
Active Graph Reachability Reduction for
Network Security and Software Engineering

Alice X. Zheng

Microsoft Research
Redmond, WA

alicez@microsoft.com

John Dunagan

Microsoft
Redmond, WA

jdunagan@microsoft.com

Ashish Kapoor

Microsoft Research
Redmond, WA

akapoor@microsoft.com

Abstract

Motivated by applications from computer network
security and software engineering, we study the
problem of reducing reachability on a graph with
unknown edge costs. When the costs are known,
reachability reduction can be solved using a linear
relaxation of sparsest cut. Problems arise, however,
when edge costs are unknown. In this case, blindly
applying sparsest cut with incorrect edge costs can
result in suboptimal or infeasible solutions. In-
stead, we propose to solve the problem via edge
classification using feedback on individual edges.
We show that this approach outperforms compet-
ing approaches in accuracy and efficiency on our
target applications.

1 Introduction

Graph reachability reduction aims to remove edges from a
graph so that it becomes more difficult to reach the rest of the
graph starting from any source node. This has natural applica-
tions in many fields of science and engineering. In this paper,
we concentrate on two such applications in the field of com-
puter science, namely, that of protecting a computer network
from security attacks, and that of reducing software binary
dependency in order to limit the scope of potential failure.

Graph reachability reduction can be understood as per-
forming a partial graph cut. In the classic graph-cut setup,
the goal is to find a set of edges such that removing them
will render the graph disconnected. The sparsest cut variant
aims to cut the set of edges with minimum cost, where each
edge is weighted with the cost of cutting that edge. However,
in practice, edge costs can often be difficult to quantify be-
cause they indicate un-parametrizable preferences. The prob-
lem is exacerbated in large graphs with many edges where it
is impractical to specify the cost of each edge. In such cases,
blindly applying graph cut algorithms without knowing the
right edge costs can result in cuts that are infeasible or other-
wise undesirable.

In this paper, we demonstrate how such problems can be
solved through binary edge classification with active learning.
We apply our method to our target applications and demon-
strate that it is much more efficient than the alternative ap-

proach of iterating between learning edge cost and perform-
ing sparsest cut.

We start by introducing our applications of interest in Sec-
tion 2, then define the problem and solution approaches in
Section 3. We verify the accuracy and efficiency of our solu-
tion on a synthetic graph as well as the real-world applications
in Section 4.

2 Applications to Network Security and

Software Engineering

Consider this potential attack method on a computer net-
work that employs an organization-wide authentication
scheme [Dunagan et al., 2009]:

1. Eve, the attacker, gains control of a single machine and
lies in wait.

2. Unsuspecting user Alice logs on to the compromised
machine and exposes her identity key to the attacker.

3. Eve impersonates Alice using her identity, thereby gain-
ing access to other machines on the network on which
Alice has administrative privilege.

4. Eve repeats the process starting from the newly compro-
mised machines.

In this way, an initial compromise can snowball into a much
larger compromise—an identity snowball attack.

To protect the network from these attacks, one may wish
to modify existing security policies so that an initial attack
would not spread to too many other machines [Dunagan et
al., 2009], but in a way such that the network still remains
connected. This can be modeled as a graph reachability re-
duction problem. The relevant entities in an identity snowball
attack can be captured in an attack graph ([Sheyner et al.,
2002; Ou et al., 2005]) where nodes represent network enti-
ties (machines, users, or user groups) and edges represent in-
teractions such as a user logging onto a machine or belonging
to a group, or a user or group having administrative privileges
on a machine. The direction of an edge indicates control, e.g.,
a log-in action gives the machine control over the user’s iden-
tity. (See Figure 1 for an example.) Reachability in an attack
graph implies potential compromise: if machine B is reach-
able from machine A through a sequence of login and admin
edges, then machine B may be compromised if machine A

1750

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

is compromised. Hence, reducing reachability on the attack
graph limits the scope of such attacks.

Figure 1: An example attack graph on a computer network.
Nodes represent entities on the network (machines, users,
user groups) and edges represent interactions. The direction
of an edge indicates control, e.g., a log-in action gives the
machine control over the user’s identity.

However, it is difficult to specify the edge costs in this set-
ting because they represent the implementability of security
policy changes. For example, it might be easy to remove an
edge that grants administrative privilege on a machine to all
members of a large user group, because not all members of
the group in fact need that privilege. But it would not be okay
to bar a user from logging onto her own desktop machine.
These decisions often need to be made on an edge-by-edge
basis, and thus it is very difficult to specify cost for all the
edges in a large attack graph.

