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Abstract

A fundamental step in sentence comprehension in-
volves assigning semantic roles to sentence con-
stituents. To accomplish this, the listener must
parse the sentence, find constituents that are candi-
date arguments, and assign semantic roles to those
constituents. Where do children learning their first
languages begin in solving this problem? Even as-
suming children can derive a rough meaning for
the sentence from the situation, how do they be-
gin to map this meaning to the structure and the
structure to the form of the sentence? In this pa-
per we use feedback from a semantic role label-
ing (SRL) task to improve the intermediate syn-
tactic representations that feed the SRL. We ac-
complish this by training an intermediate classi-
fier using signals derived from latent structure op-
timization techniques. By using a separate classi-
fier to predict internal structure we see benefits due
to knowledge embedded in the classifier’s feature
representation. This extra structure allows the sys-
tem to begin to learn using weaker, more plausible
semantic feedback.

1 Introduction

When first learning language, children must cope with enor-
mous ambiguity both in terms of meaning and structure. They
have to pick out candidate meanings from the world and
align them with the sentence forms presented, without al-
ready knowing which parts of the sentence refers to which
parts of the scene. Despite this, children do learn to interpret
sentences of various structures, and do so without detailed
feedback about whether their interpretations were correct.

Computational language learning systems often rely on ex-
actly this level of implausible fine grained feedback to solve
this problem, divining structure from a sentence and fitting
the true meaning to it. Often this is done in a pipeline where
first a fixed structure for each sentence (commonly full parse
trees) is learned, and then this structure is used to learn a pre-
defined meaning representation (in our case Semantic Role
Labels). The structure learned is not tailored for the final se-
mantic task, and the learning depends on the provision of an
exact interpretation of the sentence as feedback for learning.

In this work we experiment with a computational system
that models early stages of language acquisition, attempting
to learn to predict semantic roles from a corpora of child di-
rected speech. The system treats a highly simplified form of
sentence structure as a latent structure that must be learned
jointly with the role classification based solely on high level
semantic feedback in an online, sentence by sentence setting.

With this system we aim to show:
• With just semantic role feedback we can identify latent

argument and predicate identifiers.
• We can use the latent structure information to train ar-

gument and predicate classifiers, incorporating additional
features and prior knowledge.

• Improved hidden structure allows generalization of role
feedback to a more realistic, ambiguous level.

• To recover from loss of feedback information, we need
to incorporate a small amount plausible bottom-up noun-
based background knowledge.

1.1 Related Work

Previous computational experiments with a system for au-
tomatic semantic role labeling (BabySRL: [Connor et al.,
2008]) showed that it is possible to learn to assign basic se-
mantic roles based on the shallow sentence representations.
Furthermore, these simple structural features were robust to
drastic reductions in the integrity of the semantic-role feed-
back [Connor et al., 2009] or being used with a minimally
supervised parser [Connor et al., 2010]. These experiments
showed that representations of sentence structure as simple as
‘first of two nouns’ are useful as a starting point for sentence
understanding, even given the bare minimum of supervised
training, and lead to systematic errors.

Other models of early language acquisition such as in [Al-
ishahi and Stevenson, 2010] provide a lexically motivated
model of acquisition that is capable of production and com-
prehension, including argument role understanding. These
models assume as input a simple syntactic structure for the
sentence, including identifying arguments and predicates.
One of the focuses of the current work is how can we identify
these structures without being given this information.

A similar task which happens at an earlier stage of lan-
guage acquisition is the problem of word segmentation.
[Johnson et al., 2010] presents a computational model that
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jointly learns word segmentation along with word referents,
and demonstrates synergistic benefits from learning these to-
gether. Here we try to use this insight to learn both the struc-
ture of the sentence in terms of identifying arguments and
predicates along with the higher level semantics.

For the general natural language problem of semantic
role labeling, it is well known that the parsing step which
gives structure to the sentence is pivotal to final role la-
beling performance [Gildea and Palmer, 2002; Punyakanok
et al., 2008]. There is much interest in trying to learn
both syntax and semantics jointly, with two recent CoNLL
shared tasks devoted to this problem [Surdeanu et al., 2008;
Hajič et al., 2009]. In both cases the best systems learned syn-
tax and semantics separately, then applied together, so at this
level the promise of joint synergies have yet to be realized.

