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Abstract

Ensemble methods, which train multiple learners
for a task, are among the state-of-the-art learning
approaches. The diversity of the component learn-
ers has been recognized as a key to a good en-
semble, and existing ensemble methods try differ-
ent ways to encourage diversity, mostly by heuris-
tics. In this paper, we propose the diversity reg-
ularized machine (DRM) in a mathematical pro-
gramming framework, which efficiently generates
an ensemble of diverse support vector machines
(SVMs). Theoretical analysis discloses that the di-
versity constraint used in DRM can lead to an ef-
fective reduction on its hypothesis space complex-
ity, implying that the diversity control in ensemble
methods indeed plays a role of regularization as
in popular statistical learning approaches. Exper-
iments show that DRM can significantly improve
generalization ability and is superior to some state-
of-the-art SVM ensemble methods.

1 Introduction

Ensemble methods, such as AdaBoost [Freund and Schapire,
1997], Bagging [Breiman, 1996] and Random Forests
[Breiman, 2001], are among the state-of-the-art learning
approaches. Ensemble methods train a number of com-
ponent learners for a learning task, and combine them to
achieve a strong generalization performance. It has been
widely accepted that to achieve a good ensemble, the com-
ponent learners should be accurate and diverse. This recog-
nition was first theoretically justified by the error-ambiguity
decomposition [Krogh and Vedelsby, 1995] for regression
tasks as E = Ē − Ā, where E is the mean-square er-
ror of the ensemble, Ē is the average mean-square error
of component learners, and Ā is the average difference be-
tween the ensemble and the component learners. This de-
composition implies that, as long as Ē is fixed, a higher
difference among the component learners leads to a bet-
ter ensemble. Later results achieved by the bias-variance-
covariance decomposition [Ueda and Nakano, 1996], the
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strength-correlation decomposition [Breiman, 2001], and
the information-theoretical decompositions [Brown, 2009;
Zhou and Li, 2010] all confirmed that the diversity among the
component learners is a key to the ensemble performance.

Though it remains an open problem on how to measure and
evaluate diversity [Brown, 2009; Zhou and Li, 2010], many
effective ensemble methods have already been developed.
These methods employ different mechanisms to create di-
verse component learners, mostly using randomization strate-
gies by smart heuristics [Ho, 1998; Breiman, 2000; 2001;
Dietterich, 2002; Zhou and Yu, 2005; Brown et al., 2005].

In this paper, we propose to managing the diversity among
component learners in a deterministic mathematical program-
ming framework, resulting in the diversity regularized ma-
chine (DRM) which generates an ensemble of SVMs [Vap-
nik, 1995] with an imposed diversity constraint. Theoretical
analysis in the PAC learning framework [Valiant, 1984] dis-
closes that the diversity constraint used in DRM can effec-
tively reduce the hypothesis space complexity. This implies
that the diversity control in ensemble methods plays the role
of regularization as in popular statistical learning approaches.
Experiments show that DRM can improve both the training
and generalization accuracy of SVM, and is superior to some
state-of-the-art SVM ensemble methods.

The rest of this paper is organized as follows. Section 2
presents the DRM, which is then theoretically analyzed in
Section 3 and experimented in Section 4. Section 5 con-
cludes.

2 DRM

Consider an input space, X and an underlying distribution D
over X . A hypothesis, or a learner, is a function h : X →
{−1, 1}, and a concept c is an underlying hypothesis. A
training set is a set of m examples S = {(xi, yi)}mi=1, where
xi ∈ X are drawn i.i.d. under D and yi = c(xi). A learning
algorithm is to select a hypothesis h from a feasible hypothe-
sis spaceH according to the given training set. For an integer
number n, we denote [n] as the set {1, 2, . . . , n}.
2.1 Diversity Measure

We consider linear classification model w ∈ R
d, which clas-

sifies an instance by the inner product w�φ(x), where φ(x)
is a feature mapping of the instance x. Note that the model
can be viewed as equivalent to the commonly used model
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w�φ(x)+b , since by extending the mapping φ(x) to one ex-
tra dimension with a constant value, the extended w absorbs
the functionality of b.

