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Abstract

During the design of a microprocessor, Design
Space Exploration (DSE) is a critical step which
determines the appropriate design configuration of
the microprocessor. In the computer architecture
community, supervised learning techniques have
been applied to DSE to build models for predict-
ing the qualities of design configurations. For su-
pervised learning, however, considerable simula-
tion costs are required for attaining the labeled de-
sign configurations. Given limited resources, it is
difficult to achieve high accuracy. In this paper, in-
spired by recent advances in semi-supervised learn-
ing, we propose the COMT approach which can ex-
ploit unlabeled design configurations to improve
the models. In addition to an improved predic-
tive accuracy, COMT is able to guide the design of
microprocessors, owing to the use of comprehen-
sible model trees. Empirical study demonstrates
that COMT significantly outperforms state-of-the-
art DSE technique through reducing mean squared
error by 30% to 84%, and thus, promising architec-
tures can be attained more efficiently.

1 Introduction

When designing a microprocessor, the first and probably the
most important step is to decide appropriate design config-
urations satisfying different performance/power/temperature/
reliability constraints, which is called as Design Space Ex-
ploration (DSE). It has become a great challenge to computer
architects, since the size of design space grows exponentially
with the number of interactive design parameters (e.g., cache
size, queue size, issue width, etc.), and the simulation re-
quired by evaluating the quality of each configuration of de-
sign parameters is quite time-consuming. Moreover, the dif-
ficulty of DSE task is further exacerbated by the increasing

∗This work was partially supported by the CAS Frontier Re-
search Project, the JiangsuSF (BK2008018), the NSFC (61073097,
61021062, 61003064, 60921002, 60736012), the 973 Program
(2010CB327903, 2011CB302502, 2011CB302803) and the Na-
tional S&T Major Project of China (2009ZX01028-002-003,
2009ZX01029-001-003, 2010ZX01036-001-002).

������
�	�
������	��

����	����

����������
�	���

�����������
�	�
������	��

�������
���	������

�������	�

���������
����	����

������������ ���������������

Figure 1: A framework of predictive modeling for DSE.

amount and complexity of computer workloads with signifi-
cantly different characteristics.

Traditionally, architects employed large-scale cycle-
accurate architectural simulation on representative bench-
marks to explore the design space. However, time-consuming
simulation makes it intractable to explore the entire design
space. For instance, during the design of Godson-3, which is
a 16-core chip-multiprocessor (CMP) with a reconfigurable
architecture [Hu et al., 2009], it takes several weeks to simu-
late only one design configuration on SPEC CPU2000 bench-
mark suite. To reduce the simulation costs, several fast sim-
ulation approaches were proposed to reduce the number of
simulated instructions with respect to each design configura-
tion [Hamerly et al., 2006; Genbrugge and Eeckhout, 2009;
Joshi et al., 2006]. However, the number of design config-
urations to simulate is still quite large. To reduce the num-
ber of simulated configurations and thus reduce the overall
simulation costs, predictive modeling was proposed [Joseph
et al., 2006; Ïpek et al., 2006; Lee et al., 2008]. As il-
lustrated in Figure 1, a predictive modeling approach con-
tains two phases, i.e., training phase and predicting phase. In
the training phase, some design configurations are simulated.
Along with the corresponding responses (e.g., performance
or energy response) obtained by simulations, these labeled
design configurations are utilized to train a predictive model
that characterizes the relationship between the design param-
eters and processor responses. In the predicting phase, such
a predictive model is employed to predict the responses of
new design configurations that are not involved in the train-
ing set. Since simulations are only required in the training
phase, predictive modeling is relatively efficient in compari-
son with traditional approaches. However, considerable sim-
ulation costs are required to attain the labeled design configu-
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rations for supervised learning, which encumbers the models
from achieving high prediction accuracies given limited com-
putational resources and stringent design-to-market pressure.
In fact, the design configurations that have not been simulated
may also be effective in enhancing the prediction accuracy of
a predictive model, which are completely overlooked by pre-
vious investigations on DSE. Furthermore, previous predic-
tive modeling approaches often employ difficult-to-interpret
learning models such as ANNs (Artificial Neural Networks),
and the trained models are black-boxes that could not offer
insights about how different design parameters affect the per-
formance or energy of microprocessors.

