U �
Φ

�Y V + λXuW

Φ
�
ΦUV �V + λUW�W

,

V ← V �
Y �

ΦU

V U�
Φ

�
ΦU

,

W ← W �
XuU

WU�U
.

ALS or multiplicative updating algorithms for MF and CS-
MF are also derived in the same way, which are summarized
in Table 1.

3 Cramér-Rao Bounds

We calculate the Cramér-Rao bound (CRB) to evaluate the
performance of matrix factorization, CS-MF, and CS-MCF.
CRB [Kay, 1993] provide the lower bound of the variance of
unbiased estimators of a deterministic parameter in the fol-
lowing form,

E

{
(θ − θ̃)(θ − θ̃)�

}
≥ I−1, (4)

where θ is the estimated parameter of the model, θ̃ is the true
value of the parameter, A ≥ B denotes that A − B is the
positive semi-definite matrix, and I is the Fisher information
matrix, each element of which is computed by

Iij = E

{
−
∂2 log p(x|θ)

∂θi∂θj

}
, (5)

where p(x|θ) is the likelihood. In the case of matrix fac-
torization, we have factor matrices U ∈ R

M×K and V ∈
R

N×K as the parameters for the model, so θ becomes

θ =
[
vec(U)�, vec(V )�

]�
=

[
u�
1 ,u

�
2 , · · · ,u

�
M ,v�

1 ,v
�
2 , · · · ,v

�
N

]�
,

where ui and vj represent the column vector consist of the
elements in the i-th and j-th row of U and V , respectively.
Then, the Fisher information matrix has the following repre-
sentation,

I =

[
IU IUV

I�
UV IV

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Iu1
· · · Iu1uM

Iu1v1
· · · Iu1vN

...
. . .

...
...

. . .
...

IuMu1
· · · IuM

IuMv1
· · · IuMvN

Iv1u1
· · · Iv1uM

Iv1
· · · Iv1vN

...
. . .

...
...

. . .
...

IvNu1
· · · Iv1uM

IvNv1
· · · IvN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

where each part is computed for the corresponding parameter,
for example,

[Iui
]k,k′ = E

{
−
∂2 log p(X|U ,V )

∂uik∂uik′

}
, (6)

[
Iuiui′

]
k,k′

= E

{
−
∂2 log p(X|U ,V )

∂uik∂ui′k′

}
, (7)

where [A]i,j represents the (i, j)-th element in the matrix A.

The Fisher information matrix of CS-MCF has a different
parametrization with the matrix U , V and W , which is

I =

⎡
⎣ IU IUV IUW

I�
UV IV IVW

I�
UW I�

V W IW

⎤
⎦ ,
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Table 2: Graphical model, likelihood, Fisher information matrix (FIM) and Cramér-Rao lower bound for matrix factorization
(MF), matrix factorization for compressed measurements (CS-MF), and matrix co-factorization for compressed measurements
(CS-MCF).

MF CS-MF CS-MCF

Graphical
Model

X

U V

Y

X

U V
U V W

Y

u
X

c
X

Likelihood p(X|U ,V ) p(Y |U ,V ) p(Y ,Xu|U ,V ,W )
=

∏
j N (xj |Uvj ,Σ) =

∏
j N (yj |ΦUvj ,Σ) =

∏
j N (yj |ΦUvj ,Σb)∏

k N (xu
k |Uwk,Σa)

FIM

IU (V �
Σ

−1V )⊗ IM (V �V )⊗ (Φ�
Σ

−1
Φ) (V �V )⊗ (Φ�

Σ
−1
a Φ) + (W�

Σ
−1
b W )⊗ IM

IV (U�
Σ

−1U)⊗ IN (U�
Φ

�
Σ

−1
ΦU)⊗ IN (U�

Φ
�
Σ

−1
a ΦU)⊗ IC

IUV vec(UΣ
−1)vec(V )� vec(UΦ

�
Σ

−1
Φ)vec(V )� vec(U�

Φ
�
Σ

−1
a Φ)vec(V )�

IW (U�
Σ

−1
b U)⊗ IN−C

IUW vec(UΣ
−1
b )vec(W )�

IV W 0

CRB (U
known)

[IV ]
−1

[IV ]
−1

[
IV IVW

I�
V W IW

]−1

CRB (U
unknown)

[
IU IUV

I�
UV IV

]−1 [
IU IUV

I�
UV IV

]−1
⎡
⎣ IU IUV IUW

I�
UV IV IV W

I�
UW I�

V W IW

⎤
⎦
−1

and each element of the parts is computed in the similar way
to (6) and (7).