Fortunately for the learning algorithm, the users of this
algorithm—the network experts who are in charge of protect-
ing the network—can provide a limited amount of feedback
on a few edges. When presented with a small group of edges,
the expert may be able to choose a few of them as “Ok to cut”
and the rest “keep for now.” The challenge remains how to
find good edges to cut without knowing all of the edge costs
in the graph.

As another example of graph reachability reduction, con-
sider the software engineering task of reducing binary module
dependencies. Large software systems are often divided into
modules, each containing many classes or functions. A de-
pendency is created when a function in module A calls a func-
tion in module B. Such dependencies between binary mod-
ules are necessary and useful, just like connections between
networked computers and users are necessary. But binary de-
pendencies can also raise reliability concerns: If the callee
function fails and the error is not handled well, the caller
could also fail. For this reason, it is often desirable to reduce
the number of dependencies [Nagappan and Ball, 2007].

Although dependencies are easy to identify, determining
the cost of removing a dependency is expensive, as it involves
estimating the effort required in modifying the code. This can
be done on a case-by-case basis for each dependency, but is
difficult to do for all dependencies. Hence, it has tradition-
ally taken significant manual work to determine the set of de-
pendencies to remove. In this paper, we cast this as another
instance of reachability reduction on a software dependency
graph with unknown edge costs.

3 Solution Approaches

3.1 Background on Graph Algorithms

Intuitively, reducing reachability corresponds to making it
harder to get from one starting point in a graph to another.
There have been many formalizations of the notion of the
reachability of a graph, many of which have been shown to
be related to within a constant factor [Arora et al., 2004].
One possible definition of graph reachability is the maxi-
mum concurrent flow [Shahrokhi and Matula, 1990] achiev-
able within a graph. With this definition, reachability reduc-
tion corresponds to removing edges such that this maximum
achievable flow is decreased. It is well-known that the set of
edges that limits the maximum concurrent flow is also the set
that yields the sparsest cut (or balanced cut). More formally,
the dual LP to maximum concurrent flow is the sparsest cut
LP [Shahrokhi and Matula, 1990].

Consider a graph G = (V,E), where V denotes the set of
vertices and E the set of directed edges. Let c(e) denote the
cost of cutting edge e. Assume there exists a set of demands
between a set of source nodes and a set of target nodes in
the graph. For example, in modeling the network security
application, we can specify a unit demand between every pair
of machine nodes, and in the binary dependency reduction
application, there is demand between each pairs of binaries.
The goal of sparsest cut is to determine the smallest set of
edges whose removal would cut all non-zero demand. Here
is one possible formulation of the sparsest cut LP:

mind(e)
∑

e∈E c(e)d(e) (1)
subject to

∑
e∈E b(e)d(e) = 1 (2)

d(e) ≥ 0. (3)

Here, d(e) represents an edge distance assignment, where a
greater distance denotes a more favorable edge to cut. The
quantity b(e) is equal to the number of shortest paths (be-
tween node pairs with non-zero demand) that pass through e;
it can be interpreted as the “benefit” of cutting edge e.1 Fig-
ure 2 essentially encodes the sparseness constraint of cutting
edges (i.e., setting d(e)): under a fixed budget of 1 for the
weighted sum of distances, it incentivizes the optimization
procedure to set d(e) higher for more central edges along the
collection of shortest paths between nodes with non-zero de-
mand.

3.2 Previous Approaches: Alternate

The above formulation of graph cut assumes all edge costs
are known. When they are not known, one natural approach
is to alternate between learning the edge costs (based on user
feedback) and performing graph cut. Dunagan et al. [2009]
describes the following algorithm called Heat-ray for prevent-
ing identity snowball attacks. We denote this algorithm as
Alternate-HR. The algorithm first initializes the edge costs
c(e) to be uniform. Then, each iteration first runs sparsest cut

1In this formulation of sparsest cut, b(e) depends on path lengths
which are defined using d(e). Hence the formulation as presented
here is not an LP, but it does have an equivalent LP relaxation form.
We choose to present this formulation for its readability.

1751

Algorithm 1: Alternate-Heat-ray (Alternate-HR)
Input : Graph G = (V,E), α.
Output: Graph G′ = (V,E′).

