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Abstract

Field classification is an extension of the traditional
classification framework, by breaking the i.i.d. as-
sumption. In field classification, patterns occur as
groups (fields) of homogeneous styles. By utiliz-
ing style consistency, classifying groups of patterns
is often more accurate than classifying single pat-
terns. In this paper, we extend the Bayes deci-
sion theory, and develop the Field Bayesian Model
(FBM) to deal with field classification. Specif-
ically, we propose to learn a Style Normalized
Transformation (SNT) for each field. Via the SNTs,
the data of different fields are transformed to a
uniform style space (i.i.d. space). The proposed
model is a general and systematic framework, un-
der which many probabilistic models can be eas-
ily extended for field classification. To transfer the
model to unseen styles, we propose a transductive
model called Transfer Bayesian Rule (TBR) based
on self-training. We conducted extensive experi-
ments on face, speech and a large-scale handwrit-
ing dataset, and got significant error rate reduction
compared to the state-of-the-art methods.

1 Introduction

Statistical pattern recognition usually assumes that the pat-
terns are independently and identically distributed (i.i.d.).
However, in practical environments, patterns often occur as
homogeneous groups (fields) generated by the same source.
Moreover, the style of each group is consistent, implying sta-
tistical dependencies among patterns.

1.1 Field Classification

For a classification problem with feature space x ∈ Rd, and
label space y ∈ {1, · · · ,M} (M is the number of classes),
we have the following definition:

Definition 1 Denote a group of patterns and the correspond-
ing labels as

fi =
{
xi
1, x

i
2, · · · , xi

ni

}
, ci =

{
yi1, y

i
2, · · · , yini

}
. (1)

If all the patterns in fi come from the same source with a
consistent style, we call fi a field-pattern with field-length
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Figure 1: (a) Traditional classification with i.i.d. assumption;
(b) field classification with group information.

ni , and ci is the field-class. Note that when ni = 1, the field
reduces to a singlet.

The patterns in a field are assumed to come from a com-
mon source. For example, in handwriting recognition, a field-
pattern is a group of characters produced by a certain writer
with his/her individual writing style; in face recognition, face
images can appear as different groups according to different
poses or illumination conditions; in speech recognition, dif-
ferent speakers have different accents. These situations pro-
vide important group (field) information. The definition of
field breaks the traditional i.i.d. assumption:

• Within each field, the patterns are NOT independent.
• Different fields are NOT identically distributed.
As the style in a single field is consistent, different fields

usually have great style variations. The purpose of field clas-
sification is to train a classifier on the labeled field-patterns
{fi, ci}Ni=1 (N is the number of training fields) for predict-
ing the field-class of a new field-pattern (assigning labels for
a group of patterns simultaneously). Note that a new field-
pattern unnecessarily enjoys the same style as the training
field-patterns, which means style transfer exists between the
training and test fields. This makes the problem even more
challenging.

In the traditional i.i.d. based classification framework, the
patterns are classified one at a time (Figure 1(a)), known as
singlet classification. On the contrary, in field classification, a
group of patterns are classified simultaneously (Figure 1(b)).
By utilizing style consistency in each field, field classification
will give higher accuracy than singlet classification.
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1.2 Previous Work

Despite its importance, the field classification problem has
been rarely studied in the literature. [Sarkar and Nagy, 2005]
proposed a style mixture model which assumes a fixed num-
ber (say K) of styles across all the patterns. Under each style,
the patterns are i.i.d. The distribution of a field-pattern is a
mixture of the K styles. On one hand, the style number needs
to be fixed before hand; on the other hand, for a newly coming
field-pattern of different style from the K styles, this model
does not promise good performance. Another related model
was proposed by assuming Gaussian field-class-conditional
distribution [Veeramachaneni and Nagy, 2005]. However, the
model is merely valid for the Gaussian distribution, and its
performance is rather limited due to its computational ineffi-
ciency. [Tenenbaum and Freeman, 2000] proposed a bilinear
model to separate the style and content (class) information of
patterns. However, this model can only predict labels for a
field. When the patterns are coming one at a time (singlet),
the model becomes unavailable. In addition, the optimization
of this model requires the SVD decomposition of an Nd×M
matrix, which is computationally inefficient when the number
of classes M or the number of fields N is large.