To circumvent these deficiencies of previous techniques, in
this paper, we propose the COMT (Co-Training Model Tree)
approach for the challenging DSE problem. The key intu-
ition is that similar architectural configurations would be-
have similarly, and thus, some unlabeled design configura-
tions can be used to enhance the prediction accuracy. COMT

works in co-training style [Blum and Mitchell, 1998], a rep-
resentative of the disagreement-based semi-supervised learn-
ing paradigm [Zhou and Li, 2010], where two models label
unlabeled data for each other. To enable the learned model
to be comprehensible, COMT employs model trees [Quinlan,
1992] that are trained by M5P [Wang and Witten, 1997], an
optimized algorithm for constructing model trees. COMT ini-
tializes two models using the labeled training set, and each
model is then refined by using instances labeled by the other
model. Here, a key issue is how to select appropriate unla-
beled instances to label. For this, COMT considers the neigh-
boring properties of training examples to estimate the labeling
confidence of unlabeled instances. Experiments show that,
given the same simulation budget to attain the labels of train-
ing design configurations, COMT can reduce by 30-84% mean
squared error of the state-of-the-art DSE technique.

The rest of the paper proceeds as follows. Section 2 in-
troduces some related work. Section 3 presents our COMT

approach. Section 4 reports on empirical results. Section 5
concludes this paper.

2 Related Work

Design Space Exploration. Many investigations reduce the
simulation costs for DSE by analyzing program character-
istics. Hamerly et al. [2006] simulated only some repre-
sentative program phases rather than the whole program.
From the perspective of program, Joshi et al. [2006] found
a reduced representative subset of programs based on inher-
ent microarchitecture-independent characteristics by cluster
analysis. Moreover, statistical simulation was employed to
construct a synthesized shorter program to emulate the ex-
ecution characteristics of the original program [Genbrugge
and Eeckhout, 2009]. Unlike the above approaches, predic-
tive modeling techniques reduce simulated design configura-
tions by learning the relationship between design parameters
and processor responses. Following the supervised learning
framework, the above task was accomplished by linear re-
gression model [Joseph et al., 2006] or ANNs [Ïpek et al.,
2006], where ANNs are most widely used. However, since
the usefulness of unlabeled design configurations is com-

pletely ignored, the above approaches suffer from either high
simulation costs (for achieving high accuracies) or low pre-
diction accuracy (given limited computational resources).
Semi-Supervised Learning. Semi-Supervised Learning
(SSL) is a mainstream methodology for exploiting unlabeled
data to improve the prediction accuracy. Generally, SSL
can be classified into four categories [Zhou and Li, 2010],
that is, generative methods [Fujino et al., 2005], S3VMs
(Semi-Supervised Support Vector Machines) [Xu and Schu-
urmans, 2005], graph-based methods [Zhu et al., 2003],
and disagreement-based methods [Blum and Mitchell, 1998;
Zhou and Li, 2010]. Generative methods conduct maximum
likelihood estimation to determine the parameters of models,
where the labels of unlabeled data are treated as missing val-
ues. S3VMs usually utilize unlabeled data to adjust the de-
cision boundary built from labeled examples. In graph-based
methods, the SSL problem can be addressed by propagating
the label information in a graph constructed from labeled and
unlabeled data where each node corresponds to one instance.
The key of disagreement-based methods is to generate mul-
tiple learners, let them collaborate to exploit unlabeled data,
and maintain a disagreement among the base learners. The
line of research started by Blum and Mitchell [1998]’s sem-
inal work on co-training. Zhou and Li [2005] proposed a
Semi-Supervised Regression (SSR) approach, COREG, which
employs two kNN regressors to conduct the data labeling and
the predictive confidence estimation. COREG utilizes kNN
as the base regressor since it is easy to update and smoothly
consistent with the manifold assumption of SSL. In COREG,
the most confidently labeled example is determined as the one
which makes the regressor most consistent with labeled data.
Comprehensibility. In DSE practice, learned predictive
models with comprehensible results are very helpful for ar-
chitects and systems designers. However, most strong learn-
ing systems, such as SVMs (Support Vector Machines),
ANNs and ensembles, are complicated black-box models,
and it is a great challenge to improve the comprehensibility.
Currently, decision trees are regarded as one of the most com-
prehensible learning models, since the prediction process of
decision trees is explicit [Zhou and Jiang, 2004]. Therefore,
model tree, a variant of decision tree that is applicable to re-
gression problems, is employed in COMT for attaining inter-
pretable models.