Initialize G′ ← G costs c(e) ← 1 for e ∈ E.
repeat

Stage 1:
d(e), b(e) ← SparsestCutLP (G, c(·))
Rank edges by descending max(b(e),−b(e)c(e))

Stage 2:
R ← user feedback on edges
c(e) ← UpdateCost (R) using Eqn (6)

until Reachability (G′) ≤ α or all edges queried

(cf. Eqn (1)–(3)) to rank the edges. This ranked list is pre-
sented to the user, who selectively labels a subset R of the
top-ranked edges as “cut” or “keep.” The feedback is then in-
corporated into a second set of linear constraints to solve for
new estimates of edge cost.

b(e)− c(e) ≤ −1 if e is to be kept, (4)
b(e)− c(e) ≥ 1 if e is to be cut. (5)

Each edge is represented by a vector of edge features xe. The
cost function is modeled as a linear function of the features:
c(e) = wTxe. Let ye denote the feedback on edge e: ye = 1
if e is to be cut, and ye = −1 if it is to be kept. Alternate-HR
finds the w that minimizes the hinge loss of unsatisfied con-
straints, regularized by the norm of the weight vector (akin to
linear SVMs):

min
w

∑

e∈R

max(0, 1− ye(b(e)− wTxe)) + λwTw. (6)

After learning the new cost function c(e), the updated costs
are used in the next round of sparsest cut optimization.

We can also formulate a much simpler version of the
alternate approach. We call the algorithm Alternate-
SimpleUpdate (Alternate-SU). It initializes all edges to have
uniform cost μ. In the first stage, it computes the LP relax-
ation of sparsest cut and ranks the edges according to d(e).
The top edges are presented to the user for feedback. The
costs of “cut” edges are then updated to γ, and those of “keep”
edges are updated to κ, where γ ≤ μ ≤ κ. Alternate-SU then
recomputes d(e) and repeats.

3.3 New Approach: ARRG

So far, our problem statement contains an interesting mixture
of two disparate tasks: performing sparsest cut on a graph
and learning the edge cost. Conceptually, graph reachability
reduction is the end goal. However, the application requires
that all edge cut decisions be feasible. In a graph cut set-
ting, feasibility is modeled by the (unknown) cost of cutting
an edge. Previous approaches solves the problem by folding
the task of edge cost learning into an outer loop of sparsest
cut. We now propose to instead fold the problem of graph
reachability reduction into the process of learning the user’s
edge cut preference function, which may depend on its utility
in the graph cut setting, as well as a number of other features.

Algorithm 2: Alternate-SimpleUpdate (Alternate-SU)
Input : Graph G = (V,E), μ, γ, κ, α.
Output: Graph G′ = (V,E′).

Initialize G′ ← G and c(e) ← μ for e ∈ E.
repeat

Stage 1:
d(e) ← SparsestCutLP (G, c(·))
Rank edges by descending d(e)

Stage 2:
R ← user feedback on edges
foreach edge e in R do

if R(e) = Cut then c(e) ← γ, E′ ← E′\e
else if R(e) = Keep then c(e) ← κ

until Reachability (G′) ≤ α or E′ = ∅

In this case, it is likely the user herself does not have perfect
knowledge of which edges should be cut. While the question
of a noisy oracle is interesting from a theoretical perspective,
in this paper we use active learning as a practical solution to
the problem of helping an imperfect oracle in making better
decisions, and, at the same time, efficiently and accurately
learning from such oracles. As our experiments show, ARRG
is much quicker at solving the problem than Alternate, be-
cause it makes more direct use of available features and feed-
back.

Let Dc : E → {0, 1} be the indicator function for the opti-
mal cut-set under c(e), i.e., Dc(e) = 1 if and only if e should
be removed. Sparsest cut tries to obtain the entire Dc through
global optimization. We propose to approximate Dc(e) edge-
by-edge with a classifier f(xe), where xe is a set of features
for edge e. We train the classifier using active learning, where
edge labels are provided by the user’s feedback.

We call this method Active Reachability Reduction on
Graphs (ARRG). In this paper, we investigate ARRG using
active learning techniques for the Gaussian process classi-
fier (GPC) and support vector machine (SVM). Let XL =
{(x1, y1), . . . , (xn, yn)}, denote a set of labeled training data
and XU = {xn+1, . . . ,xn+m} a set of unlabled data for
which the oracle may provide feedback. Active learning aims
to select the unlabeled sample whose labeling would most
improve the classifier. Numerous active learning criteria have
been proposed for various classifiers. In our experiments, we
use the margin (distance to the closest point) for SVM and the
entropy for GPC.