1.3 Our Model

In contrast to previous works, in this paper, we extend the
Bayes decision theory under two reasonable assumptions and
develop the Field Bayesian Model (FBM) to deal with field
classification. More specifically, we propose to learn a Style
Normalized Transformation (SNT) for each field. Via the
SNTs, the data of different fields are transformed to a uni-
form style space (i.i.d. space), where the traditional Bayesian
classification model can apply. Our model is a general frame-
work. Under this framework, we have shown how a mul-
tivariate Gaussian density model can be modified for field
classification and achieve surprisingly good performance. In-
terestingly, the bilinear model for separating style and con-
tent [Tenenbaum and Freeman, 2000] is very similar to a spe-
cial case under our framework. We have developed a lot of
decision rules for classification on a newly coming single pat-
tern or a field-pattern even if it shares no common styles with
the training field-patterns (style transfer). We conducted ex-
tensive experiments on face and speech data as well as a large-
scale handwriting dataset (with 3, 755 classes and around
495K patterns). The experimental results are highly encour-
aging: we got significant error rate reduction compared to the
state-of-the-art methods.

1.4 Related Topic

We note that field classification is also related to Multiple
Task Learning (MTL) [Caruana, 1997] and Transfer Learn-
ing (TL) [Pan and Yang, 2010]. However, key differences
exist in that our field classification model merely learns a sin-
gle classifier, while MTL learns multiple classifiers (one for
each task). In addition, while concept transfer is the main fo-
cus in TL, our proposed model cares about the same concept
but with style transfer. Field classification is also closely re-
lated to classifier adaptation, where we should adapt the clas-
sifier from a style-independent domain to a style-specific do-
main [Zhang and Liu, 2011].

2 Field Bayesian Classification

The main idea of applying the Bayes decision theory to field
classification is to assign the field-pattern to the field-class
of maximum a posteriori (MAP) probability, which can be
computed by the Bayes formula:

p(c|f) = p(c)p(f |c)
p(f)

=
p(y1, · · · , yn)p(x1, · · · , xn|y1, · · · , yn)

p(x1, · · · , xn)
.

(2)

Here we omit the field index i and use f and c to repre-
sent a general field-pattern and field-class. The key problem
is to define the field-class prior probabilities p(c) and field-
class-conditional probability distributions p(f |c). Based on
two reasonable assumptions as follows, we derive the Field
Bayesian Model (FBM), develop the optimization algorithm,
and provide special cases for practical purpose.

2.1 Basic Assumptions

The consistency of style in each field is known as style con-
text [Veeramachaneni and Nagy, 2007], which is different
from the linguistic and spatial context. To make full use of
the style context, we have the following assumptions.

Assumption 1

p(c) = p(y1, y2, · · · , yn) = p(y1)p(y2) · · · p(yn) . (3)

We assume no higher order linguistic dependence than the
prior class probabilities. This means we only care about the
style context in each field. Linguistic contexts such as mor-
phological and lexical context (already widely used in optical
character recognition and automated speech recognition) are
not our focus, but are usable in field classification if needed.

Since the number of field-class grows exponentially with
the basic class number (for an M -class problem with field-
length n, there are totally Mn field-classes), we cannot define
a distribution for each field-class. In light of this, we make the
following assumption.

Assumption 2

p(fi|ci) = p
(
xi
1, · · · , xi

ni
|yi1, · · · , yini

)

=

ni∏
j=1

p
(
gi(x

i
j)|yij

)
.