3 Our Proposal

3.1 COMT

Let L = {(x1, y1), . . . , (x|L|, y|L|)} be the labeled example
set, where xi is the i-th design configuration with d inter-
ested design parameters, and yi is corresponding processor
response, e.g., performance metric like IPC (Instruction-per-
Cycle). Let U be the unlabeled data set, i.e., the set of design
configurations without simulation.

The most critical issue in SSR is how to estimate the
labeling confidence such that the most confident unlabeled
instance can be selected to label. Following Zhou and
Li [2005]’s approach, we consider that the error of the re-
gressor on the labeled data set should decrease the most if the
most confident unlabeled instance is labeled. Formally, for
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each unlabeled instance xu, the quality of xu can be mea-
sured using a criterion as shown in Equation 1:

Δu =
1

|L|

∑
xi∈L

(
(yi − h(xi))

2 −
(
yi − h

′(xi)
)2)

, (1)

where h is the original regressor, and h′ is the regressor re-
fined with example xu and its label. In other words, the in-
stance with the best mean squared error (MSE) reduction on
the labeled set will be selected to label. Such a criterion is
adopted in COMT.

Another challenge during the design of COMT is that, re-
peatedly measuring the MSE of model tree on the entire la-
beled data set in each iteration is time-consuming. To address
this problem, COMT utilizes the local information of con-
structed model tree to improve the update efficiency. Specifi-
cally, given an unlabeled instance which would be labeled by
the original model tree, it should fit into a linear model that
lies in a leaf of the tree. Thus, we approximately measure the
labeling confidence of each unlabeled instance by computing
only the MSE of its siblings locating in the same leaf of the
tree, where siblings refer to those labeled examples. In this
case, the Promising Labeled Example (PLE) of an unlabeled
data set, denoted by x̃, is determined by maximizing the local
error reduction (Δu) defined in Equation 2:

Δxu =
∑

xi∈Ωu

(
(yi −m(xi))

2 −
(
yi −m

′(xi)
)2)

, (2)

where Ωu is sibling set of xu in the original tree, m is the
original regressor, and m′ is the regressor refined by (xu, yu),
yu = m(xu).

Algorithm 1 presents the pseudo-code of COMT algorithm.
As the first step, M5P algorithm is used to construct two di-
verse model trees (say, m1 and m2) via employing distinct
parameters M1 and M2 respectively, where M1 and M2 de-
termine the minimal number of examples in each leaf of m1

and m2, respectively [Wang and Witten, 1997]. Let L1 and
L2 be the current labeled data sets of m1 and m2 respectively,
and L1 and L2 are initialized by the same labeled data set L.
In each iteration, COMT uses the PLE determined by m1 to
augment the labeled set L2, and vice versa. After using the
latest labeled sets to update two model trees, we should re-
plenish the pool U ′ with unlabeled examples to size p for next
iteration. Finally, we average the prediction on each updated
model tree as the final prediction.

Notice that, in contrast to the original co-training [Blum
and Mitchell, 1998], COMT does not work with two views.
Similar to COREG [Zhou and Li, 2005] and other single-view
disagreement-based SSL approaches, the validity of COMT

can be theoretically justified by the large difference between
the two base learners [Wang and Zhou, 2007].

