Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Learning for Deep Language Understanding

Smaranda Muresan
School of Communication and Information, Rutgers University

New Brunswick, NJ, USA
smuresan@rutgers.edu

Abstract

The paper addresses the problem of learning to
parse sentences to logical representations of their
underlying meaning, by inducing a syntactic-
semantic grammar. The approach uses a class of
grammars which has been proven to be learnable
from representative examples. In this paper, we in-
troduce tractable learning algorithms for learning
this class of grammars, comparing them in terms of
a-priori knowledge needed by the learner, hypothe-
sis space and algorithm complexity. We present ex-
perimental results on learning tense, aspect, modal-
ity and negation of verbal constructions.

1

Recently, several machine learning approaches have been
proposed for mapping sentences to their formal meaning rep-
resentations [Ge and Mooney, 2005; Zettlemoyer and Collins,
2005; He and Young, 2006; Wong and Mooney, 2007;
Poon and Domingos, 2009; Muresan, 2008; Kwiatkowksi
et al., 2010]. These approaches differ in the meaning rep-
resentation languages they use and the integration, or lack
thereof, of the meaning representations with grammar for-
malisms. A-expressions and Combinatory Categorial Gram-
mars (CCGs) [Steedman, 1996] are used by [Zettlemoyer
and Collins, 2005; Kwiatkowksi er al., 2010], and ontology-
based representations and Lexicalized Well-Founded Gram-
mars (LWFGs) [Muresan, 2006; Muresan and Rambow,
2007] are used by [Muresan, 2008].

An advantage of the LWFG formalism, compared to most
grammar formalisms for deep language understanding such
as Head-Driven Phrase Structure Grammar (HPSG) [Pollard
and Sag, 1994], Tree Adjoining Grammars (TAGs) [Joshi and
Schabes, 19971, Lexical Functional Grammars (LFGs) [Bres-
nan, 20011, is that it is accompanied by a learnability guar-
antee, the search space for LWFG induction being a com-
plete grammar lattice [Muresan, 2006; Muresan and Ram-
bow, 2007]. Some classes of CCGs has been proven to be
learnable, however, to our knowledge no tractable learning
algorithms have been proposed. Moreover, LWFG is suited
to learning in data-poor settings. Building large treebanks
annotated with complex representations needed to learn deep

Introduction

1858

grammars is a very time consuming task, which cannot be
performed easily for a wide range of genres and domains.!

In this paper we introduce tractable algorithms for LWFG
induction. The theoretical learning model proposed by Mure-
san and Rambow [2007] characterizes the importance of sub-
structures in the model not simply by frequency, but rather
linguistically, by defining a notion of “representative exam-
ples” that drives the acquisition process. Informally, repre-
sentative examples are “building blocks” from which larger
structures can be inferred via reference to a larger general-
ization corpus [Muresan and Rambow, 2007]. The first algo-
rithm assumes that the learner has access to an ordered set of
representative examples. In the second algorithm introduced
in this paper, the learner does not have a-priori knowledge
of the order of the examples, nor of which are the represen-
tative examples, learning being done from the entire general-
ization corpus. We compare these algorithms in terms of their
complexity and hypothesis space for grammar induction. We
present an experiment of learning tense, aspect, modality and
negation of verbal constructions using these algorithms, and
show they cover well-established benchmarks for these phe-
nomena developed for deep linguistic formalisms. Propos-
ing tractable learning algorithms for a deep linguistic formal-
ism and learning methods from small amount of training data,
opens the door for large scale deep language understanding.

In Section 2, we give a background on Lexicalized Well-
Founded Grammars [Muresan and Rambow, 20071, includ-
ing their formal definition. In Section 3, we present our two
grammar learning algorithms, as well as the definition of a
LWFG parser, which is used as an innate inference engine
during learning. In Section 4, we compare the two algorithms
in terms of complexity and hypothesis space for grammar in-
duction. In Section 5, we describe our experiment for learn-
ing tense, aspect, modality and negation of verbal construc-
tions. We conclude in Section 6.