(4)

Here we assume that under certain field-specific class-
independent transformation gi(x), the patterns in each field
become class-conditionally independent. This means after
the transformation, the data of different fields are transferred
to a uniform style space, where all the patterns are i.i.d. We
call this process Style Normalized Transformation (SNT). A
consequence of this assumption is the order independence,
implying that under any permutation of the order of patterns
in a field, the joint conditional probability is not changed. In
other words, we only care about the style context in each field,
while the spatial context like feature dependence between ad-
jacent patterns, which could be captured by HMM and other
models, is not our focus.
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2.2 Main Work

From Assumption 2, we only need to define the single-class
conditional probability distributions p(x|y) and the Style
Normalized Transformation gi(x) for each field. In this
paper, we assume the SNT to be an affine transformation
(covering rotation, scaling, shear and shift transformations)
gi(x) = A�

i x + bi, where Ai ∈ Rd×d, bi ∈ Rd are the
parameters.

Model Definition

Given labeled field-patterns {fi, ci}Ni=1, we learn the single-
class conditional probability distributions p(x|y) and the
field-specific SNT {Ai, bi}Ni=1 simultaneously. The likeli-
hood function of the training data is

L =

N∏
i=1

p(fi|ci) =
N∏
i=1

ni∏
j=1

p
(
A�

i x
i
j + bi|yij

)
. (5)

The parameters are estimated such that the likelihood func-
tion is maximized. Equivalently, the negative log-likelihood
is minimized:

NLL = −
N∑
i=1

ni∑
j=1

log p
(
A�

i x
i
j + bi|yij

)
. (6)

Directly minimizing NLL will lead to over-fitting. To allevi-
ate this, we adopt a regularization term on the SNTs.
Problem 1 Field Bayesian Model (FBM)

min
p,{Ai,bi}

NLL+
N∑
i=1

R(Ai, bi) , (7)

where the regularization term is

R(A, b) = β
∥∥A� − I

∥∥2
F
+ γ ‖b‖22 . (8)

Here I is the d × d identity matrix. The first term of R is to
constrain the deviation of A from the identity matrix, and the
second term is to constrain the deviation of b from the zero
vector. Setting β = γ = +∞ will lead to Ai = I, bi = 0, ∀i,
implying no style variation. Hence, the FBM model seeks a
balance between style transfer and non-transfer, which will
give better generalization performance. Under the field-
specific style normalized transformation (SNT), we can learn
the style-invariant Bayesian model which is more relevant to
the classification content. That means we separate the style
and the content by the SNT and underlying Bayesian model.

Prediction on Future Patterns

Before we dive into solving the above optimization problem
of FBM (7), we first introduce how to use the model to predict
the labels of single patterns and field-patterns. We assume
equal a priori probabilities as usually.
Classification for Singlet
We can use the traditional Bayes Decision Rule (BDR):

y = argmax
y

p(x|y) . (9)

In order to make use of the SNTs (on training field-patterns)
learned before, we propose a Voted Decision Rule (VDR):

y = argmax
y

N∑
i=1

p(A�
i x+ bi|y) . (10)

This is the classification rule based on feature space perturba-
tion.
Classification for Field
Different from the traditional singlet classification, field clas-
sification is to assign labels to a group of patterns drawn from
the same source (a new field). If we already know the SNT
parameters {A0, b0} of this field, e.g., we know exactly that
the new field has the same style with one of the training fields,
the patterns in the field can be classified one at a time by

y = argmax
y

p(A�
0 x+ b0|y) , (11)

we call this Field Decision Rule (FDR).
If the newly coming field-pattern f = {x1, · · · , xn}

has an unseen style, we should predict the field-class c =
{y1, · · · , yn} and simultaneously estimate the SNT parame-
ters {A, b} via minimizing the negative log-likelihood:

N̂LL = −
n∑

j=1

log p
(
A�xj + b|yj

)
. (12)

We also adopt the same regularization as described above to
avoid over-transfer. In short, the classification task can be
formulated as a learning problem as follows.

Problem 2 Transfer Bayesian Rule (TBR)

min
{yj},A,b

N̂LL+R(A, b) . (13)

This is a transductive model, where we transfer the Bayesian
model to the new style via SNT {A, b}, and simultaneously
deduce the labels {y1, · · · , yn}. Note we can still apply TBR
after FDR (FDR+TBR), which means TBR is used to the
transformed samples (A�

0 x + b0). This is to learn an addi-
tional SNT, which can capture the style change over times.