3.2 Comprehensible Models for DSE

In contrast to uninterpretable models such as ANNs, com-
prehensible predictive models obtained from COMT are very
helpful for establishing the relationship between design pa-
rameters and processor responses. For example, according
to the weights of different design parameters in the linear
models associated with the leaves of a model tree, we can
determine the key architectural parameters that significantly
influence the processor responses. In addition to offering

Algorithm 1: Pseudo-code of COMT Algorithm

Data: L : Set of labeled examples.
U : Pool of unlabeled instances.
p : Size of the pool with unlabeled instances.
t : Number of learning iterations.
M1,M2 : Minimal number of examples in the leaf of
model trees.

begin
L1 ← L; L2 ← L;

Create a pool U ′ with p unlabeled examples;
Train model tree m1 with labeled set L1 by parameter M1;
Train model tree m2 with labeled set L2 by parameter M2;
for l ← 1 to t do

for j ∈ {1, 2} do

for each xu ∈ U ′ do

Ωu ← Sibling(mj ,xu);
yu ← mj(xu);
Obtain new model m′

j by adding (xu, yu);

Δxu ←
∑

xi∈Ωu

((yi − mj(xi))
2 − (yi − m

′

j(xi))
2);

end
if there exists a Δxu > 0 then

x̃j ← argmax
xu∈U′ Δxu ; ỹj ← mj(x̃j);

πj ← {(x̃j , ỹj)}; U
′ ← U ′ − {x̃j};

end
else

πj ← φ;
end

end
if π1 is φ AND π2 is φ then

exit;
end
L1 ← L1 ∪ π2; L2 ← L2 ∪ π1;
Update m1, m2 by new set L1, L2, respectively;

Replenish pool U ′ to size p with randomly selected
candidate unlabeled examples from U ;

end

Output m∗(x)← 1

2
(m1(x) +m2(x));

end

explicit information about design parameters, such compre-
hensible models can further assist computer architects to de-
duce promising architecture under some given design specifi-
cations.

In industry, the typical design specification could be “given
a certain power dissipation (e.g., 120 Watt) constraint, we
should maximize the performance of a processor”. Without a
comprehensible model which characterizes the detailed rela-
tionship between design parameters and processor responses,
one may have to estimate the (predicted) responses (e.g., per-
formance) of all design configurations in a brute-force way to
search for the most promising one. Unlike conventional ap-
proaches that employ uninterpretable models such as ANNs,
COMT can offer linear models in the leaves of its model trees.
These linear models can be tackled with Linear Programming
(LP) techniques, which enables rapid deductions of promis-
ing architectures.

To be specific, by executing the entire co-training process
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twice, we construct two predictive models for performance
and power, respectively. After that, we obtain two mod-
els consisting of several linear models with decision rules.
For each performance-power linear model pair, denoted by
(I(LMi),W (LMj)), we obtain a LP problem as,

Maximize I(LMi),

s.t.

⎧⎨
⎩

W (LMj) ≤ 120
contraints extracted from decision rules
default constraints on design parameters.

In this LP, there are two categories of constraints on design
parameters. The first category of constraints are extracted
from the decision rules associated with the linear models
I(LMi) and W (LMj) of the model trees. The other cate-
gory includes default constraints on design parameters, which
confine the ranges of parameters. After solving all such LPs
obtained from performance-power linear model pairs, we ef-
fectively and efficiently gain the promising architecture. Ap-
parently, there are mn LPs for architects to solve, where m
and n are the numbers of linear models on the performance
and power tree, respectively. Since the number of variables
in each LP is only the number of interested design parame-
ters (usually tens of parameters), the worst-case computation
time for solving this problem can be neglected compared with
tremendous simulation costs.