The CRB for matrix factorization, CS-MF and CS-MCF
are computed in the following subsections. We use the
maximum likelihood estimator (MLE), which is known to
be asymptotically unbiased and efficient under mild regular-
ity conditions [Kay, 1993]. The analysis is based on these
asymptotic properties, assuming that there are sufficient num-
ber of samples. The models, computed Fisher information
matrices and the form of CRB are summarized in Table 2.

Since the solution of the matrix factorization is not
uniquely determined, the direct comparison between the esti-
mated parameters and the ground-truth values is meaningless.
Instead of directly comparing the parameters themselves, we
use the expected reconstruction error

Eij = E

{
(Xij − X̃ij)

2
}

= E

{
(u�

i vj − ũ
�

i ṽj)
2
}
,

where X̃ ij , ũi, and ṽj are the ground-truth values of the pa-
rameters, and Xij is the element of the reconstructed input

matrix from the estimated parameters ui and vj . Although
the factor matrices is not uniquely determined, the reconstruc-
tion error Eij is the same for all the possible decompositions.
The lower bound for the reconstruction error is represented
by using the variances of the estimators, such as

Eij = E

{
(u�

i vj − ũ
�

i vj + ũ
�

i vj − ũ
�

i ṽj)
2
}

= E
{
v�
j (ui − ũi)(ui − ũi)

�vj

}
+E

{
ũ
�

i (vj − ṽj)(vj − ṽj)
�ũi

}
+2E

{
v�
j (ui − ũi)(vj − ṽj)

�ũi

}
.

If we assume that the estimator is unbiased, the last term of
the above equation becomes zero, and the remaining terms
are lower-bounded by the computed CRB,

Eij ≥ E

{
v�
j

[
I−1

]
ui

vj

}
+ ũ

�

i

[
I−1

]
vj

ũi (8)

where
[
I−1

]
ui

represents the part of the inverse Fisher in-

formation matrix corresponding to the position of Iui
. Then,
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the error bound becomes

Eij ≥ ṽ
�

j

[
I−1

]
ui

ṽj + Tr
{[

I−1
]
ui

[
I−1

]
vj

}
+ũ

�

i

[
I−1

]
vj

ũi. (9)

Note that if we assume that the basis matrix U is known in
advance, we only have to deal with the parameter V . With
the computation similar to the above, the lower bound of the
reconstruction error is computed in the following form,

Eij ≥ ũ
�

i

[
I−1

]
vj

ũ
�

i , (10)

which is smaller than the case when the basis is unknown
in the amount of the terms corresponding to U , which is

ṽ
�

j

[
I−1

]
ui

ṽj + Tr
{[

I−1
]
ui

[
I−1

]
vj

}
.

3.1 Cramér-Rao Bounds for Matrix Factorization

The Fisher information matrix is computed from the likeli-
hood of the model. If we assume that the noise is additive and
distributed as the Gaussian distribution, the model is written
by

X = UV � +N ,

where N ij ∼ N (0, σ2), and N (μ, σ2) is the Gaussian distri-

bution with mean μ and variance σ2. Then, the likelihood of
the model becomes

p(X|U ,V ) =
∏
j

N (xj |Uvj , σ
2IK).

Calculation of IV
The derivative of the log-likelihood with respect to vj is com-
puted by

∂ log p(X|U ,V )

∂vj

= U�
Σ

−1xj −U�
Σ

−1Uvj ,

where Σ = σ2IM . If we differentiate above again with re-
spect to vj′ , where j′ 
= j, the result becomes zero. If j′ = j,
then,

∂2 log p(X |U ,V )

∂vj∂vj

= −U�
Σ

−1U .