We note that, though there is no agreement on what form
diversity should be defined in, the studied measures of diver-
sity usually can be in a pairwise form, i.e., the total diversity
is the sum of a pairwise difference measure, measuring clas-
sification effectiveness. Such diversity measures include Q-
statistics measure [Kuncheva et al., 2003], correlation coeffi-
cient measure [Kuncheva et al., 2003], disagreement measure
[Ho, 1998], double-fault measure [Giacinto and Roli, 2001],
κ statistic measure [Dietterich, 2000], etc. Thus we also con-
sider a form of diversity based on pairwise difference. Given
a pairwise diversity measure div in a metric space of hy-
potheses, we consider the total diversity in norm p of the set
of hypotheses H = {h1, . . . , hT } as

divp(H) =
(∑

1≤i�=j≤T
div(hi, hj)

p
)1/p

.

Notice that each hypothesis hi is a linear learner without the
bias term, thus the direction of the linear learner effects the
classification most. Thus, for a pair of linear learners w1 and
w2, we measure their diversity using the angle between them,

div(w1,w2) = 1− w�
1 w2

‖w1‖ · ‖w2‖ ,
so that the larger value of div, the larger angle between the
linear learners.

2.2 Learning with Diversity Constraint

The training of multiple diverse linear learners can be for-
mulated as an optimization framework that minimizes a loss
function with a constraint of diversity. The framework for
training T linear learners, w1, . . . ,wT , can be described as:

argmin
w1,...,wT

∑T

t=1

∑m

i=1
�(yi,w

�
t φ(xi))) (1)

s.t. ‖wt‖2 ≤ θ (∀t ∈ [T ]),

divp({w1, . . . ,wT }) ≥ q.

where θ is the capacity control for each linear model, divp

is the p-norm diversity measure, q is the minimum amount
of the diversity required, φ is a feature mapping induced by
kernel k, � is a loss function (e.g., hinge loss for classification
problem or square loss for regression problem). After the
training, the combined model is wc = 1

T

∑T
t=1 wt, which is

still a linear learner.
Specifically, for classification problem, we implement the

framework with the 1-norm diversity measure div1 and fol-
low the ν-SVM framework [Schölkopf et al., 2000] with
square hinge loss. Thus, the framework is implemented as:

argmin
{wt,ρt,ξt}T

t=1

T∑
t=1

(−ν ρt
T
+

1

m

m∑
i=1

ξ2t,i)+μ
∑

1≤t<t′≤T

w�
t wt′

‖wt‖2‖wt′‖2
s.t. yiw

�
t φ(xi) ≥ ρt − ξt,i(∀i ∈ [m], ∀t ∈ [T ]),

‖wt‖2 ≤ 1 (∀t ∈ [T ]). (2)

where μ corresponds to q in Eq.(1), ξt = [ξt,1, . . . , ξt,n]
� is

a vector of slack variables, ν is the parameter to trade-off the
ρ-margin and the slack variables.

2.3 Optimization

Under some conditions, which will be discussed later, the so-
lution of Eq.(2) satisfies ‖wt‖2 = 1 for all t. Using this

equation, the diversity term w�
t wt′

‖wt‖‖wt′‖ is then simplified as
w�

t wt′ . Further note that adding a constant ‖wt‖22 + ‖wt′‖22
(that is 2) will not change the optimal solution of Eq.(2), thus
the diversity term can be replaced by ‖wt +wt′‖22. We then
have the following relaxed convex optimization problem:

argmin
{wt,ρt,ξt}T

t=1

T∑
t=1

(−ν ρt
T

+
1

m

m∑
i=1

ξ2t,i) + μ
∑

1≤t�=t′≤T

‖wt +wt′‖22

s.t. yiw
�
t φ(xi) ≥ ρt − ξt,i(∀i ∈ [m], ∀t ∈ [T ]),

‖wt‖22 ≤ 1 (∀t ∈ [T ]). (3)

Since the constraints in Eq.(3) is naturally separable for
each learner, instead of directly solving the large-scale
quadratically constrained quadratic program (QCQP) prob-
lem of Eq.(3), we employ an efficient alternating opti-
mization technique [Luo and Tseng, 1992]. The alternat-
ing optimization sequentially solves small QCQP problems
with variables {wt, ρt, ξt} while fixing the other variables
{wt′ , ρt′ , ξt′} for all t′ 	= t as constants. Mathematically, in
each step we are solving the following small QCQP problem
for each t:

argmin
wt,ρt,ξt

− ν
ρt
T

+
1

m

∑m

i=1
ξ2t,i + μ

∑
t′ �=t

‖wt +wt′‖22
s.t. yiw

�
t φ(xi) ≥ ρt − ξt,i, ∀i ∈ [m], (4)

‖wt‖22 ≤ 1.