SVM: x∗ = arg max
x∈XU

|fSVM (x)| (7)

GPC: x∗ = arg max
x∈XU

H(qGPC(x)) (8)

Here, H(·) denotes entropy, |fSVM (x)| denotes the SVM
margin, and qGPC(x) denotes the posterior distribution over
the label of x inferred by Gaussian process classification
(GPC).

ARRG-SVM and ARRG-GPC each has strengths and
drawbacks. While the active learning criterion for SVM is
simple to compute, the GPC criterion can provide better per-
formance. This is because GPC provides the full posterior

1752

Algorithm 3: ARRG
Input : Edge feature list E = {x1,x2, . . . ,xM}.
Output: Classifier f(x).

Initialize training set T ← {(xe1 , 1), (xe2 ,−1)} with
one “cut” edge and one “keep” edge.
repeat

f(·) ← TrainClassifier (T)
e ← ActiveLearningTopEdge (f, E)
ye ← user feedback on e
T ← T ∪ {(xe, ye)}

until convergence

predictive distribution over the labels, thereby taking into ac-
count both the distance from the boundary as well as the vari-
ance around the estimate. Another notable difference is that
SVM has the added complexity of choosing the kernel hyper-
parameters and the regularization parameter. Gaussian Pro-
cesses on the other hand can simply use marginal likelihood
to determine additional parameters (if any).

Like many classification approaches, the performance of
ARRG depends on the quality of features. When available
features correlate well with the feasibility of edge cuts, the
user oracle can make better decisions, and ARRG is able to
make better predictions. In our experiments, we use graph-
based as well as non-graph-based features. Graph-based fea-
tures measure the local or global role of the edge in the graph.
Examples include (unweighted) in- and out-degrees of u and
v, and the number of shortest paths e lies on (or b(e) from Eqn
(2)). Non-graph-based features can be attributes for the edge
or its two end nodes. They represent any additional knowl-
edge we have about entities in the graph that may have bear-
ings on the edge cost. In the identity snowball attack preven-
tion example, we include features such as edge type (login,
admin, or group membership), and the function of the ma-
chine (normal user machine or server).

4 Experiments

We compare ARRG against Alternate and two other base-
lines on one synthetic dataset and our target applications in
network security and software dependency reduction. The
Marginal baseline is the classification accuracy of the simple
marginal classifier that predicts all labels to be the more pop-
ular label. In all of our experiments, most of the edges are
to be kept, and hence this baseline sets a high bar for ARRG
to beat. We also compare against the performance of spars-
est cut with uniform cost, which represents the baseline of
ignoring edge costs.

Previewing our results, we find that ARRG outperforms
its competitors both in efficiency (in terms of the amount of
edge feedback needed) and in accuracy (which edges should
be removed).

For the Alternate algorithms, we use the implementation of
the sparsest cut LP as detailed in Dunagan et al. [2009], which
modifies the objective to eliminate one of the constraints and
transforms d(e) to ensure non-negativity. We experimentally
found that simple batch gradient descent converges to a us-

able solution within 10 steps with a step size of 0.01. For
Alternate-SU, we rank the edges according to d(e) and mark
the top k edges as needing to be cut. Here k is taken to be
ground truth number of edges that are labeled as “cut,” giv-
ing sparsest cut an additional advantage over ARRG-GPC,
which has no knowledge of the correct number of edges to
cut. Note that this is equivalent to comparing ARRG against
(close to) optimal sparsest cut solutions with varying strate-
gies for learning edge cost.

For experiments with ARRG, we use the Gaussian process
implementation of Rasmussen and Williams [2007] and the
support vector machine implementation in libsvm [Chang and
Lin, 2009]. Both classifiers are initialized with two randomly
chosen examples, one from the positive (cut edge) class and
one from the negative (keep edge) class. In our implementa-
tion, the mean and variance parameters in GPC are approx-
imated using expectation propagation [Minka, 2001]. The
regularization parameter C for SVM is tuned using leave-
one-out cross-validation over a grid of values. All reported
ARRG results are averaged over 20 runs with different ran-
dom initializations. To improve readability, we omit plotting
the standard errors, which in most settings are very tight. All
experiments are conducted on the same sets of training and
test data.