2 Lexicalized Well-Founded Grammar

Lexicalized Well-Founded Grammar (LWFG) is a recently
developed formalism for deep language understanding that

!Statistical syntactic parsers for CCGs [Hockenmaier and Steed-
man, 2002; Clark and Curran, 2007] have been learned from CCG-
Bank [Hockenmaier and Steedman, 20071, a large treebank derived
from the Penn Treebank [Marcus et al., 1994].

balances expressiveness with provable learnability results
[Muresan, 2006; Muresan and Rambow, 2007; Muresan,
2010]. Formally, Lexicalized Well-Founded Grammar is a
type of Definite Clause Grammars (Pereira and Warren, 1980)
that is decidable and learnable. In LWFG, there is a partial
ordering relation among nonterminals, which allows LWFG
learning from a small set of examples. Grammar nontermi-
nals are augmented with strings and their syntactic-semantic
representations, called semantic molecules, and grammar
rules can have two types of constraints, one for semantic com-
position and one for semantic interpretation. Thus, LWFGs
are a type of syntactic-semantic grammars.

A semantic molecule associated with a natural language
string w, is a syntactic-semantic representation, w’ (b),
where h (head) encodes compositional information (e.g., the
string syntactic category cat), while b (body) is the actual
semantic representation of the string w, which in LWFG is
ontology-based — the variables are either concepts or slots
identifiers in an ontology. An example of a semantic molecule
for the noun phrase formal proposal is given below:

)

(formal proposal, cat
nr

b<X1 dsa =formal, X.Y=X1, X.isa:proposal>

When associated with lexical items, the semantic
molecules are called elementary semantic molecules.

In addition to a lexicon, a LWFG has a set of constraint
grammar rules, where the nonterminals are augmented with
pairs of strings and their semantic molecules. These pairs are

called syntagmas, and denoted by o = (w,w’) = (w, (})).
LWEFG rules have two types of constraints, one for seman-
tic composition (®.) — defines how the meaning of a natu-
ral language expression is composed from the meaning of its
parts — and one for semantic interpretation ($;) — validates
the semantic constructions based on a given ontology. An
example of a LWFG rule for a simple noun phrase is given
below:

hq
b1

N1(w, (3)) = Adj(wi, (1)), Noun(wz, (32)): @c(h, by, ha), @i(b).

The composition constraints @ are applied to the heads of
the semantic molecules and are a simplified version of “path
equations” [Shieber et al., 1983] (see Figure 3 for examples).
These constraints are learned together with the grammar rules
[Muresan, 2010]. The semantic interpretation constraints, ®;,
represent the validation based on an ontology and are not
learned. ®; is a predicate which can succeed or fail — when
it succeeds, it instantiates the variables of the semantic rep-
resentation with concepts/slots in the ontology. For example,
given the phrase formal proposal, ®; succeeds and returns (
X .isa=formal, X.manner=X;, X.isa=proposal), while given
the phrase fair-hair proposal it fails. The semantic interpre-
tation constraint, ®; serves as a local semantic interpreter at
the grammar rule level.

Muresan and Rambow [2007] formally defined LWFGs.
We present below their formal definition, slightly changed by
Muresan [2010], and introduce other key concepts that are

1859

needed for presenting the learning algorithms. We keep their
notation for consistency.

Definition 1. A Lexicalized Well-Founded Grammar (LWFG)
is a 7-tuple, G = (3,%¥' Ng, =, Pg, Ps, S), where:

1. X is a finite set of terminal symbols.

2. ¥ is a finite set of elementary semantic molecules cor-

responding to the terminal symbols.

Ng is a finite set of nonterminal symbols. Ng N'Y =
(. We denote pre(Ng) C Ng, the set of pre-terminals
(a.k.a, parts of speech)

4. = is a partial ordering relation among nonterminals.

5. Pq is the set of constraint grammar rules. A rule is
written A(oc) — Bi(o1),...,Bn(on): ®(5), where
A€ (NG —pre(Ng)), B; € Ng, 0 = (0-7 01, "'7U’IL)
such that o = (w,w’),0; = (w;,w;'),1 <i < nyw=
Wy - Wy, w' = wi o---owl, and o is the composition
operator for semantic molecules.® For brevity, we denote
aruleby A — (B: ®, where A € (Ng — pre(Ng)), B €
NG

Ps, is the set of constraint grammar rules whose left-
hand side are pre-terminals, A(c) —, A € pre(Ng).
We use the notation A — o for these grammar rules.