2 Model

We model language learning with a Semantic Role Labeling
(SRL) task [Carreras and Màrquez, 2004]. This allows us to
ask whether a learner, equipped with particular theoretically-
motivated representations of the input, can learn to under-
stand sentences at the level of who did what to whom with
controlled amounts of supervision. As a baseline architecture
for our system we use the model of [Connor et al., 2010],
which is itself based on a standard pipeline architecture of a
full SRL system (e.g. [Punyakanok et al., 2008]). The stages
are: (1) Unsupervised parsing of the sentence, (2) Identifying
potential arguments and predicates based on the parse, (3)
Classifying role labels for each potential argument, trained
using role-labeled child directed speech.

For the lowest level of representation, after the words
themselves, we use an unsupervised Hidden Markov Model
(HMM) tagger to provide a context sensitive clustering of
the words (essentially an unsupervised POS parse). The
HMM states are preclustered into a function/content word di-
vision which is both beneficial for unsupervised POS perfor-
mance [Connor et al., 2010], and also psycholinguistically
defensible [Shi et al., 1998; 1999]. An alternative approach
is to differentiate the prior distribution for different sets of
states, which unsurprisingly provides nearly the same divi-
sion of function and content word states [Moon et al., 2010].
Our HMM model is trained with one million words of child
directed speech, in a process that represents the year or so
of listening to speech and clustering based on distributional
similarity before the child firmly learns any specific words or
attempts multi-word sentence interpretation.

Given the sentence and unsupervised tagging, the next step
in the system is to determine which words in the sentence
are predicates, and which words are potential arguments. We
use a structured approach to this, considering the entire pred-
icate/argument identification of the sentence at once, with the
constraints that (1) only content words are considered (identi-
fied by preclustering of HMM states), (2) there is exactly one
predicate, and (3) at most four arguments. These constraints
are true of over 98% of the sentences in our training data. The
next section describes how we identify these structures.

Once a predicate and arguments have been identified, a
role classifier must decide the role for each argument rel-

ative to the predicate. We use the abstract roles of Prop-
bank [Kingsbury and Palmer, 2002], with A0 roughly indicat-
ing agent, and A1 patient. The role classifier can only rely on
features that can be computed with information available at
this stage of processing, which means the words themselves,
and number and order of arguments and predicates as pre-
dicted by the previous step.

As input to our learner we use samples of natural child di-
rected speech (CDS) from the CHILDES corpora [MacWhin-
ney, 2000]. The training data were samples of parental
speech to one child (Adam; [Brown, 1973]). The SRL train-
ing corpus consists of parental utterances in Adam sections
01-20 (child age 2;3 - 3;1), with test set from sections 21-
23. All verb-containing utterances without symbols indicat-
ing disfluencies were automatically parsed with the Charniak
parser [Charniak, 1997], annotated using an existing SRL
system [Punyakanok et al., 2008], and then errors were hand-
corrected. To simplify evaluation, we restricted training and
testing to the subset of sentences with a single predicate (over
85% of the sentences). Additionally we focus on noun ar-
guments in terms of identification, although this may miss
some other semantic roles. The final annotated sample con-
tains about 2800 sentences, with 4778 noun arguments.

We want to be able to train this model in an online fash-
ion where we present each sentence along with some seman-
tic constraints (feedback), and the classifier updates itself ac-
cordingly. In the next section we will describe how we can
train this model without direct supervision, and the represen-
tations that are used.

3 Latent Training

We can phrase our problem of Semantic Role Labeling as
learning a structured prediction task, which depends on some
latent structure (argument and predicate identification). The
goal with a structured prediction task is, given a set of labeled
examples (xi, yi) ∈ X × Y , where both X and Y are the
space of some structures, to learn a function fw:

fw(x) = argmax
y∈Y

max
h∈H

w · Φ(x, h, y)
Here H is a space of hidden latent structure that describes

some connection between X and Y , and Φ is a feature en-
coding for the complete X,H, Y example structure. For the
Semantic Role labeling case X are sentences, Y are argument
role labellings, and H ranges over the possible argument and
predicate structures in each input sentence x.