Further, the above QCQP problem can be addressed via se-
quential quadratic programming efficiently. Introducing the
Lagrange multipliers αt and λt for the constraints in Eq.4, we
have:

L(wt, ρt, ξt;αt, λt) =

− ν
ρt
T

+
1

m

∑m

i=1
ξ2t,i + μ

∑
t′ �=t

‖wt +wt′‖22
+ λt(‖wt‖22 − 1)−

∑m

i=1
αt,i(yiw

�
t φ(xi)− ρt + ξt,i),

where αt = [αt,1, . . . , αt,n]. Setting the partial derivations
w.r.t. {wt, ρt, ξt} to zeros, we have:

∂L

∂wt
=2μ

∑
t′ �=t

(wt +wt′) + 2λtwt−
m∑
i=1

αt,iyiφ(xi)=0,

∂L

∂ρt
=−ν 1

T
+

∑m

i=1
αt,i = 0,

∂L

∂ξt,i
=

2

m
ξt,i − αt,i = 0.

Let ŵt =
∑

t′ �=t wt′ , we then obtain the solution of wt as:

wt =
−2μŵt +

∑m
i=1 αt,iyiφ(xi)

2((T − 1)μ+ λt)
, (5)
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and thus the dual of Eq.(4) can be cast as:

argmin
αt,λt

‖ − 2μŵt+
∑m

i=1 αt,iyiφ(xi)‖22
4((T − 1)μ+ λt)

+
m

4

m∑
i=1

α2
t,i+λt

s.t.
∑m

i=1
αt,i = ν

1

T
,αt ≥ 0, λt ≥ 0.

which is jointly-convex for {αt, λt} [Boyd and Vanden-
berghe, 2004]. We further employ the alternating optimiza-
tion technique to achieve the global optimal solution of the
dual of Eq.(4) [Luo and Tseng, 1992]. Specifically, when λt

is fixed, αt can be solved via:

argmin
αt

1

2
α�

t

(
(K 
 yy�)

2(λt + (T − 1)μ)
+

m

2
I

)
αt − r�αt

s.t.
∑m

i=1
αt,i = ν

1

T
,αt ≥ 0, λt ≥ 0. (6)

where K is the kernel matrix of φ(x) and
 is the entry-wise
product, and r is a vector with components:

ri =
μyiŵ

�
t φ(xi)

(λt + (T − 1)μ)
.

Noted that Eq.6 is a convex quadratic programming prob-
lem involving only one equality constraint, this is similar to
the dual problem of SVM which can be efficiently solved by
state-of-the-art SVM solver, such as Libsvm using SMO al-
gorithm [Chang and Lin, 2001].

When αt is fixed, λt can be solved in a closed-form, i.e.,

λt = (7)

max{0,‖ − 2μw0 +
∑m

i=1 αt,iyiφ(xi)‖2
2

− (T − 1)μ}.
Algorithm 1 presents the pseudocode of the DRM. It is

worth noticing that, when the optimal solution of all λt’s are
non-zeros, according to KKT condition, the optimal solution
{w∗

t , ρ
∗
t , ξ

∗
t }Tt=1 obtained by DRM according to Eq.(3) satis-

fies ‖w∗
t ‖22 = 1, thus is also the optimal solution of Eq.(2).

3 Theoretical Analysis

3.1 Preliminaries

Probabilistic Approximately Correct (PAC) learning [Valiant,
1984] is a powerful tool for analyzing learning algorithms.
There has been much development of the theory, however, we
choose to use the simple results for the clarity of presenting
our core idea, instead of proving the tightest results. Com-
prehensive introductions to learning theory can be found in
textbooks such as [Anthony and Bartlett, 1999].

Noted that y ∈ {−1,+1} and h ∈ [−1,+1], the margin of
h on an instance is yh(x). The training error with margin γ
of a hypothesis h is defined as

εγe (h) =
1

m

∑m

i=1
I[h(xi)yi < γ],

where I is the indicator function that outputs 1 if its inner
expression is true and 0 otherwise. Define the generalization
error, or true error, as

εg(h) = Ex∼D[I[h(x)c(x) < 0]].