Therefore, the part of Fisher information matrix forV is com-
puted by

IV = E

{
(U�

Σ
−1U)⊗ IN

}
= (U�

Σ
−1U)⊗ IN .

Calculation of IU
In this case, we use the likelihood of the model having the
following form,

p(X|U ,V ) =
∏
i

N (xi|V ui, σ
2IK),

where xi represents the i-th row of the input matrix X . The
first derivative with respect to ui is computed as

∂ log p(X|U ,V )

∂ui

= V �
Σ

−1xi − V �
Σ

−1V ui. (11)

Again, the second derivative becomes zero if i′ 
= i, and if
i′ = i,

∂2 log p(X|U ,V )

∂ui∂ui′
= −V �

Σ
−1V .

Therefore, Fisher information matrix for U is written by

IU = E

{
(V �

Σ
−1V )⊗ IM

}
= (V �

Σ
−1V )⊗ IM .

Calculation of IUV

To compute IUV , we differentiate (11) with respect to vj ,
which becomes

∂2 log p(X|U ,V )

∂ui∂vj

=
1

σ2

(
xijIK − u�

i vjIK − vju
�
i

)
.

Since E {xijIK} = u�
i vjIK , the first two terms of the

above equation vanishes when we take the expectation.
Therefore, the Fisher information matrix for U and V is writ-
ten by

IUV = vec(UΣ
−1)vec(V )�.

3.2 Cramér-Rao Bound for CS-MF

We model the CS-MF with the following two-step procedure,

X = UV � +Na,

Y = ΦX +N b,

where [Na]i,j ∼ N (0, σ2
a) is the representation error and

[N b]i,j ∼ N (0, σ2
b ) is the measurement error. The likelihood

is written by

p(Y |U ,V ) =

∫
p(Y |X)p(X|U ,V )dX

=
∏
j

N (yj |ΦUvj ,Σ),

where Σ = σ2
aΦΦ

� + σ2
bIP , where Φ ∈ R

P×M .

Calculation of IV
The derivative of the log-likelihood with respect to vj is com-
puted by

∂ log p(Y |U ,V )

∂vj

= U�
Φ

�
Σ

−1yj −U�
Φ

�
Σ

−1
ΦUvj .

Differentiate again with vj′ becomes zero when j′ 
= j, and
if j′ = j, then

∂2 log p(Y |U ,V )

∂vj∂vj

= −U�
Φ

�
Σ

−1
ΦU .

Therefore, the Fisher information matrix for V is computed
by

IV = E

{
U�

Φ
�
Σ

−1
ΦU ⊗ IN

}
= U�

Φ
�
Σ

−1
ΦU ⊗ IN .
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Calculation of IU

The derivative with respect to ui is written by

∂ log p(Y |U ,V )

∂ui

=
∑
j

(
vjy

�
j Σ

−1φi − vjφ
�
i Σ

−1
ΦUvj

)
.

The derivative of above equation with respect to ui′ is sim-
plified by

∂2 log p(Y |U ,V )

∂ui∂ui′
= −(Φ�

Σ
−1

Φ)ii′V
�V ,

which leads the Fisher information matrix for U to be

IU = (V �V )⊗ (Φ�
Σ

−1
Φ).

Calculation of IUV

If we differentiate (12) with respect to vj , we obtain

∂2 log p(Y |U ,V )

∂ui∗∂vj+
= φ�

i∗Σ
−1yj+IK

−φ�
i∗Σ

−1
ΦUvj+IK −U�

Φ
�
Σ

−1φi∗v
�
j+ .

The first two terms disappear when we take the expectation,
so the Fisher information matrix for U and V becomes

IUV = vec(U�
Φ

�
Σ

−1
Φ)vec(V )�.