Optimization

We solve the FBM and TBR problems using the alternating
optimization algorithm, which gives a straightforward inter-
pretation of our models.

For optimizing the FBM (7), the class-conditional distribu-
tions (classifier parameters) estimation and the SNT param-
eters estimation are alternated iteratively. When we fix the
SNT parameters {Ai, bi}, it becomes the problem of param-
eter estimation of a traditional Bayesian model; when we fix
the class-conditional distributions p(x|y), the problem can be
decomposed into N independent optimization problems:

Problem 3 Style Normalized Transformation Learning

min
A,b

−
n∑

j=1

log p(A�xj + b|yj) +R(A, b) . (14)

Here we omit the field index i. The SNT learning is applied
for all the training fields.

For optimizing the TBR (13), the field-class deduction
and the SNT parameters estimation are alternated iteratively.
When we fix the SNT parameters {A, b}, it becomes the prob-
lem of classifying n patterns independently by the FDR rule;
when we fix the labels {y1, · · · , yn}, the problem is to learn

1623



an SNT, which is the same as (14). The alternating optimiza-
tion in this situation can also be viewed as self-training, since
each step of parameters updating is based on the labels de-
duced in the previous step.

Remarks. The key problem is to solve the SNT
model (14). After we solve (14), we can use the alternat-
ing optimization as described above to solve the FBM (7) or
TBR (13). When the optimization problem is jointly con-
vex with all the parameters (as observed in the special case
in Section 2.3), the alternating optimization is guaranteed
to find the global solution. In the non-convex situation, we
can still find a good-enough local minimum via the alternat-
ing optimization. A suitable initialization can be made as
Ai = I, bi = 0, ∀i for FBM and A = I, b = 0 for TBR.

2.3 Special Cases

While our framework can be easily applied to other prob-
abilistic models, in this section, we focus on the behavior
of FBM and TBR under the multivariate Gaussian class-
conditional probability distribution

p(x|θk) =
exp

[− 1
2 (x− μk)

�Σ−1
k (x− μk)

]

(2π)d/2|Σk|1/2 , (15)

where θk = {μk ∈ Rd,Σk ∈ Rd×d} denotes the set of pa-
rameters for class k (k = 1, · · · ,M ).

Now the SNT problem (14) becomes:

min
A,b

R(A, b) +
1

2

n∑
j=1

dm(A�xj + b, μyj
,Σyj

) , (16)

where dm(x, μ,Σ) = (x − μ)�Σ−1(x − μ) is the Maha-
lanobis distance. This is a convex quadratic programming
(QP) problem which has a closed-form solution. However, to
solve this model, we should compute the inverse of a d2 × d2

matrix, which is intractable when d is large. Moreover, it is
also practically difficult to achieve a precise estimation of the
covariance matrix. Therefore, we consider two special cases.

The first one is based on the assumption that Σk = I, k =
1, · · · ,M . This leads to the Nearest Class Mean (NCM) clas-
sifier in the traditional Bayesian framework. Now (16) be-
comes:

min
A,b

R(A, b) +
1

2

n∑
j=1

∥∥A�xj + b− μyj

∥∥2
2
. (17)

This is a convex QP problem. Moreover, in this setting the
FBM (7) problem is also a convex QP, implying that the al-
ternating optimization algorithm described in Section 2.2 is
guaranteed to find the global optimum. We call this model
Field Nearest Class Mean (field-NCM). This model is closely
related to the bilinear model used to separate style and con-
tent [Tenenbaum and Freeman, 2000], with the difference that
our model is convex and we adopt a regularization term to
avoid over-transfer.

We also consider another special case based on the K-L
transformation of the covariance matrix [Kimura et al., 1987].