All experiments are conducted on a 3.0 Ghz dual Pentium
Xeon machine with 8 GB of RAM running a 64 bit Windows
Vista operating system and Matlab. Running time ranged
from under a minute on the small synthetic graph to 30 min-
utes (for 300 edge queries) on the large identity snowball at-
tack graph.

4.1 Experiment on a Synthetic Graph

First, we perform a sanity check using a simple synthetic
graph of three clusters with roughly equal number of con-
nections between clusters 1 and 2, and between 2 and 3. Each
node has a position in the 2-D plane as well as a color. Edge
cost (unknown to the algorithms) depend on the colors of the
nodes. Clusters 2 and 3 have the same type and cluster 1 has
another type. Hence the right cut is between clusters 1 and 2.

The edge features used in ARRG for edge e = (u, v) are
the in- and out-degrees of u and v, the number of all-pairs
shortest paths that e lies on, the x- and y-positions of u and v,
and the colors of u and v.

We first compare the performance of ARRG-SVM against
ARRG-GPC, both with a linear kernel. We also look at the
performance of GPC and SVM when edge queries are se-
lected randomly (Random GPC and Random SVM). We find
that both ARRG-GPC and ARRG-SVM reach perfect predic-
tion accuracy, but ARRG-GPC enjoys two advantages over
ARRG-SVM. First, ARRG-GPC requires slightly fewer edge
labels. Second, ARRG-SVM performance fluctuates widely
with few edge samples. This is due to the fact that when the
number of labeled examples is low, cross-validation has dif-
ficulty determining C, the regularization parameter in SVMs.
Consequently, we observe high variation in performance in
the initial rounds of active learning. Performance of Random
GPC and Random SVM are noticeably worse than their ac-
tive learning counterparts. Overall all four algorithms quickly

1753

pass the marginal baseline, and we find that ARRG-GPC pro-
vides the best combination of efficiency and accuracy.

Next, we compare ARRG-GPC against multiple iterations
of Alternate-SU, which on each iteration receives informa-
tion about the edge chosen by ARRG-GPC. Since the true
edge cost is known for the synthetic graph, it is revealed
to Alternate-SU. As shown in Figure 2, Alternate-SU takes
much longer to find the correct cut than ARRG-GPC, even
with the added benefit of knowing the true cost of the edge
queried by ARRG-GPC as well as the total number of edges
that should be cut. Alternate-SU requires around 100 edges
(over 60% of edges in the graph) to reach 100% accuracy
while ARRG-GPC requires only 13 edges. ARRG-GPC does
suffer a bit with fewer than 5 labeled edges; it has lower ac-
curacy than sparsest cut with uniform cost.

0 20 40 60 80 100 120
80

82

84

86

88

90

92

94

96

98

100

Number of Edges Queried

%
 A

cc
ur

ac
y

Comparison of ARRG vs. Alternate on Synthetic Graph

ARRG−GPC
Random GPC
Alternate−SU
Sparsest Cut (Uniform Cost)
Marginal

Figure 2: Comparison of classification accuracy of ARRG-
GPC and Alternate-SC.

4.2 Reducing Software Module Dependencies

In this experiment, we study a set of modules in a large soft-
ware system which has undergone continuous development
over several years. As part of the development cycle, an effort
was made to significantly reduce dependencies. We take two
snapshots of the software, one before the dependency reduc-
tion effort and one after. The nodes in the graph are a portion
of the modules that appear in both snapshots. If an edge from
module A to module B is present in the before-shot but not the
after-shot, that means module A no longer depends on mod-
ule B in the new version of the software. All the algorithms
we evaluate operate on edges present in the before-shot and
try to predict which ones are no longer present in the after-
shot. There are 400 nodes and 1004 edges, 287 of which
are removed. Edges features are the in- and out-degrees of
each module, the number of all-pairs shortest paths contain-
ing the edge, the frequency of calls from one module to the
other, and cyclomatic complexity of the two modules. Cyclo-
matic complexity is a measure of source code complexity [T.
McCabe, 1976]. Prior research has suggested that higher cy-
clomatic complexity leads to a higher likelihood of module

failure; hence it becomes less desirable for other modules to
depend on it.