Algorithm 1 DRM
Input: Training set S = {(xi, yi)}mi=1 and kernel matrix K,
parameters T and μ
Process:

1: λt ← 1 and wt ← 0, ∀t ∈ [T ]
2: while not converged yet do
3: for t = 1, . . . , T do
4: while not converged yet do
5: αt ← solutions returned by Eq. (6)
6: λt ← solutions returned by Eq. (7)
7: end while
8: set wt ← according to Eq. (5)
9: end for

10: end while

Output: wc =
1
T

∑T
t=1 wt

It is well known that, the generalization error of a learning
algorithm A can be bounded using its empirical error and the
complexity of its feasible hypothesis space. For linear learn-
ers, its hypothesis space is uncountable, thus we measure that
using covering number as the definition below.

Definition 1 (Covering Number) Given m samples S =
{x1, . . . ,xm} and a function spaceF , characterize every f ∈
F using a vector vS(f) = [f(x1), . . . , f(xm)] in a metric
space Bm with metric ρ. The covering number Np(F , γ, S)
is the minimum number l of vectors u1, . . . ,ul ∈ Bm such
that, for all f ∈ F there exists j ∈ {1, . . . , l},

‖ρ(vS(f),uj)‖p =
(∑m

i=1
ρ(f(xi), uj,i)

p
) 1

p ≤ m
1
p γ,

and Np(F , γ,m) = supS:|S|=mNp(F , γ, S).
Lemma 1 [Bartelett, 1998] Consider the learning algorithm
A selecting a hypothesis from space H according to m ran-
dom examples. For all γ > 0, with probability at least 1− δ,
the generalization error is bounded as

εg(A) ≤ εγe (A) +

√
2

m

(
lnN∞(H, γ/2, 2m) + ln

2

δ

)
,

where N∞ is the covering number with infinity norm.
Lemma 1 indicates that the generalization error is bounded

by two factors, one is the performance on the training set, and
the other is the hypothesis space complexity. A good learning
algorithm should balance the two factors well.

3.2 Analysis of DRM

First, we look into the loss term of DRM in Eq.(2), which
evaluates the loss of each hypothesis (linear learner) as:

�T (wt) = (−ν ρt
T

+
1

m

∑m

i=1
ξ2t,i),

where ξt,i ≥ ρt − yiw
�
t φ(xi)(∀i ∈ [m]) by the constraints.

We concern about the loss of the combined hypothesis wc =
1
T

∑T
t=1 wt with ρc =

1
T

∑T
t=1 ρt:

�c(wc) = (−νρc + 1

m

∑m

i=1
ξ2i ),
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where ξi ≥ ρc − yiw
�
c φ(xi)(∀i ∈ [m]). We then have the

following proposition.

Proposition 1 Let w1, . . . ,wT be the component hypothe-
ses solved by DRM, and wc =

1
T

∑T
t=1 wt be the combined

hypothesis, the loss of wc is bounded as

�c(wc) ≤
∑T

t=1
�T (wt).

Proof. Notice that, for a training instance x, the
classification margin yw�

c φ(x) can be expanded as
y 1
T

∑T
t=1 w

�
t φ(x), which is no larger than 1

T

∑T
t=1 ρt −

1
T

∑T
t=1 ξt by the constraints in Eq.(2). Since ρc =

1
T

∑T
t=1 ρt, the proposition is then proved by that

∑T
t=1 ξ

2
t ≥

( 1
T

∑T
t=1 ξt)

2.
The proposition shows that, as we optimize the loss of

component hypotheses, we also optimize an upper bound of
the loss of the combined hypothesis. Keeping the proposition
in mind, we then focus on the hypothesis space complexity.

We conceptively distinguish the hypothesis space of the
component hypothesis and that of the combined hypothesis.
Let w1, . . . ,wT be hypotheses from space H, and the com-
bined wc be in spaceHc. We will use Lemma 2.

Lemma 2 [Zhang, 2002] If H is a space such that for all
w ∈ H, it holds ‖w‖2 ≤ a, then for any ε > 0,

log2N∞(H, ε,m) ≤ C1
a2

ε2
log2(1 +m(C2

a

ε
+ 4)),

where C1 and C2 are constants.
We then consider if maximizing the diversity, can lead to

constraining the norm of wc, which results Theorem 1.