Because of the max over H in the definition of fw, the gen-
eral optimization problem for finding best w is non-convex.
Previously this has been solved using some variant of la-
tent structure optimization such as in [Chang et al., 2010;
Yu and Joachims, 2009]. Here we use an online approach
and a modification of Collin’s Structure Perceptron [Collins,
2002] with margin [Kazama and Torisawa, 2007]. This ba-
sic algorithm (Algorithm 1) uses an approximation employed
in [Felzenszwalb et al., 2008; Cherry and Quirk, 2008] where
for each example the best h∗ is found (using current model
and true labels) and then the classifier is updated using that
fixed structure. In this algorithm αw represents the learning
rate and C is the margin.
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Algorithm 1 Purely Latent Structure Perceptron
1: Initialize w0, t = 0
2: repeat
3: for all Sentences (xi, yi) do
4: h∗

i ← argmaxh∈Hi
wt · Φw(xi, h, yi)

5: y′ ← argmaxy wt · Φw(xi, h
∗
i , y) + C ∗ 1[y �= y∗

i ]

6: wt+1 ← wt + αw(Φw(xi, h
∗
i , yi)− Φw(xi, h

∗
i , y

′))
7: t← t+ 1
8: end for
9: until Convergence

An issue here is that h∗ is found and then forgotten for
each x. If we are interested in h beyond its application to
learning w to predict y, say for generalizing between related
x, or for use in other examples/prediction problems, then we
need a method to not lose this information. For example, in
the case of our Semantic Role Labeling system, we may want
to use the identified predicates to label verb states from the
unsupervised parser, or predict arguments and predicates on
new sentences without doing full role labeling.

Instead, we can train a latent predicate and argument clas-
sifier along with the role classifier, such that during the latent
prediction for each sentence we find the structure that maxi-
mizes the score of both role classification and structure pre-
diction. In addition, the exact meaning yi may not be avail-
able for every sentence, so we instead incorporate a looser
notion of feedback in terms of constraints on possible labels
(Yi) into the latent prediction step. This algorithm is sum-
marized in algorithm 2. The end result is two classifiers, fu
to predict hidden structure and fw to use hidden structure for
top level task, that have been trained to work together to min-
imize training error.

Algorithm 2 Online Latent Classifier Training
1: Initialize w0, u0, t = 0
2: repeat
3: for all Sentences (xi, Yi) do
4: (h∗

i , y
∗
i )←

5: argmaxh∈Hi,y∈Yi
wt · Φw(xi, h, y) + ut · Φu(xi, h)

// Update u to predict h∗

6: h′ ← argmaxh ut · Φu(xi, h) + C ∗ 1[h �= h∗
i ]

7: ut+1 ← ut + αu(Φu(xi, h
∗
i )− Φu(xi, h

′))
// Update w based on h∗ to predict y∗

8: y′ ← argmaxy wt · Φw(xi, h
∗
i , y) + C ∗ 1[y �= y∗

i ]

9: wt+1 ← wt + αw(Φw(xi, h
∗
i , y

∗
i )− Φw(xi, h

∗
i , y

′))
10: t← t+ 1
11: end for
12: until Convergence

The intuition for this online process is that for each sen-
tence the learner finds the best joint meaning and structure
based on the current classifiers and semantic constraints, then
updates the classifiers separately to predict this selection. In
the case where we have perfect high level semantic feedback
Yi = yi, so the role classifier will search for the argument
structure that is most useful in predicting the correct labels.
In future sections we will experiment with loosening these
semantic feedback constraints.

3.1 Argument, Predicate and Role Classification

As an example take the sentence “She likes yellow flowers.”
There are four content words; with the constraint that exactly
one is a predicate, and at least one is an argument, there are 28
possible predicate/argument structures, including the correct
assignment where ‘She’ and ‘flowers’ are arguments of the
predicate ‘likes.’ The full semantic feedback would indicate
that ‘She’ is an agent and ‘flowers’ is a patient, so the latent
score the SRL classifier predicts (line 4 and 5 of algorithm 1
and 2 respectively) will be the sum of the score of assigning
agent to ‘She’ and patient to ‘flowers’, assuming both those
words are selected as arguments in h. If a word does not
have a semantic role (such as non-argument-nouns ‘likes’ or
‘yellow’ here) then its predictions do not contribute to the
score. Through this mechanism the full semantic feedback
strongly constrains the latent argument structure to select at
least minimally the true argument nouns. Decisions regarding
‘likes’ and ‘yellow’ must then depend on the representation
used by the SRL classifier.