Experimental results on the software module dependency
graph are presented in Figure 3(a). The marginal baseline
is 71.4%, whereas sparsest cut with uniform cost achieves
60.6% accuracy. As in the synthetic experiment, the per-
formance of Alternate-SU steadily improves with more edge
queries. but it does not exceed the marginal baseline until
well after 200 edge queries. As before, ARRG-GPC starts out
with low accuracy when very few edges are labeled, quickly
exceeds Alternate-SU within 10 queries, and exceeds both
the marginal baseline and Random GPC within 100 queries.
The relative ranking of the various algorithms are roughly the
same as before. ARRG-GPC is again the overall winner, but
overall prediction accuracy is worse. This is because the clas-
sification task is much harder. The decision to remove certain
software module dependencies was often based on considera-
tions other than source code complexity. Hence the available
features do not sufficiently represent the classification crite-
ria. This is evident during training: the two classes of edges
are not linearly separable, necessitating the use of a polyno-
mial kernel of degree 2 in GPC as opposed to the linear kernel
employed for the two previous experiments. This makes for
a more difficult training process, which explains why ARRG-
GPC requires more edge queries to exceed the baseline in this
experiment. However, it is reasonable to expect overall accu-
racy to improve with more helpful features such as the failure
rate of the software modules. Overall, the performance shows
that ARRG is much more efficient than previous approaches
at incorporating user feedback; it can provide better predic-
tion results much sooner than competing algorithms.

4.3 Preventing Identity Snowball Attacks

In this experiment, we study an identity snowball attack graph
based on data collected at a large organization. The graph
contains login actions and administrative privileges recorded
over the period of eight days. The full graph contains over
350K nodes of type machine, user, and group. The network
activities constitute over 4.5 million edges. Table 1 lists de-
tailed statistics.

For our first experiment, we take a subgraph of the full
graph and compare ARRG-GPC against Alternate-SU as well
as our simple baselines. This subgraph contains 3794 nodes
(3037 machine nodes, 757 user nodes, and no group nodes)
and 5597 edges (1291 login edges, 4306 user admin edges,
and no group membership or group admin edges). A net-
work security expert labeled 126 edges as being desirable to
remove. As features for classification, an edge (u, v) is rep-
resented by the in- and out-degrees of u and v, the number of
machine-to-machine shortest paths passing through the edge,
the types of u and v (machine or user node), whether the ma-
chine acts as a server machine, and the number of times the
user logs onto the machine (if it’s a login edge).

Figure 3(b) plots results from running ARRG-GPC, Ran-
dom GPC, and Alternate-SU on the identity snowball at-
tack graph. As before, the y-axis denotes classification ac-
curacy percentage over the entire graph and the x-axis de-
notes the number of edges queried. The marginal baseline
of the majority label predictor is 97.7%. Sparsest cut with

1754

(a) (b)

Figure 3: (a) Edge removal accuracy on the software dependency graph. (b) Edge removal accuracy on a subgraph of the
identity snowball attack graph.

Machines 197,631
Accounts 91,563
Security Groups 62,725
Total Nodes 351,919
Unique Logins 130,796
AccountIsAdminOnMachine 309,182
SecurityGroupIsAdminOnMachine 380,320
AccountIsMemberOfSecurityGroup 3,695,878
Total Edges 4,516,176

Table 1: Statistics of the identity snowball attack graph.

uniform cost achieves 96.8% accuracy. As Alternate-SU re-
ceives more help with setting edge costs based on the ARRG-
GPC edge selections2, its classification accuracy improves
steadily, but it never exceeds the marginal baseline within
100 edge queries. ARRG-GPC, on the other hand, starts
out with very low accuracy when only two edges are labeled
(59.2%), but quickly improves as more edges are labeled. Its
average performance exceeds sparsest cut and Alternate-SU
within 9 edge queries, and exceeds the marginal baseline at
13 queries. ARRG-GPC reaches an average accuracy of 99%
within 45 queries. Random GPC fares relatively poorly; its
average exceeds the sparsest cut uniform cost baseline at 12
edge queries and marginal baseline at 25 edge queries, but it
never reaches 99% within 100 queries. All results are signifi-
cant based on standard errors computed from 20 runs of each
algorithm (starting with two randomly selected labeled edges
each time).

In our second experiment with the identity snowball at-

2In the synthetic experiment, we know the true cost of all edges.
In the two real applications, however, we do not have information
about the true cost; instead, Alternate-SU sets the edge cost to be
a small fixed number (0.01) if the oracle says “cut this edge” and a
large fixed number (100) if the oracle says “keep this edge.”