Σ = ΦΛΦ� , (18)

where Λ = diag[λ1, · · · , λd] with λt, t = 1, · · · , d, being
the eigenvalues (ordered in non-increasing order) of Σ, and
Φ = [φ1, · · · , φd] with φt, t = 1, · · · , d, being the corre-
sponding eigenvectors. In most cases, the estimation of the
minor eigenvalues are affected by noises or lack of samples.
Therefor we only keep the largest T eigenvalues (T < d).
Under this situation, we can change the Mahalanobis distance
used in (16) to the projection distance by computing the Eu-
clidean distance between the original point and its projection
on the principal axes. The projection of point x onto the T
principal axes of Σ is

P(x,Σ, μ) =
T∑

t=1

αtφt + μ , (19)

where

αt = min
{
δ
√
λt,max

{
φ�
t (x− μ),−δ

√
λt

}}
. (20)

We adopt a hyper-parameter δ ≥ 0 to constrain the deviation
of the projection point from the class-mean (when δ = 0,
P(x,Σ, μ) = μ).

Therefore, we can approximate (16) by:

min
A,b

R(A, b) +
1

2

n∑
j=1

∥∥∥A�xj + b− P(xj ,Σyj , μyj )
∥∥∥
2

2
. (21)

Since under this situation, the classification boundary is
quadratic, we call this model Field Quadratic Discriminant
Function (field-QDF).

The SNT learning problems of the field-NCM (17) and the
field-QDF (21) are both convex QPs, which take the general
form as follows:

min
A,b

1

2

n∑
j=1

∥∥∥A�xj + b− sj

∥∥∥
2

2
+β

∥∥∥A� − I
∥∥∥
2

F
+γ ‖b‖22 , (22)

where sj = μyj
for (17) and sj = P(xj ,Σyj

, μyj
) for (21).

This problem has a closed-form solution:

A� = QP−1, b =
s̄−A�x̄
n+ 2γ

, (23)

where

Q =
n∑

j=1

sjx
�
j + 2βI − 1

n+ 2γ
s̄x̄�,

P =
n∑

j=1

xjx
�
j + 2βI − 1

n+ 2γ
x̄x̄�,

s̄ =
n∑

j=1

sj , x̄ =
n∑

j=1

xj .

(24)

The hyper-parameter β, γ acts as a tradeoff between style
transfer and non-transfer. Considering the influence of data
scaling, we set them as:

β =
β̃

2d
||diag(

n∑
j=1

xjx
�
j )||1, γ =

n

2
γ̃. (25)

Where β̃ and γ̃ can be selected from [0,3] effectively via
cross-validation or other methods.
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3 Experiments

We conducted a series of experiments on three benchmark
datasets (face, speech and handwriting).

The first purpose is to compare singlet classification (the
patterns are classified one at a time) with field classification
(a group of patterns with the same style are classified simul-
taneously). We choose the best decision rule for each case:
BDR (9) and VDR (10) for singlet classification; FDR (11),
TBR (13), and FDR+TBR for field classification. Note that
the FDR assumes the test field has the same style with one
of the training fields and the corresponding training field is
known, and therefore, we used it only on the multi-writer
handwriting dataset.

The second purpose is to compare field Bayesian models
with: (1) two field models: the style mixture model [Sarkar
and Nagy, 2005] and the bilinear model [Tenenbaum and
Freeman, 2000]; (2) traditional state-of-the-art methods in
three distinct domains. In order to make a fair comparison,
the distribution of each mixture component in the style mix-
ture model is assumed to be the Gaussian distribution with
identity covariance matrix. The EM algorithm used in the bi-
linear model is initialized by the nearest class mean classifier.

3.1 Face Recognition under Different Poses

The pose database [Gourier et al., 2004] consists of the im-
ages of 15 persons. For each person with zero vertical pose
angle, we used 13 horizontal pose angles varying from −90
to 90 degree (interval 15 degree) in our experiment, in total
195 face images. All the images are resized to be 48 × 36
pixels. The dimensionality is hence equal to 1728. We show
the face images of two persons in Figure 2. Considering the
15 images of each pose as a field, we used the images of the
1-8 poses (the 1-8 columns) as training data, and tested on the
remaining images (9-13 columns).

Figure 2: Face images of two persons under 13 different poses.

NCM Style Mixture Bilinear field-NCM
Singlet 40.00% 30.00% — 25.33% (VDR)
Field 40.00% 26.67% 40.00% 21.33% (TBR)

Table 1: Error rates of different models on the face database. The
bilinear model cannot be used for singlet classification.