We use features inspired by the psycholinguistic account
of [Connor et al., 2008]: simple structures that only represent
the number and order of candidate arguments, and location
of the predicate. For representing overall argument struc-
ture we use the noun pattern feature (indicates number and
order of proposed arguments: first of three, second of two,
etc; NounPat), as well as the position relative to the proposed
verb (before or after; VPos). In the above example, with the
correct argument assignment we have that ‘She’ is the first
of two nouns and ‘flowers’ is the second of two. No matter
whether ‘likes’ or ‘yellow’ is selected as a predicate, ‘She’ is
before the verb and ‘flowers’ is after. In addition we also use a
more complicated feature set that includes NounPat and VPos
along with common features such as surrounding words and
HMM tags, and conjunctions of NounPat and VPos features
with the identified predicate (e.g. the proposed predicate is
‘likes’ and the target word is before it) so that the role classi-
fier is more dependent on a correct predicate prediction.

For the argument and predicate structure classifiers the rep-
resentation Φu(x, h) only depends on words, HMM tags and
the other arguments and predicates in the structure. We repre-
sent each word by its word form, HMM tag, word before and
after. The argument classifier also uses noun pattern, and the
predicate representation uses the number of arguments and all
suffixes of length up to three as a simple verb ending feature.

It should be noted that both algorithms require finding the
max over hidden structures and labellings according to some
set of constraints. As implemented with the sentences found
in our child directed speech sample, it is possible to search
over all possible argument and predicate structures. Once we
move on to more complicated language an alternative search
strategy will need to be employed.

4 Experimental Evaluation

For evaluation, we are interested both in how well the final
role classifier performs, and how accurately the predicate and
argument classifiers identify correct structure when trained
with just semantic feedback. Since there is only one true
predicate per sentence we report the predicate accuracy: the
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percentage of sentences with the correct predicate identified.
For arguments where there are multiple possible predictions
per sentence we report the F1 of identifying arguments: the
harmonic mean of precision and recall in predicting true ar-
guments. Likewise since there are many possible role labels
and words to label, we report the overall role F1 over all ar-
guments and label predictions1.

Our first experiment tests online latent training with full
semantic feedback. As an upper bound comparison we train
with perfect argument knowledge, so both classifiers are fully
supervised. As a lower bound of predicate-argument classifi-
cation we also include the expected result of selecting a ran-
dom predicate/argument structure for each sentence.

Training Predicate % Argument F1 Role F1
Gold Arguments 0.9740 0.9238 0.6920
Purely Latent 0.5844 0.6992 0.5588
Latent Classifier 0.9263 0.8619 0.6623
Random Arguments 0.3126 0.4580 -

Table 1: Results on test set of SRL with argument/predicate
as latent structure. With gold arguments, both structure clas-
sifier and role classifier are trained with full knowledge of
the correct arguments for each sentence. Purely Latent does
not use a latent argument and predicate classifier, it selects a
structure for each sentence that maximizes role classification
of true labels during training, and tests using the structure
and labels that maximize role classification, algorithm 1. La-
tent Classifier training trains an argument identifier using the
structure that the role classifier considers most likely to give
the correct labeling (where we know correct labels for each
noun argument), algorithm 2.

Table 1 shows the performance of the two algorithms from
section 3 compared to the previously mentioned upper and
lower bounds. All classifiers use the full feature sets from sec-
tion 3.1. The purely latent method (algorithm 1) does not use
an intermediate latent structure classifier, so the arguments
and predicates it selects are only relative to maximizing the
role classifier prediction. By incorporating a latent classifier
into the training (algorithm 2) we see a large boost in both ar-
gument and predicate identification, as well as final role per-
formance. The argument and predicate classifier effectively
generalizes the training signal provided by the latent semantic
feedback to achieve nearly the performance of being trained
on the true arguments explicitly. Of special note is the predi-
cate identification performance; while the semantic feedback
implicitly indicates true arguments, it says nothing about the
true predicates. The predicate classifier is able to extract this
information solely from what latent structures help the role
classifier make the correct role predictions.

To investigate the interaction between the two classifier’s
(hidden structure and SRL) representation choices, we test
the latent classifier with the full argument and predicate fea-
ture sets when the role classifier incorporates the four fea-
ture types: just words, noun pattern, verb position, and a full

1Since we focus on noun arguments, we miss those predicate
arguments that do not include any nouns; the maximum SRL role
F1 with only noun arguments correct is 0.8255

model containing all these features as well as surrounding
words and predicate conjunctions. As we add feature com-
plexity that depends on more accurate latent structure identi-
fication, we should see improvement in both final role accu-
racy and argument and predicate identification.