Theorem 1 Let H be a space such that for all w ∈ H, it
holds ‖w‖2 ≤ a. If Hc is a space such that for all wc ∈ Hc

there is a set H = {w1, . . . ,wT } ∈ HT satisfying wc =
1
T

∑T
i=1 wi and div∞(H) > q, then for any ε > 0,

log2N∞(Hc, ε,m) ≤ C1
1

ε2

(
a2

T
+ (1− q)a2

)

· log2(1 +m(C2
1

ε

√
a2

T
+ (1− q)a2 + 4)),

where C1 and C2 are constants.

Proof. Since wc = 1
T

∑T
i=1 wi, we explicitly write wc

as w = [ 1T
∑T

i=1 wi,1, . . . ,
1
T

∑T
i=1 wi,d]. By the constraint

div∞(H) > q, we have, for all i, j, 1 − w�
i wj

‖wi‖·‖wj‖ ≥ q, so
that

w�
i wj ≤ (1− q)‖wi‖ · ‖wj‖ ≤ (1− q)a2.

Therefore,

‖wc‖22 = w�
c wc =

d∑
j=1

(
1

T

T∑
i=1

wi,j)(
1

T

T∑
k=1

wk,j)

=
1

T 2

∑T

i=1
‖wi‖22 +

2

T 2

∑T−1

i=1

∑T

j=i
wi

�wj

≤ 1

T
a2 +

2

T 2

T (T − 1)

2
(1− q)a2 ≤ 1

T
a2 + (1− q)a2

Applying Lemma 2, the theorem is proved.
From the proof, it can be observed that, by summing up

vectors, the norm of the combined vector is decomposed into
the sum of norm of every vector and the inner product be-
tween every different vectors, which is interestingly in a sim-
ilar form to the error-ambiguity decomposition.

It is more interesting to connect maximum diversity prin-
ciple to maximum entropy principle. The entropy of a vector
defined as follows can lead to a bound of covering number.

Definition 2 [Zhang, 2002] The (uniform) entropy of a vector
w is defined as

entropy(w) =
∑d

i
|wi| ln |wi|

1
d‖w‖1

.

Lemma 3 [Zhang, 2002] If H is a space such that for all
w ∈ H, it holds w has no negative entries, ‖w‖1 ≤ a, and
entropy(w) ≤ c, then for any ε > 0,

log2N∞(H, ε,m) ≤ C1
a2 + ac

ε2
log2(1 +m(C2

a

ε
+ 4)),

where C1 and C2 are constants.

Lemma 4 Given H = {w1, . . . ,wT } be a set of T vec-
tors in R

d, let wc = 1
T

∑T
i=1 wi. If div∞(H) > q, then

entropy(wc) ≤ ‖wc‖1 ln d ≤
√

1
T a+ (1− q)a2·√d ln d.

Lemma 4 is proved by the relationship between 1-norm and
the diversity. Besides, we can have an intuitive explanation.
The entropy measures the uniformness of a vector. When
two vectors are with a large angle, their large components are
likely to be in different locations, so that their average leads
to a more uniform vector, i.e., large entropy. The proof of
Theorem 2 follows Lemma 3 and Lemma 4, and is ignored
due to limited page space.

Theorem 2 LetH be a space such that for all w ∈ H, it holds
w has no negative entries and ‖w‖1 ≤ a. If Hc is a space
such that for all wc ∈ Hc there is a set H = {w1, . . . ,wT } ∈
HT satisfying wc = 1

T

∑T
i=1 wi and div∞(H) > q, then

for any ε > 0,

log2N∞(Hc, ε,m) ≤ C1
d(1 + ln d)

ε2

(
a2

T
+ (1− q)a2

)

· log2(1 +m(C2

√
d

ε

√
a2

T
+ (1− q)a2 + 4)),

where C1 and C2 are constants.
Remark. Both Theorems 1 and 2 disclose that constraining
a large diversity can lead to a small hypothesis space com-
plexity. Notice that the training performance is optimized.
According to Lemma 1, a good generalization performance
can be expected. It should also be noted that Theorems 1 and
2 do not mean that diversity maximization equals norm con-
straint or entropy maximization, here we only use them as the
bridging techniques for the proofs.