4 Empirical Study

4.1 Benchmarks for Processor Evaluation

The most common way to evaluate the performance of a pro-
cessor during DSE is to measure the execution time of many
popular benchmarks on cycle-accurate simulators and here
we employ renowned Simplescalar [Austin et al., 2002] as
the prototype simulator of a modern superscalar micropro-
cessor. Regarding benchmarks, the most successful stan-
dardized benchmark suite covering various application fields
has been created by SPEC (Standard Performance Evalua-
tion Corporation) since the late 1980s [Hennessy and Patter-
son, 2003]. Since SPEC benchmarks are real programs with
slightly modification for portability, they are widely utilized
by architects, researchers, and computer vendors for perfor-
mance evaluation. For example, vendors of desktop comput-
ers and servers periodically submit the performance results
measured by SPEC benchmarks to www.spec.org to provide
fair comparisons with other machine products.

SPEC CPU2000 is the fourth generation benchmark suite
of SPEC series, which consists of a set of 11 integer
benchmarks (CINT2000) and 14 floating-point benchmarks
(CFP2000). SPEC CPU2000 aims at providing fair evalua-
tions of desktop general-purpose processors. To validate the
effectiveness of COMT on different programs, we consider 12
representative programs with distinct behaviors from SPEC
CPU2000 as applu, art, bzip2, crafty, equake, galgel, gcc,
lucas, mcf, swim, twolf, and vpr. In our experiments, we ran-
domly generate 400 design configurations without assuming
the superiority of any specific one. During such a sampling
process, every configuration violating any given constraint on
design parameters will simply be discarded and replaced by
a new one. Simulating the 400 configurations for all bench-
marks consumes about 6800 machine hours on a cluster with

Table 1: Statistical features of the responses (IPC) of simu-
lated configurations over different benchmarks.

Benchmarks Avg. Variance Benchmarks Avg. Variance

applu 1.93 0.61 gcc 1.48 0.35

art 1.27 0.56 lucas 1.85 0.79

bzip2 2.13 0.75 mcf 1.54 0.31

crafty 1.52 0.42 swim 1.73 0.39

equake 2.19 0.76 twolf 2.21 0.70

galgel 1.67 0.39 vpr 2.2 0.72

32 AMD Operton processors. Among the 400 simulated con-
figurations, 300 design configurations are considered as the
training data and the rest 100 configurations are adopted as
the test data. Table 1 presents the performance statistics of the
300 training examples over the above benchmarks, where IPC
(Instruction-per-Cycle) is utilized as the performance metric.
From the statistics we observe that the variances of IPC (e.g.,
equake) are large on several benchmarks, which may make
the performance prediction hard.

4.2 Performance Evaluation of COMT

Table 2 shows the microprocessor design space that covers
10 important design parameters and contains more than 70M
design configurations. To demonstrate the effectiveness of
COMT, we compare the prediction accuracy of our approach
with state-of-the-art predictive models introduced by Ïpek et
al. [2006], where supervised ANNs are utilized to construct
predictive models. Following the same setting utilized by
Ïpek et al. [2006], the ANN adopts one 16-unit hidden layer,
a learning rate of 0.001, and a momentum value of 0.5. For
the proposed COMT, we set the number of computation iter-
ations, i.e., t in Algorithm 1, to 100, and set the pool size
holding evaluated unlabeled examples in each iteration, i.e.,
p in Algorithm 1, also to 100. To obtain two diverse model
trees, we set M1 and M2 to 4 and 10, respectively. Besides,
we randomly generate 5000 design configurations as the un-
labeled set for COMT.

In Figure 2, the detailed comparisons of prediction results
on test data are presented, where Ïpek et al. [2006]’s ANN-
based model, the supervised M5P model, and COMT are in-
volved, all use the labeled training set stated in the last sec-
tion. We can clearly see that COMT significantly outperforms
other approaches over all 12 benchmarks. Most notably, on
the benchmark galgel, COMT reduces MSE by 84% of the
ANN-based model. On the easy-to-predict benchmark mcf,
COMT can reduce MSE by 68% of the ANN-based model.
Even on the benchmark with the least MSE reduction (crafty),
COMT still reduces MSE by 30% of the ANN-based model.
Hence, we can conclude that COMT is much more practical
than state-of-the-art predictive modeling technique because
of its high accuracy.