S € Ng is the start nonterminal symbol, and VA €
Ng, S = A (we use the same notation for the reflexive,
transitive closure of).

In LWFG due to partial ordering among nonterminals
we can have ordered constraint grammar rules and non-
ordered constraint grammar rules (both types can be re-
cursive or non-recursive). A grammar rule A(oc) —
Bi(o1),...,Bn(0,): ®(5), is an ordered rule, if for all B;,
we have A = B;. In LWFGs, each nonterminal symbol is
a left-hand side in at least one ordered non-recursive rule
and the empty string cannot be derived from any nontermi-
nal symbol.

2.1 Derivation in LWFG

The derivation in LWFG is called ground syntagma deriva-
tion, and it can be seen as the bottom up counterpart of
the usual derivation. Given a LWFG, G, the ground syn-

A— :

=% (if 0 =

. . =g

(w,w'),w € L,w € ¥, ie, A is a preterminal), and
A(oc)—Bi(01),...,Bn(0y): ®(5)

A)ggl(1) - ®(@) " In LWFGs
all syntagmas ¢ = (w,w’) derived from a nonterminal
A have the same category of their semantic molecules w’

(ha.cat = A). This property is used for determining the left
hand side nonterminal of the learned rule.

. . G .
tagma derivation relation, *:>, is defined as:

*G .
Bi=o0;,1=1,...,n,

“Semantic molecule bodies are just concatenated b =
[b1,...,bn]v, where v — variable substitution— is the most gen-
eral unifier of b and b, . .., b,, being a particular form of the com-
monly used substitution [Lloyd, 2003]. The composition of the
semantic molecule heads is given by the composition constraints

Do(hyha, ..., h).

2.2 Language/Sublanguage in LWFG

The set of all syntagmas generated by a grammar G is
Ly(G) = {olo = (w,w'),w € *,3A € Ng, A ¥ o).
Given a LWFG G, E, C L,(G) is called a sublanguage of
G. Extending the notation, given a LWFG G, the set of syn-
tagmas generated by a rule (A — 3: ®) € Pgis L,(A —
B:®) = {olo = (w,w),w € T, (A = B: D) =g o},
where (A — (: D) ¢ & denotes the ground derivation

A % 5 obtained using the rule A — (§: @ in the last deriva-
tion step.

Given a LWFG G and a sublanguage E, (not necessarily
of G), S(G) = L,(G) N E, is the set of syntagmas generated
by G reduced to the sublanguage E,. Given a grammar rule
r € Pg,S(r) = L, (r)NE, is the set of syntagmas generated
by r reduced to the sublanguage F,. These concepts will be
used during learning as performance criteria.

2.3 Chains

A property of Lexicalized Well-Founded Grammars is that
the category of a nonterminal is the name of the nonterminal:
VA € Ng we have h 4.cat = A. As a consequence, for unary
branching rules, A — B: ®, where A, B € Ng, the syn-

tagmas which are ground-derived from (A — B: ®) e A

and B § & B have the same string w and the same semantic
representation b, but have different semantic molecule heads
ha # hp. These syntagmas are called equivalent and de-
noted by o4 = op.

Informally, we can define a chain as a set of ordered unary
branching rules: {By — Bg—1,Br—1 — Bg—2,...,Bs —
By, By — B} such that syntagmas generated by these rules
are equivalent. The notion of chain is similar to the concept
of spines in Tree Adjoining Grammars [Carreras et al., 2008],
but not limited to just lexical anchors. The chain nonterminal
set for equivalent syntagmas o; = (w,w}) is the set of non-
terminals in the chain, chs(w) = {By, ..., B1, By}, where

By > Br_1--- = By and By = f, such that B; < o; for
0 <4 < k. Chains and chain nonterminal sets will be used to
generalize grammar rules during LWFG learning.

2.4 Representative Examples

The partial ordering relation among nonterminals makes the
set of nonterminals well-founded, which allows the ordering
of the grammar rules, as well as the ordering of the syntag-
mas generated by LWFGs. This allows the definition of the
representative examples of a LWFG. Muresan and Rambow
[2007] informally define the representative examples Egr of
a LWFG, G, as the simplest syntagmas ground-derived by
the grammar G. That is, for each grammar rule there exist
a syntagma which is ground-derived from it in the minimum
number of steps.