4 Experiments

Fifteen UCI data sets are employed to conduct the experi-
ments. All features are normalized into the interval [0, 1].
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Table 1: Comparison of test errors. An entry of DRM is bolded (or italic) if it is significantly better (or worse) than SVM. An entry of
Bagging and AdaBoost is marked bullet (or circle) if it is significantly worse (or better) than the DRM with the same component number.

data DRM21 DRM51 DRM101 SVM Bag21 Bag51 Bag101 Ada21 Ada51 Ada101

austra 0.141±0.006 0.141±0.005 0.141±0.005 0.138±0.004 0.157±0.008• 0.154±0.007• 0.154±0.007• 0.206±0.016• 0.206±0.015• 0.207±0.014•
australian 0.140±0.006 0.141±0.007 0.140±0.007 0.141±0.006 0.145±0.013 0.142±0.009 0.141±0.010 0.192±0.013• 0.191±0.012• 0.185±0.015•
breastw 0.063±0.039 0.063±0.039 0.063±0.039 0.064±0.039 0.046±0.012 0.046±0.011 0.045±0.009 0.045±0.013 0.044±0.011 0.045±0.012
clean1 0.358±0.029 0.420±0.033 0.427±0.044 0.512±0.013 0.500±0.005• 0.498±0.008• 0.499±0.010• 0.379±0.031 0.314±0.030◦ 0.282±0.022◦
diabetes 0.249±0.016 0.251±0.020 0.250±0.019 0.243±0.014 0.246±0.007 0.249±0.009 0.248±0.008 0.275±0.011• 0.278±0.011• 0.281±0.014•
ethn 0.149±0.057 0.173±0.078 0.138±0.050 0.323±0.004 0.321±0.004• 0.320±0.003• 0.320±0.004• 0.041±0.008◦ 0.039±0.007◦ 0.039±0.007◦
german 0.280±0.017 0.282±0.017 0.281±0.016 0.287±0.008 0.302±0.006• 0.303±0.007• 0.303±0.008• 0.316±0.010• 0.314±0.014• 0.319±0.019•
haberman 0.303±0.044 0.286±0.022 0.299±0.030 0.380±0.048 0.360±0.036• 0.361±0.039• 0.358±0.035• 0.311±0.022 0.303±0.029 0.299±0.026
heart 0.196±0.018 0.199±0.021 0.198±0.021 0.190±0.017 0.210±0.020• 0.212±0.026 0.213±0.026 0.248±0.032• 0.256±0.029• 0.259±0.032•
house-votes 0.097±0.020 0.097±0.020 0.097±0.020 0.097±0.020 0.081±0.006 0.081±0.005◦ 0.082±0.006◦ 0.079±0.008◦ 0.079±0.009◦ 0.078±0.010◦
house 0.063±0.019 0.063±0.018 0.063±0.019 0.063±0.019 0.051±0.006 0.050±0.006◦ 0.052±0.007 0.064±0.016 0.066±0.015 0.066±0.015
ionosphere 0.337±0.014 0.334±0.015 0.326±0.025 0.337±0.014 0.324±0.006◦ 0.324±0.006◦ 0.324±0.005 0.258±0.020◦ 0.242±0.016◦ 0.217±0.018◦
liver-disorders 0.364±0.035 0.361±0.035 0.365±0.039 0.369±0.043 0.362±0.030 0.359±0.029 0.359±0.030 0.338±0.035◦ 0.336±0.034◦ 0.332±0.030◦
vehicle 0.226±0.020 0.218±0.019 0.221±0.043 0.243±0.012 0.250±0.016• 0.248±0.019• 0.248±0.016 0.040±0.009◦ 0.034±0.011◦ 0.027±0.009◦
wdbc 0.031±0.008 0.031±0.009 0.031±0.009 0.031±0.008 0.033±0.007 0.033±0.008 0.032±0.008 0.040±0.010• 0.040±0.009• 0.040±0.010•
average rank 4.87 4.80 4.93 6.4 6.00 6.07 5.60 5.87 5.37 5.10

Table 2: Pairwise win/tie/loss counts of rows against columns.
DRM51 DRM101 SVM Bag21 Bag51 Bag101 Ada21 Ada51 Ada101

DRM21 1/14/0 1/14/0 5/10/0 7/7/1 6/6/3 7/6/2 6/4/5 6/3/6 6/3/6
DRM51 6/3/6 5/10/0 6/8/1 6/6/3 6/7/2 7/4/4 6/3/6 6/3/6
DRM101 4/11/0 5/10/0 5/8/2 5/9/1 6/3/6 6/3/6 6/3/6

SVM 3/9/3 3/8/4 3/9/3 6/2/7 6/2/7 6/2/7
Bag21 0/15/0 0/14/1 7/2/6 7/2/6 7/2/6
Bag51 0/15/0 6/3/6 5/4/6 6/3/6
Bag101 6/3/6 6/3/6 6/3/6
Ada21 1/10/4 1/10/4
Ada51 0/11/4