Role Feat Predicate % Argument F1 Role F1
Words 0.6406 0.8108 0.6261
+NounPat 0.7296 0.8108 0.6154
+VPos 0.9328 0.8291 0.6530
+Surrounding words and
Predicate conjunctions

0.9263 0.8619 0.6623

Table 2: With the full role feedback and latent classifier train-
ing, the role classifier features interact with the structure clas-
sifier. Better role classification through improved feature rep-
resentation feeds-back to allow for improved argument and
predicate identification. The last two feature sets make strong
use of the identity of the predicate, which encourages the
predicate classifier to accurately identify the predicate.

Table 2 shows the increasing performance as the feature
complexity increases. Most notable is the large drop in pred-
icate identification performance between the feature sets that
heavily depend on accurate predicate information and those
that only use the word form of the identified predicate as
a feature. Comparatively the argument performance drops
less because the full semantic feedback will always implic-
itly drive an accurate argument identification. The role clas-
sification performance drop can be attributed to both a natural
decrease in representation, as well as decreased argument and
predicate structure accuracy during training and testing.

4.1 Loosening Feedback

The full semantic feedback used in the previous experiments,
while less informative than absolute gold knowledge of true
arguments and predicates, is still an unreasonable amount of
feedback to expect for a child first learning language. Of-
ten in the real learning case the learner only has available an
understanding of the scene around her which may involve a
number of possible objects, relations and semantic roles, and
a sentence without any indication of the true argument labels
for the sentence or even how many arguments are present.

We are able to mimic this level of feedback by modifying
the constraining sets Hi and Yi used in line 5 of algorithm 2.
By loosening these sets we still provide feedback in terms of
restricting the search space, but not an exact labeling.

We test two levels of reduced role feedback. The first level
uses the true role labels that are present in the sentence, but
does not indicate which words correspond to which role. In
this case Yi is just the set of all labellings that use exactly the
true labels present, and Hi is constrained to be only those ar-
gument structures with the correct number of arguments. This
feedback scheme represents a setting where the child knows
the semantic relation involved, but either does not know the
nouns in the sentence, or doesn’t know whether the speaker
means chase or flee (so can’t fix role order). In our “She likes
yellow flowers” example the feedback would be that there is
an agent and a patient, but no indication of order.
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Feedback Pred Arg A0 A1 Role F1
Full Labels 0.93(0.03) 0.86(0.04) 0.90(0.01) 0.78(0.02) 0.66(0.01)
Set of Labels 0.57(0.25) 0.72(0.15) 0.60(0.28) 0.48(0.18) 0.42(0.16)
Superset 0.23(0.14) 0.50(0.08) 0.31(0.28) 0.36(0.13) 0.24(0.11)
Superset + HMM Args 0.79(0.02) 0.89(0.00) 0.67(0.24) 0.55(0.13) 0.47(0.14)
Random 0.31 0.46

Table 3: Results on test set when the amount of semantic feedback is decreased. Each value represents the mean over ten
training runs with shuffled sentence order, while the numbers in parenthesis are the standard deviations. Full label feedback
provides true role feedback for each noun argument, which is unreasonable in the case of actual language learning. Set of
Labels feedback only provides the set of true labels as feedback for each sentence, so the learner must pick a structure and label
assignment from this set. Superset goes one step further and provides a super set of labels that includes the true labels, so the
learner does not even know how many or which roles are mentioned in the sentence. With these ambiguous feedback schemes
the classifiers are barely able to begin interpreting correctly, and with superset the argument and predicate accuracy is no better
than random. Once extra information driven by bottom-up, minimally supervised noun knowledge is introduced (HMM Args)
the learner is able to make use of the superset feedback, and especially begin to identify agent and patient roles (A0 and A1).

Even this feedback scheme includes the number of true ar-
guments in the sentence, so we can go a step further with a
second level of feedback where for each sentence we supply
a superset of the true labels for the learner to select a labeling.
In this case Yi includes the true labels, plus random other la-
bels such that for every sentence there are 4 labels to choose
from, no matter the number of true arguments. We are no
longer constrained by the number of arguments, so we must
search over all argument structures and role labellings that
come from some subset of the feedback set Yi. This case cor-
responds to the setting that the learner must select a possible
interpretation of the sentence from the abundance of infor-
mation provided by the world around them. For our ‘yellow
flowers’ example the feedback would be a set of possible la-
bels that include the correct agent and patient roles, but also
two unrelated roles such as recipient or location, and no indi-
cation of how many are actually in the sentence.