3 Grammar Induction Algorithms

The theoretical learning model for LWFG induction, Gram-
mar Approximation by Representative Sublanguage (GARS),
together with a learnability theorem was introduced in [Mure-
san and Rambow, 2007]. LWFG induction is formulated

1860

as an Inductive Logic Programming (ILP) learning prob-
lem (F, LB, LE, LH) [Kietz and DZeroski, 1994], where the
provability relation, I, is given by robust parsing and denoted
rp°; the language of background knowledge,L B, is the set
of LWFG rules that are already learned and the elementary
syntagmas corresponding to the lexicon; the language of ex-
amples, LE are syntagmas of the generalization sublanguage,
which are ground atoms; and the hypothesis language, LH,
is a complete LWFG lattice which preserves the parsing of
representative examples, Er.

The GARS model, as defined by Muresan and Rambow
[2007], takes as input a set of representative examples, Frg,
and a generalization sublanguage E,, (finite and conformal®*),
and learns a grammar G using the above ILP-setting, such
that G is unique and E, C L,(G). Eg is used to construct
the most specific hypotheses (grammar rules), and thus all
the grammars should be able to generate these representative
examples, E'r (this property is equivalent to ILP consistency
property, which states that all the learned hypotheses need to
be consistent with all the positive examples, and none of the
negative examples [Kietz and DZeroski, 1994]). The gener-
alization sublanguage E, is used during generalization, only
the most general grammar being able to generate the entire
sublanguage.

In this section we describes two tractable algorithms for
the GARS model. The first algorithm uses an ordered set of
representative examples (examples in Er are ordered from
the simplest to the most complex) (see Section 3.2). The
reader should remember that for a LWFG @, there exists a
partial ordering among the grammar nonterminals, which al-
lows a total ordering of the representative examples of the
grammar G. Thus, in this algorithm, the learner has access
to the ordered set when learning the grammar. In the second
algorithm, the learner does not have a-priori knowledge of
the order of the examples, nor of which are the representative
examples, learning being done from the entire generalization
sublanguage (see Section 3.3).

The assumption that all the algorithms rely on is that the
rules corresponding to pre-terminals (Py; in Definition 1) are
given, i.e., they are not learned. These rules can be con-
structed from the lexicon. Only the set of rules corresponding
to nonterminals Ng — pre(Ng) (i.e., Pg in Definition 1) are
learned.

Both learning algorithms use a robust parser as an innate
inference engine introduced in the next section.

3.1 Robust Parser as Innate Inference Engine for
Grammar Induction

The LWFG parser is a bottom-up active chart parser [Kay,
1973] that is an effectively r-reversible program [Neumann
and van Noord, 1994], i.e., it is capable of both parsing and
generation and it is guaranteed to terminate.

3., is equivalent to ground syntagma derivation <

“The property of conformal introduced in [Muresan and Ram-
bow, 2007] is similar to the notion of structural completeness of a
positive sample w.r.t. an automaton [Dupont et al., 1994]. This al-
lows learning based only on positive examples.

The semantics of the LWFG parser is given by the defi-
nitions presented below. Let us consider (w,w’) € E, C
L, (@) a syntagma derived by a grammar G, such that w =

w1 -+ Wy, is a string, w’ = (};) is its semantic molecule, and
b = b; - - - b, is the string semantic representation. The parser
is used both during the generation of candidate hypotheses
(Definition 3), and during their evaluation in order to choose

the best performing one (Definition 2).

Definition 2 (Parsing for performance criteria). We de-
fine the set of syntagmas returned by the robust parser by:
Ly(w) = {olo = (wij,ng), with w;; = W;Wit1 - Wj_1,
Wi, ...,wj—1 € 8, 1 <1< j <n+1,st. JA € Ng,
AZ o}

Moreover, for all syntagmas o € L,(w), the parser re-
turns the ground derivation length, gdlg (o), which is the
minimum number of ground-derivation steps used to derive
o from grammar G.