For a benchmark comparison, we first implemented the
Fisherface model (FDA with subspace dimensionality 14),
which gave the error rate 30.67% by the nearest class mean
(NCM) classifier. To speed up computation for other meth-
ods, we reduced the dimensionality of images to 100 by PCA.
The results are shown in Table 1. Due to a fixed number of
mixture components, the style mixture model cannot transfer
to new styles very well. The bilinear model cannot be applied
for singlet classification. Moreover, the performance is de-
teriorated because the field-length was too small (there were

only 15 images for each pose). However, our field-NCM with
TBR can still give the best result, because a regularization
term is adopted to avoid over-transfer.

3.2 Multi-speaker Vowel Classification

We used a benchmark speech dataset1. This dataset consists
of 11 vowels uttered by 15 speakers of British English, and
there are six samples per speaker per vowel. Each sample
vector consists of 10 log-area parameters, a standard vocal
tract representation computed from a linear predictive coding
analysis of the digitized speech. We follow the same setting
used in [Tenenbaum and Freeman, 2000] and used the data
of the 1-8 (9-15) speakers as the training set (test set). Each
speaker is considered as a field which has a specific accent.

Classifier Error rate
Multilayer perceptron 49%
Radial basis function network 47%
1-nearest neighbor 44%
Discriminant adaptive nearest neighbor 38.3%

NCM Style Mixture Bilinear field-NCM
Singlet 49.35% 46.11% — 39.39% (BDR)
Field 49.35% 44.15% 22.70% 21.65% (TBR)

Table 2: Error rates of different methods on the vowel classification
data, the first four results are copied from [Tenenbaum and Freeman,
2000] due to the same experimental setting. The bilinear model can-
not be used for singlet classification.

The results are reported in Table 2. As observed, without
style modeling, the best result is obtained by the discriminant
adaptive nearest neighbor (DANN) classifier [Hastie and Tib-
shirani, 1996]. For singlet classification, the field-NCM with
BDR performs comparably with the DANN classifier. More-
over, for field classification, the field-NCM with TBR gave
21.65% error rate, which is better than the best result of the
bilinear model reported by [Tenenbaum and Freeman, 2000].

3.3 Multi-writer Handwriting Recognition

In this section, we consider a large-scale (3, 755 classes) on-
line Chinese character recognition problem. We used the
CASIA-OLHWDB [Liu et al., 2011] to evaluate our models.
Specifically, we used the samples of 100 writers (no.1101 −
1200) from the database. For each writer, there are about
3, 755 isolated characters (which we used as the training set),
and about 1, 200 characters extracted from handwritten texts
(which we used as the test set). Hence, the total number
of patterns is over 495K (375K for training and 120K for
test). Because persons tend to write texts more cursively than
isolated characters, the test data (samples from handwritten
texts) show significant style transfer from the training data
(isolated characters).

For representing a character sample, we used a benchmark
feature extraction method [Liu and Zhou, 2006]: 8-direction
histogram feature extraction combined with pseudo 2D bi-
moment normalization. The feature dimensionality is 512

1The data were collected by David Deterding and are now avail-
able at http://archive.ics.uci.edu/ml.
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which is further reduced to 160 by FDA. Each writer is con-
sidered as a field.

NCM Style Mixture field-NCM
Singlet 18.18% 19.88% 16.07% (VDR)
Field 18.18% 17.93% 12.90% (FDR+TBR)

Table 3: Average error rates of different methods on the 100 writers.

field-QDF
MQDF VDR FDR TBR FDR+TBR
12.17% 11.31% 10.24% 9.91% 8.89%

︸ ︷︷ ︸
Singlet Classification

︸ ︷︷ ︸
Field Classification

Table 4: Average error rates of MQDF and field-QDF models.
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Figure 3: Error rates of different methods on the 100 writers, which
are sorted in the increasing order of (a) the NCM error rates, (b) the
MQDF error rates.