SVM and DRM share the same RBF kernel with the width
being the average distance among training instances, and the
same parameter ν determined through 5-fold cross-validation
on the training set. DRM has two more parameter, μ, control-
ling the amount of diversity, and T , the number of component
learners. μ is also selected by 5-fold cross validation on train-
ing sets. We consider three ensemble sizes, that is, 21, 51 and
101. For comparison, we also evaluate the performance of
Bagging (abbreviated as Bag) and AdaBoost (abbreviated as
Ada). We perform 20 times hold-out tests with random data
partitions, half data for training and the other half for testing.
Table 1 summarizes the comparison results. On each data
set, we assign ranks to methods. The best method receives
the rank 1, and the worst the rank 10. The last row of Ta-
ble 1 presents the average ranks. A two-tail pair-wise t-test
with 95% significance level is employed to compare every
pair of the evaluated approaches, and the win/tie/loss counts
are summarized in Table 2.

It can be observed from the last row of Table 1 that the
average ranks of DRM methods are all lower than 5, while
the ranks of the other methods are above 5. From Table 2,
by the t-test, DRM is never worse than SVM, while Bag-
ging and AdaBoost are worse than SVM on some data sets.
Comparing with Bagging which always makes marginal im-
provement, DRM can have much larger improvement. Com-
paring with AdaBoost which is, sometimes, much worse than
SVM, DRM is more robust. The t-test shows that DRM has
more wins than losses comparing to Bagging, and is com-
parable with AdaBoost. Moreover, by comparing DRM with
difference ensemble size, it can be observed that the size does
not have a significant impact on its performance. The obser-

vations suggest that DRM has a comparable overall perfor-
mance with Bagging and AdaBoost, but is more robust.

Figure 1 plots the effect of μ against the training and testing
errors on four data sets, where, for a clear view, we don’t
show the curves in a high error range. First, it can be observed
that, when the training error of DRM is not larger than that
of SVM, DRM generally has a smaller testing error. This
also validates our setting of μ value according to the training
error. Second, plots (a) and (b) show that DRM can reduce
both the training and test error from SVM, while plots (c) and
(d) show that DRM can still reduce the test error even when
the training error is higher than SVM. Moreover, it can be
observed from plots (b) to (d) that DRM can have a smaller
generalization gap (i.e., the gap between training and testing
error) than SVM. Particularly, in plot (b), the generalization
gap closes to zero when log10 μ is around −2.

5 Conclusion

Diversity has been recognized as the key to the success of en-
semble methods. In contrast to previous methods which en-
courage diversity in a heuristic way, in this paper, we propose
the DRM approach based on mathematical programming
framework, which explicitly controls the diversity among the
component learners. Theoretical analysis on DRM discloses
that the hypothesis space complexity can be effectively re-
duced by the diversity constraint. The analysis suggests that
the diversity control in ensemble methods plays a role simi-
lar to the regularization; this provides an explanation to why
diversity is important for ensemble methods. Experiment
shows that DRM can significantly improve the generalization
performance, and is superior to some state-of-the-art ensem-
ble methods. Comparing with Bagging which always makes
marginal improvement, DRM can lead to much larger im-
provement; comparing with AdaBoost which is sometimes
much worse than single learner, DRM never loses to single
learner in our experiments.

In our analysis, we try to perform simple derivations in
order to clarify the main idea. Incorporating more elaborate
treatments (e.g. [Smola et al., 2000]) may result in tighter
bounds. Moreover, we only concern diversity and leave the
consideration of the combination scheme for future work.

1607



� � � � �� �� �� �� �� �	 �
 �� �� ���
���

���

���

���

�����μ

��
��
�

��������������
�������������
����������������

���������������

� � � � �� �� �� �� �� �	 �
 �� �� ���
���

���

���

���

���

�����μ

��
��
�

� � � � �� �� �� �� �� �	 �
 �� �� ���
�

���

���

���

���

���

���

�����μ

��
��
�

� � � � �� �� �� �� �� �	 �
 �� �� ���
��	

���

���

���

���

�����μ

��
��
�

(a) clean1 (b) haberman (c) heart (d) house-votes

Figure 1: Diversity-controlling parameter μ against errors of DRM21. Legends of plots (b), (c) and (d) are the same as that of plot (a).
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