Definition 3 (Parsing for hypothesis generation).
When both the string (w) and its semantic represen-
tation (b) are given, we define the set of syntagmas

parsed by the robust parser by L,(w,b) = {olo =
(wij,ng),with W5 = wi--~wj_1,w§j = (}g:;),bu =
(bibi+1 "'173',1)1/1']'7 Wiy o voy Wj—1 € Z, ’U.); = (Z:) S

!/ / —
X wi =

Ng, A g O’}
It can be noticed that the parser returns all the subsyntag-

mas (chunks), and thus it is robust, which is essential for hy-
pothesis generation during learning.

(P)exi1<i<j<n+l, st.dAc
i

3.2 Grammar Learning from Ordered
Representative Examples

Algorithm 1 describes the LWFG induction based on an or-
dered set of representative examples. The algorithm visits
each representative example in turn, learning a new grammar
rule from the current representative example o € ERr using
the procedure LearnRule. This rule is added to the grammar
rule set P (Pg is added to the background knowledge K,
but for clarity, in the algorithm, we give G explicitly as an
argument, and not part of K). The process continues until all
the representative examples are covered.

Algorithm 1: Grammar_Induction(Eg, E,, K)

Data: Ordered representative examples, E'r
generalization sublanguage, E»
Background Knowledge, K

Result: Learned grammar (rules+constraints), P

Pg + 1]
foreach o0 € Er do

ro < LearnRule(o, G, E., K)
L Pg + Pg U {Tg}

return Pg

Procedure LearnRule(o, G, E,, K)

Leto = (w, ()
Most Specific Grammar Rule Generation
a)w min(w; ... wp) s.tb=(by,...,bn)v

/x w=w1...wn, (wj, (ZLJJ)) € Lo(w,b), 1<j<n; n is

x/

-

the min num of chunks given by robust parser
— h; G .
b) chs(w;) = {Bjloj = (w;, (;7)), B; = 0;},1<j <n

chain(w;) = {B;” — B, ~",...,B} — B}

or« (A— B} ... B%: ®,)

Grammar Rule Generalization

for j < 1tondo
i1

B;%B;‘.fl
_|

14— 1+1

r<4—Tg

while r

L

return r

rg A (S(r) C S(ry)) do

Procedure LearnRule has two main steps: 1) generation of
the most specific grammar rule r from the current represen-
tative example o, and 2) generalization of this rule using as
performance criterion the coverage of the generalization sub-
language E,.

Most specific rule generation. In order to generate the
most specific grammar rule, the robust parser first produces

the minimum number of chunks that cover 0 = (w, (2))
— starting from the string w and its semantic representa-
tion b (see Definition 3). Let us assume that our current

representative example is o (formal proposal, (1)),

where the semantic molecule (}) was given in Section 2.

And let us assume that the background knowledge contains
the pre-terminal rules Py, for the adjective formal and the
noun proposal (i.e., Adj — (formal, (};11)), Noun —
(proposal, (Z;))), as well as previously learned grammar

rules and constraints Pg (e.g., N1 — Noun: ®,).5 Us-
ing this background knowledge, the robust parser returns the
chunks that cover the example, namely the adjective formal,
and the noun proposal, respectively. Next, in step 1b, for
each chunk w;, the robust parser determines the set of non-
terminals from which ¢; = (wj, w;) is ground-derived, i.e.,
chs(w;), as well as the corresponding chains. In our ex-
ample, we have that syntagma corresponding to the adjec-
tive formal can be derived only from the pre-terminal Adj,
while the noun proposal can be derived from the nontermi-
nal N1 and the pre-terminal N oun. Thus, the only chain that
we have is for the noun proposal, and it only contains one
unary branching rule: chain(proposal) = {N1 — Noun}.
In step 1c, the most specific rule r is generated such that its
left-hand side nonterminal is determined from the category
annotated in the representative example o, h.cat = A and the

We describe below the process of learning a grammar rule
from the current representative example (i.e., LearnRule pro-
cedure).

1861

3For readability we only provide the context-free backbone of the
grammar rules, and the semantic composition constraints. Notations
and examples are similar to the ones used by Muresan and Rambow
[2007] to exemplify the search space, for reference.

arguments of each nonterminal B]Q from its right-hand side
are generalized. In our example, the most specific rule is
N1 — Adj Noun: ®5, where the left-hand side nonter-
minal is given by the category of the representative example,
in this case n1 (see Section 2). The compositional constraints
®, are learned as well (Muresan [2010] gave an algorithm for
constraint learning, which we used in this paper).