The theoretical bound of CS-MF is larger than that of ma-
trix factorization. The main difference of the computed Fisher

information matrix is from the change of the term Σ
−1 of ma-

trix factorization to the term Φ
�
Σ

−1
Φ. Note that the Σ

−1

in the matrix factorization is

Σ
−1 = σ−2

a IM . (12)

However, Φ�
Σ

−1
Φ in the CS-MF is written by

Φ
�
Σ

−1
Φ = Φ

�(σ2
aΦΦ

� + σ2
bIP )

−1
Φ.

This is usually smaller than the corresponding term in the ma-
trix factorization. For example, if we assume that σ2

b = 0 and
each element of sensing matrix is drawn independently from

N (0, 1), we approximate the term using Φ
�
Φ ≈ PIM and

ΦΦ
� ≈ MIP , such that

Φ
�
Σ

−1
Φ ≈ Φ

�(σ2
aMIP )

−1
Φ

≈
1

M
σ−2
a Φ

�
Φ

≈
P

M
σ−2
a IM ,

which is P/M times smaller than that part of matrix factor-
ization (12). Since the CRB is calculated as the inverse of the
Fisher information matrix, CS-MF has larger CRB than that
of the matrix factorization.

3.3 Cramér-Rao Bound for CS-MCF

The relations in CS-MCF are modeled as in the previous sec-
tion, such that

Xc = UV � +Na,

Y = ΦXc +N b,

Xu = UW� +N c,

where [Na]i,j ∼ N (0, σ2
a), [N c]i,j ∼ N (0, σ2

a) and

[N b]i,j ∼ N (0, σ2
b ). In this case we have three parameters

U , V , and W , so the Fisher information matrix is computed
as

I =

⎡
⎣ IU JUV IUW

I�
UV IV IV W

I�
UW I�

V W IW

⎤
⎦ .

The likelihood is

p(Y ,Xu|U ,V ,W )

= p(Y |U ,V )p(Xu|U ,W )

=
∏
j

N (yj |ΦUvj ,Σb)
∏
l

N (xu
l |Uwl,Σa),

where Σb = σ2
aΦΦ

� + σ2
bIP and Σa = σ2

aIM .

Calculation of IU
Differentiating the log-likelihood with respect to ui leads

∂ log p(Y ,Xu|U ,V ,W )

∂ui

=
∑
j

(
vjy

�
j Σ

−1
b φi − vjφ

�
i Σ

−1
b ΦUvj

)
+W�

Σ
−1
a xi −W�

Σ
−1
a Wui. (13)

Differentiating again with respect to ui′ yields

∂2 log p(Y ,Xu|U ,V ,W )

∂ui∂ui′

= −(Φ�
Σ

−1
b Φ)ii′V

�V −W�
Σ

−1
a W ,

where i′ = i, and yields

∂2 log p(Y ,Xu|U ,V ,W )

∂ui∂ui′
= −(Φ�

Σ
−1
b Φ)ii′V

�V ,

where i′ 
= i. Therefore, the Fisher information matrix for U
becomes

IU = (V �V )⊗ (Φ�
Σ

−1
b Φ) + (W�

Σ
−1
a W )⊗ IM .

Calculation of IV , IW , IUV , and IV W

IV , IW , IUV , and IV W are computed in the similar way as
in matrix factorization and CS-MF, in the following forms,

IV = (U�
Φ

�
Σ

−1
b ΦU)⊗ IC ,

IW = (U�
Σ

−1
a U)⊗ IN−C ,

IUV = vec(U�
Φ

�
Σ

−1
b Φ)vec(V )�,

IUW = vec(UΣ
−1
a )vec(W )�.

1600



0

5

10

15

20

25

30

35

40
S
N

R
 (

d
B
)

S
N

R
 (

d
B
)

U-unknownU-known

M
F

C
S
-M

F

C
S
-M

C
F

M
F

C
S
-M

F

C
S
-M

C
F

U-unknownU-known

N
M

F

C
S
-N

M
F

C
S
-N

M
C
F

N
M

F

C
S
-N

M
F

C
S
-N

M
C
F

0

5

10

15

20

25

30

35

(a) (b)

Figure 2: SNR computed from the CRB (dark) and SNR
achieved from the algorithms (light), for the (a) ALS algo-
rithms with Gaussian data (b) Multiplicative algorithms with
nonnegative data. In each graph, left three are for the case of
known representation U , and right three are for the case of
unknown U .