As seen in table 3, the set and superset feedback schemes
definitely degrade performance compared to full labellings.
With superset feedback the learner is not able to get a good
foothold to begin correctly identifying structure and interpret-
ing sentences, so its argument and predicate identification ac-
curacy is no better than random. This suggests that infor-
mation about the number of arguments might be a necessary
constraint in learning to understand sentences.

4.2 Recovering Argument Knowledge

In a sense, there’s something fundamentally unnatural about
looking at semantic role labeling before the learner knows
the meanings of any nouns. Considerable psycholinguistic
evidence suggests that children do learn some nouns before
they start to interpret multi-word sentences, and that this noun
knowledge therefore is available to scaffold the beginnings
of sentence interpretation. If we can incorporate this extra
source of knowledge with the superset feedback then perhaps
there will be enough information on repeated sentence train-
ing for the system to improve.

This starting point of knowledge is inspired by the syn-
tactic bootstrapping theory, and by an account of syntactic
bootstrapping known as ‘structure-mapping’ [Fisher, 1996;
Gillette et al., 1999; Lidz et al., 2003]. Syntactic bootstrap-
ping theory proposes that young children use their very par-

tial knowledge of syntax to guide sentence comprehension.
The structure-mapping account makes three key assumptions:
First, sentence comprehension is grounded by the acquisition
of an initial set of concrete nouns; children are assumed to
be able to identify the referents of some nouns via cross-
situational observation [Gillette et al., 1999]. Second, chil-
dren treat each noun as a candidate argument, and thus in-
terpret the number of nouns in the sentence as a cue to its
semantic predicate-argument structure [Fisher, 1996]. Third,
children represent sentences in an abstract format that permits
generalization to new verbs [Gertner et al., 2006].

We incorporate this starting point by using the minimally-
supervised argument identification of [Connor et al., 2010].
In their case nouns are identified based on a seed set of con-
crete nouns combined with the clustering provided by an un-
supervised HMM. Once some nouns have been identified,
the HMM states they are seen with are treated as potential
argument states. Predicates are identified by finding non-
argument content words that are seen often in sentences with
a given number of arguments, and considered to be likely
predicates that take that number of arguments. During la-
tent classifier training, for each sentence the arguments and
predicate identified by this HMM method are considered the
true argument set (Hi), and then the best labeling from the
superset of labels is selected for them.

Starting with a more accurate identification of arguments
and predicate, the superset feedback is able to use the consis-
tency of certain roles’ appearance in sentences to boost their
linking with specific words and structures. For instance an
agent or patient appears in most sentences, so once common
arguments are identified and frequently appear with sentences
where the agent role is a possible label, the chance of predict-
ing this labeling increases. Table 3 shows that once we add
the HMM argument identification to the superset feedback
scheme the argument and predicate performance increases
greatly (due to accuracy of the HMM argument identifica-
tion), and the role classification also begins to increase, espe-
cially among the more common agent and patient roles. By
linking nouns to arguments, argument number to predicate,
and then argument structure to the prediction of role labels
through the role classifier, we have enabled the system to be-
gin to extract meaning from ambiguous feedback.
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5 Conclusion and Future Work

In this work we showed that it is possible to train a semantic
role classifier jointly with a simplified latent syntactic struc-
ture based solely on semantic feedback and simple linguistic
constraints. Even with highly ambiguous semantic feedback,
our system was able to identify arguments and predicates,
and begin to interpret roles when primed with knowledge of
a small set of nouns.

An eventual goal of this work is to use this latent train-
ing not only to improve intermediate representations, but to
naturally grow the complexity as the system bootstraps it-
self. One natural notion of increasing complexity is dealing
with sentences with multiple predicates, and larger numbers
of arguments. By training an accurate argument and predi-
cate identifier with this latent feedback on simple sentences,
we can then lift the constraint of a single predicate per sen-
tence and start to identify multiple predicates and argument
structures per sentence, applying role classification to these
structures without necessarily having to retrain on more com-
plicated sentences.
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