On the other hand, from the comparisons between COMT

and the supervised M5P model presented in Figure 2, COMT

reduces MSE by 12% (gcc) to 65% (bzip2) of the super-
vised M5P model. The above fact demonstrates that semi-
supervised learning is effective for enhancing the prediction
accuracy of predictive modeling for DSE. In addition to mea-
suring the performance of COMT with one training/testing
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Table 2: Investigated microprocessor design space.

Abbr. Parameter Value

WIDTH Fetch/Issue/Commit Width 2,4,6,8

FUNIT FPALU/FPMULT Units 2,4,6,8

IUNIT IALU/IMULT Units 2,4,6,8

L1IC L1-ICache 8,16,32,64,128,256KB

L1DC L1-DCache 8,16,32,64,128,256KB

L2UC L2-UCache 256,512,1024,2048,4096KB

ROB ROB size 16-256 with a step of 16

LSQ LSQ size 8-128 with a step of 8

GSHARE GShare size 1,2,4,8,16,32K

BTB BTB size 512,1024,2048,4096

Total 10 parameters 70,778,880 Options
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Figure 2: MSEs of state-of-the-art DSE approaches (ANN-
based approach), the supervised M5P model and COMT over
different benchmarks.

split, for each benchmark we also perform 5-fold cross val-
idation on all 400 simulated design configurations. Figure 3
compares the MSEs along with the corresponding standard
deviations of COMT and previous approaches. Taking the
benchmark galgel as an example again, with 5-fold cross val-
idation, the average MSEs of ANNs, the supervised M5P and
COMT are 3.64E-2, 2.04E-2 and 9.34E-3, respectively, and
the standard deviations of ANNs, the supervisde M5P and
COMT are 7.79E-3, 2.59E-3 and 1.21E-3, respectively. The
program with less MSE reduction is crafty, where the average
MSEs of ANNs, the supervised M5P and COMT are 1.23E-
2, 9.79E-3 and 8.73E-3 respectively, and COMT still exhibits
more stable prediction accuracy, as evidenced by the smaller
standard deviation compared with ANNs and the supervised
M5P. In summary, the cross validation results further confirm
that COMT can significantly outperform state-of-the-art DSE
approach.

In addition, the impact of the number of unlabeled exam-
ples considered in each iteration, i.e., the pool size p in Al-
gorithm 1, on the prediction accuracy is also studied. Table 3
presents the prediction results of COMT with respect to dif-
ferent pool sizes. Generally speaking, on the benchmarks,
the best prediction accuracy is often achieved when a larger
pool size is utilized. A potential explanation to this observa-
tion is that more unlabeled examples may, in general, offer
more opportunities for COMT to exploit promising unlabeled
examples that are effective for enhancing prediction accuracy.
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Figure 3: Mean MSEs and corresponding standard deviations
of the ANN-based approach, the supervised M5P model and
COMT in 5-fold cross validations.

Table 3: MSEs of COMT under different pool sizes p.