Calculation of IV W

Fisher information matrix for V and W , IV W , becomes zero
matrix of dimension CK × (N − C)K because the term W
banishes in the derivative with respect to vj .

The Fisher information matrix of CS-MCF is the combi-
nation of the Fisher information matrix of matrix factoriza-
tion and Fisher information matrix of CS-MF. The parameter
V in matrix factorization and CS-MF is divided into V and
W in CS-MCF. The IV and IUV in CS-MCF follows the
form of the corresponding parts of CS-MF, but the IW and
IUW follows the form of the corresponding parts of matrix
factorization. Moreover, IU is the direct combination of the
IU of matrix factorization and IU of CS-MF. In the previous
section, we showed that in general the CRB of matrix fac-
torization is smaller than the CRB of CS-MF, so this kind of
combination leads smaller CRB than that of CS-MF.

4 Numerical Experiments

For the numerical experiments, we computed the bounds of
the reconstruction performances using the equation (9), and
compared them with the actual reconstruction performances
of the algorithms listed in the Table 1. We also computed
the bounds for the cases where we assume that the parameter
U is known in advance (10). In that cases, the actual recon-
struction performances were measured based on the modified
algorithms, where the parameter U is fixed with the ground-
truth values.

To compute the CRB, we have to know the ground-truth
value of the parameters U , V , and W , which makes it dif-
ficult to use the real-world data where the ground-truth fac-
tor matrices are unknown. Therefore, we used synthetic data
for the experiments. The factor matrices U ∈ �100×10,
V ∈ �100×10 and the sensing matrix Φ ∈ �20×100 are ran-
domly generated, and the input matrices were drawn from
them with additive Gaussian noise. For the ALS-based algo-
rithms, each element of the factor matrices and the sensing
matrix is sampled from the Gaussian distribution with mean

0 and variance 1. For the multiplicative update algorithms
which have the nonnegativity constraints, each element is
sampled from a uniform distribution between 0 and 1. For
the co-factorizations, 20 out of 100 columns were chosen for
the uncompressed prior.

As a measure of the reconstruction performances, we used
signal-to-noise ratio (SNR)

SNR = 10 log10
‖X̃‖2F

‖X̃ −UV �‖2F
,

where X̃ is the true value of the input matrix, U and V
are the factor matrices obtained by running the algorithms.
The SNRs were averaged over the 100 different trials (Fig-
ure 2). The bounds were better for the cases where the ma-
trix U is known in advance, than the cases where the ma-
trix U is unknown. This indicates that the estimation of
both U and V is more difficult than the estimation of V
only. The bounds of CS-MF and CS-NMF were seriously
degraded compared to the bounds of MF and NMF, as well
as the actual performances, especially for the cases that the
matrix U is unknown. However, the co-factorization based
methods showed much improved bounds, as well as the per-
formances, compared to CS-MF and CS-NMF. The use of
uncompressed prior as the side information actually helps to
improve the reconstruction performance in the learning from
the compressed data.

As an illustrative example, we ran the algorithms for the
compressively sampled data on the cameraman image (Fig-
ure 3). We divided the image using 8-by-8 patches to build
an input matrix, and compress each column into the size of
49. 25 % of the data is randomly selected to be used for the
uncompressed prior. CS-MCF brought much better recon-
struction result than the CS-MF.

5 Conclusions

We have presented a method for matrix co-factorization in the
compressed domain where compressively-sampled data and
partial uncompressed data were jointly decomposed, sharing
a factor matrix. We calculated CRBs for three matrix factor-
ization methods (MF, CS-MF, CS-MCF) in the case of Gaus-
sian likelihood, showing that CS-MCF improves the recon-
struction performance over CS-MF. Numerical experiments
on image confirmed the better performance of CS-MCF over
CS-MF.
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