We did not report the performance of the bilinear
model [Tenenbaum and Freeman, 2000] here because it is ex-
tremely time-consuming on the large-scale dataset. We report
in Table 3 the average error rates of the traditional nearest
class mean (NCM) classifier, the style mixture model and our
field-NCM, while the error rates for each of the 100 writers
are plotted in Figure 3(a). It is seen that the field-NCM com-
bined with VDR achieves the best result for singlet classifi-
cation. Moreover, the field-NCM combined with FDR+TBR
gives the best result for field classification. It is noteworthy
that the field-NCM combined with FDR+TBR performs al-
ways better than the other methods on all the 100 writers.
This again shows the superiority of our proposed model.

The proposed field Bayesian model is a general framework,
which can be combined with many probabilistic models. We
also compared our field-QDF model with the state-of-the-
art classifier MQDF (modified quadratic discriminant func-
tion) [Kimura et al., 1987] in Chinese character recognition.
The average results and specific results for each writer are
shown in Table 4 and Figure 3(b). We can see that for sin-
glet classification, the field-QDF with VDR outperforms the
MQDF; and for field classification, the error rates of FDR,
TBR and FDR+TBR decrease gradually, by learning the style
information with increasing attention.

4 Conclusion and Future Work

In this paper, we consider the field classification problem,
where the patterns appear as groups of homogeneous styles.

To make full use of the style context in each field, we propose
to learn a Style Normalized Transformation (SNT) for each
field. With the SNTs, the data of different fields are trans-
formed into an i.i.d. space, where the traditional Bayesian
model can be applied effectively. In order to transfer the
learned model to an unseen style, we propose the Transfer
Bayesian Rule (TBR), which is a transductive model based
on self-training, to predict the labels and the SNT parame-
ters simultaneously from the test data. Experiments on three
benchmark databases (face, speech and handwriting) demon-
strated that our field models can reduce the error rates sig-
nificantly compared with the other state-of-the-art classifiers.
Our future work involves the extension to more complex
class-conditional distributions other than the Gaussian distri-
bution and the exploration of field classification using non-
probabilistic classifiers such as the SVM.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (NSFC) under grants No. 60825301,
No. 60933010 and No. 61075052.

References
[Caruana, 1997] Rich Caruana. Multitask learning. Machine

Learning, 1997.
[Gourier et al., 2004] N. Gourier, D. Hall, and J. Crowley. Estimat-

ing face orientation from robust detection of salient facial fea-
tures. In ICPR, 2004.

[Hastie and Tibshirani, 1996] T. Hastie and R. Tibshirani. Discrim-
inant adaptive nearest neighbor classification. IEEE Trans. PAMI,
1996.

[Kimura et al., 1987] F. Kimura, K. Takashina, S. Tsuruoka, and
Y. Miyake. Modified quadratic discriminant functions and the
application to Chinese character recognition. IEEE Trans. PAMI,
1987.

[Liu and Zhou, 2006] C.-L. Liu and X.-D. Zhou. Online Japanese
character recognition using trajectory-based normalization and
direction feature extraction. In IWFHR, 2006.

[Liu et al., 2011] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang.
CASIA online and offline Chinese handwriting databases. In IC-
DAR (submitted), 2011.

[Pan and Yang, 2010] S.J. Pan and Q. Yang. A survey on transfer
learning. IEEE Trans. KDE, 2010.

[Sarkar and Nagy, 2005] P. Sarkar and G. Nagy. Style consistent
classification of isogenous patterns. IEEE Trans. PAMI, 2005.

[Tenenbaum and Freeman, 2000] J.B. Tenenbaum and W.T. Free-
man. Separating style and content with bilinear models. Neural
Computation, 2000.

[Veeramachaneni and Nagy, 2005] S. Veeramachaneni and
G. Nagy. Style context with second-order statistics. IEEE
Trans. PAMI, 2005.

[Veeramachaneni and Nagy, 2007] S. Veeramachaneni and
G. Nagy. Analytical results on style-constrained bayesian
classification of pattern fields. IEEE Trans. PAMI, 2007.

[Zhang and Liu, 2011] X.-Y. Zhang and C.-L. Liu. Style transfer
matrix learning for writer adaptation. In CVPR (to appear), 2011.

1626