0 50 100 150 200 250 300
65

70

75

80

85

90

95

100

Number of Edges Queried

%
 A

cc
ur

ac
y

ARRG Performance on the Full Identity Snowball Attack Graph

ARRG−GPC
Random−GPC
Marginal

Figure 4: ARRG performance on the identity snowball attack
graph.

tack graph, we compare ARRG-GPC against Alternate-HR.
The goal of this experiment is to study their relative effi-
ciency, measured as the number of edge queries needed to
reach a certain level of accuracy. In order to facilitate feed-
back gathering from the network security expert, the edges
are generalized into edge groups – all the outgoing edges or
all the incoming edges of a node. The network security ex-
pert is asked to supply one label for each edge group. The
full graph is labeled based on feedback obtained in 10 itera-
tions of Alternate-HR, where the expert was presented with
a total of 6000 incoming and outgoing edge groups. Based
on his feedback, 24804 edge groups were determined to be
ok to remove and 184698 edge groups to be kept. Edge fea-
tures include the number of shortest paths going through the
edge, the type of the edge (login, group/user admin, or group

1755

Predicted Labels
True Labels Keep Cut

Keep 184,320 222
Cut 80 24578

Table 2: Average confusion matrix of ARRG-GPC on the full
identity snowball attack graph test set.
membership), the in- and out-degrees of the node counted by
edge type, and a binary indicator for outgoing edge group
or incoming edge group. ARRG-GPC was trained using a
polynomial kernel of degree 2. The sparsest cut stage of
Alternate-HR is run with demand between only pairs of ma-
chine nodes. Due to the large size of the group, Alternate-HR
computes b(e) using shortest paths sampled from 100 ran-
domly selected starting nodes.

The results are shown in Figure 4. After querying only 300
edges, ARRG-GPC is able to reach an average edge classifi-
cation accuracy of 99.9%. In other words, after labeling on
4% of the number of edges required by Alternate-HR, our
algorithm is able to provide edge cuts with close to 100% ac-
curacy. Table 2 lists the confusion matrix averaged over 20
runs. To understand the high accuracy achieved by ARRG-
GPC, we talked to the network security expert who labeled
the edges and found that he looked for users who log on to
many machines and removed all login privileges except for
those to essential servers and the machines to which they log
on most frequently. He also removed admin privileges for
groups of large size. These criteria are well captured by the
edge features.

5 Conclusion

In this paper we study applications of graph reachability re-
duction in network security and software engineering. We
formulate the problem with unknown edge costs and propose
a solution based on binary classificaiton with active learn-
ing (ARRG). We show that, on two real-world applications,
ARRG clearly wins over competing approaches at the task of
identifying good edges to cut in a graph with unknown (and
non-uniform) edge costs. Our approach may seem intuitive
in hindsight. However, all prior work in related areas have in-
stead focused on the strategy of alternating between learning
the metric and solving the main objective (graph cut in this
case). Our success highlights the importance of aligning the
learning algorithm with the type of available feedback.

References

S. Arora, S. Rao, and U. Vazirani. Expander Flows, Geomet-
ric Embeddings and Graph Partitioning. In Symposium on
Theory of Computing (STOC), 2004.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM—A Library
for Support Vector Machines, Nov 2009.

John Dunagan, Alice X. Zheng, and Daniel R. Simon. Heat-
ray: Combating identity snowball attacks using machine
learning, combinatorial optimization and attack graphs. In
Symposium on Operating Sytems Principles (SOSP), 2009.

T. Minka. Expectation Propagation for approximate Bayesian

inference. In Uncertainty in Artificial Intelligence (UAI),
2001.

N. Nagappan and T. Ball. Using Software Dependencies
and Churn Metrics to Predict Field Failures: An Empiri-
cal Case Study. In International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2007.

X. Ou, S. Govindavajhala, and A.W. Appel. MulVAL: A
Logic-based Network Security Analyzer. In USENIX Se-
curity, 2005.

Carl Edward Rasmussen and Christopher K. I. Williams.
Documentation for GPML Matlab Code, June 2007.

F. Shahrokhi and D. Matula. The Maximum Concurrent Flow
Problem. Journal of the ACM (JACM), 37(2):318–334,
1990.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing.
Automated Generation and Analysis of Attack Graphs. In
IEEE Security and Privacy (IEEE Oakland), 2002.

T. McCabe. A Complexity Measure. IEEE Transactions on
Software Engineering, 2(4):308–320, 1976.

1756