Pool Size

Benchmarks 20 40 60 80 100

applu 1.34E-2 1.52E-2 1.21E-2 1.29E-2 1.02E-2

art 1.29E-2 1.56E-2 1.45E-2 1.17E-2 1.38E-2

bzip2 2.67E-2 1.17E-2 1.37E-2 1.07E-2 1.16E-2

crafty 9.02E-3 9.20E-3 9.05E-3 8.92E-3 8.58E-3

equake 2.38E-2 1.88E-2 1.81E-2 1.81E-2 1.85E-2

galgel 1.51E-2 1.16E-2 1.04E-2 1.06E-2 8.39E-3

gcc 4.25E-3 3.42E-3 2.80E-3 3.15E-3 2.99E-3

lucas 1.30E-2 1.17E-2 1.07E-2 1.04E-2 1.09E-2

mcf 3.65E-3 4.01E-3 3.52E-3 3.61E-3 3.47E-3

swim 2.31E-2 2.34E-2 1.88E-2 1.59E-2 1.28E-2

twolf 9.80E-3 9.36E-3 8.48E-3 8.33E-3 6.76E-3

vpr 3.58E-3 3.52E-3 3.56E-3 3.19E-3 3.28E-3

4.3 Sensitivity to Training Iteration t

In this subsection, we further study the impact of the number
of iteration, i.e., t in Algorithm 1, on the prediction accuracy
of COMT. The experiment conducted here follows the same
parameter setting (except t) as the previous experiments.
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Figure 4: Prediction accuracies (MSE) and computational
costs (Time) of COMT with respect to different numbers of
training iterations (t).

Figure 4 offers an illustrative example about the relation-
ship between the MSE of COMT and t, where two bench-
marks, equake and mcf, are considered. In general, the MSE
(red curves in Figure 4) roughly decreases as the number of it-
erations increases, especially when t is greater than 10. How-
ever, when the number of iterations has become large enough,
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the MSE may decrease with a relatively slower speed. An
explanation to this observation is that those promising unla-
beled examples which are valid for enhancing prediction ac-
curacy have eventually become exhausted. In this case, the
newly selected confident unlabeled examples, which are ac-
tually redundant in the context of the latest labeled data set,
contribute little to the prediction accuracy of COMT. In the
meantime, the training costs of COMT grow almost linearly
with respect to t (black curves in Figure 4). Hence, when the
computational resources are limited, it would be beneficial if
t is decided by trading off the gained prediction accuracy and
training costs, which can be achieved by setting more sophis-
ticated stopping criterion for COMT. The related investigation
will be conducted in our future work.

4.4 Deployment of Comprehensible Models

COMT can provide comprehensible models for efficient DSE.
Ideally, to validate the effectiveness of our comprehensible
models, we have to simulate the entire design space consist-
ing of 70M design configurations, then compare the config-
uration deduced by COMT and the actual optimal configu-
ration. However, this is infeasible due to intractably large
simulation costs. A compromise is made by comparing the
promising configuration deduced by COMT with the configu-
ration searched by the state-of-the-art DSE approach (ANN-
based modeling). To be specific, we simulate the two ar-
chitectural configurations on an illustrative benchmark, and
compare the corresponding processor responses directly.
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| | L2UC <= 393216    |  | ROB <= 96  ��! 

| | | LSQ <= 12 ��%   |  | ROB > 96  ��' 

��         |  �� 

         |  
1

LMW : 0.3824WIDTH + 0.5968FUNIT 

1
LMI : 0.0131WIDTH + 0.0033IUNIT |    + 0.1974IUNIT + 0.0001L1IC 

    + 0.0043LSQ + 0.9028   |    + 0.0001L1DC + 0.0417ROB  

         |   + 0.0285LSQ + 0.0001BTB + 8.7457 

Figure 5: Sections of performance and power model trees.

As an example, we employ the benchmark mcf in the il-
lustrative experiment. Suppose the power dissipation cannot
exceed 50 watt according to microprocessor design specifica-
tion. Due to the page limit, we only present sections of the
built performance and power model tree in Figure 5. These
trees imply several LPs, one of which is for the linear model
pair (I(LM1),W (LM1)):

max(0.0131WIDTH + 0.0033IUNIT + 0.0043LSQ + 0.9028)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.3842WIDTH + 0.5968FUNIT + 0.1974IUNIT

0.0001L1IC + 0.0001L1DC + 0.0417ROB

+0.0285LSQ + 0.0001BTB + 8.7457 ≤ 50
2 <= WIDTH <= 3, 2 <= FUNIT <= 8
2 <= IUNIT <= 8, 8K <= L1IC <= 256K
8K <= L1DC <= 256K, 256K <= L2UC <= 384K

16 <= ROB <= 256, 8 <= LSQ <= 12

1K <= GSHARE <= 32K, 512 <= BTB <= 4096.

It is notable that constraints on WIDTH <= 3, L2UC <=
384K, and LSQ <= 12 are extracted from the decision rules
while others are determined by the ranges of design parame-
ters. By solving all the LPs transformed from performance-

Table 4: Comparison of promising design configurations at-
tained by the ANN-based approach and COMT.

Parameter ANN-conf COMT-conf

WIDTH 8 8

FUNIT 2 2

IUNIT 8 8

L1IC 16KB 8KB

L1DC 32KB 128KB

L2UC 4096KB 4096KB

ROB 128 64

LSQ 128 32

GSHARE 1KB 1KB

BTB 2048 512

power linear model pairs, we attain the promising configura-
tion as shown in Table 4, where the promising configuration
found by its opponent (state-of-the-art DSE approach using
ANNs) is also presented. Table 5 further presents the cor-
responding performance and power responses of these two
configurations (namely, “ANN-conf” and “COMT-conf”). Al-
though the actual performance (obtained by cycle-accurate
simulations) of ANN-conf is slightly better than that of
COMT-conf, the power dissipation of ANN-conf exceeds
the power budget (54.47 > 50). Hence, COMT finds the
promising configuration complies with the design specifica-
tion, while its opponent fails. In practice, COMT has already
been utilized for the Godson series [Hu et al., 2009], in the
early design phase of its next-generation processor cores.

Table 5: Comparison of performance and power responses
with respect to ANN-conf and COMT-conf.

Configuration Responses Predicted Actual Error

ANN-conf Performance (IPC) 1.98 2.11 6.16%

Power (Watt) 49.72 54.47 8.72%

COMT-conf Performance (IPC) 2.11 2.03 3.94%

Power (Watt) 48.24 49.13 1.81%

5 Conclusions and Future Work

In contrast to traditional brute-force DSE approaches, in this
paper, we propose the COMT approach. By exploiting un-
labeled design configurations, COMT significantly improves
prediction accuracies and reduces excessive simulation costs.
Moreover, due to the comprehensibility of model trees em-
ployed by COMT, computer architects can now analytically
deduce the promising microprocessor architecture without
exhaustive comparisons among a large number of design con-
figurations.

For the computer architecture community, the COMT ap-
proach enables efficient and comprehensible deduction of
the optimal architecture for every given benchmark program,
which greatly benefits the DSE for pre-silicon microproces-
sor design. Furthermore, the COMT approach is especially
promising for post-silicon microprocessor reconfiguration.
COMT and its future versions can help finding the optimal
architecture suitable for a given program or even the given
program features, and thus guiding the architecture reconfig-
uration to adapt to various programs. This task was rarely
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studied by the architecture community, but would be a cru-
cial step towards the development of an elastic processor (by
which we call a processor whose architecture parameters can
be dynamically reconfigured to suit different programs) and a
computer tribe (by which we call a series of downward com-
patible elastic processors). Unlike the Field Programmable
Gate Array (FPGA) whose reconfiguration may have to mod-
ify millions of controlling parameters, an elastic processor
only employs a moderate number of reconfigurable param-
eters (e.g., 20), which avoids the problem of dimension ex-
plosion when building performance/power predictive models
(via machine learning techniques) for guiding architecture re-
configuration.

The development of efficient elastic processors relies heav-
ily on the advance of machine learning techniques, as evi-
denced by the impact of semi-supervised learning on DSE.
To build an elastic processor, there are still open problems
for machine learning and computer architecture researchers
to work together. For example:

- Program Feature Selection: How to select adequate pro-
gram features such that programs sharing similar fea-
tures have similar responses on the same computer ar-
chitecture?

- Program Feature-driven DSE: How to take program fea-
tures into account in DSE?

- Program Tribing: How to cluster programs such that
programs in the same cluster share the same “promis-
ing” architecture configurations?
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