Grammar Rule Generalization. In the second step, the
rule r is generalized by unary branching rules to a new rule

Bi—BiT!

g, as long as S(r) C S(ry). We denote by r 4
the generalization of r by unary branching rule Bj — B;fl

in chain(w;). In other words, the most specific rule is gen-
eralized based on unary branching rules, obtaining thus a set
of candidate grammar rules. The performance criterion in
choosing the best grammar rule among these candidate hy-
potheses is the number of examples in the generalization sub-
language F, that can be parsed using the candidate gram-
mar rule ry; in the last ground derivation step, together with
the previous learned rules, i.e., [S(ry;)|. In our example,
we obtain two candidate grammar rules: r,; = (N1 —
Adj Noun: ®9) and rgo = (N1 — Adj N1: ®3). Given
the generalization sublanguage E,={ formal proposal, loud
clear noise, the loud noise} the learner will generalize to the
recursive rule 740, since this rule covers more examples in
E,.

3.3 General Grammar Learning

Algorithm 1 presented in the previous section requires the
learner to have knowledge of the representative examples,
and the “true” order of those examples (i.e., from simpler to
more complex). In this section we introduce a new general
algorithm for LWFG induction, which does not require such
a-priori knowledge. This algorithm has big practical implica-
tions, since when modeling complex language phenomena it
might not be realistic to provide the right order of examples,
or even to know which are the representative examples, with-
out relying on deep linguistic knowledge. Algorithm 2 is an
iterative grammar induction algorithm, which learns based on
a set of examples E* that can be either an unordered repre-
sentative example set E}, (when we have knowledge of the
representative examples), or the entire generalization corpus
E, (when we do not have such knowledge).

Initially, for each example 0 € E*, a rule r, is learned
using the LearnRule procedure (stage 1). Each rule covers at
least the example from which it was learned (ILP consistency
property), and we have that | Pg| = | E*|, property which will
remain true at each iteration step of the algorithm (stage 2).

At each iteration step (stage 2), the rule corresponding to
the current example o is deleted from the existing set of gram-
mar rules (Pg- < Pg —{rs}). If by deletion of r, we have
that |S(G™)| = [S(G)| (step 3) — i.e., there exist a more
general rule 7,/ that covers the current example o, as well as
the example it was learned from ¢’ — we keep in Pg only
this more general rule, and we delete from E* the example
with the maximum ground derivation length (g4,). In other
words, we keep the most general rule in Pg and the simplest
example in E£*. Otherwise, the algorithm (re)learns the rule

Algorithm 2: General_ Grammar_Induction(E*, E,,, K)

1862

Data: E* can be either E, or E
generalization sublanguage F
Background Knowledge, K
Result: Learned grammar (rules+constraints), P, Representative examples, E r
Pg + 1]
1 foreach o € E™* do
ry < LearnRule(o, G, E,, K)
Pg + Pg U {T‘o—}

repeat
O¢ + Po
foreach o € E* do

Pc;f +— Pg *{To—} // o €8S(ry)
3 if S(G) = S(G™) then
Leto’ # os.t. o € S(ry) /] o' €8(ryr)

if gdl,— (o) > gdls—(o') then
Omaz < O
else
| Omaz <0
B E* +— E* —{0maz}
else
ro < LearnRule(o, G, E,, K)
| Pg < Pg- U {TJ}

until O¢ = Pg
Er + E*
return P, Er

from the current example o based on all the other rules, us-
ing the procedure LearnRule, and then it adds the new rule to
the set of grammar rules Pg (step 4). The algorithm iterates
until the grammar learned during the last step is the same as
the grammar learned in the previous step (Pg = Og). At the
end, £* will contain just the representative examples.

Algorithm 2 is an instance of “theory revision”, because
after a grammar (“theory”) is learned during the first stage,
the grammar (“theory”) is revised (by deleting and adding
rules). In the next section we discuss the complexity of these
two algorithms and the property of the hypothesis space.

4 Hypothesis Space and Algorithm
Complexity

Muresan and Rambow [2007] have proven that the search
space for LWFG induction is a complete grammar lattice, giv-
ing a learnability theorem which states that: if E'y is the set of
representative examples associated with a LWFG G confor-
mal with respect to a sublanguage E, O Eg, then G can al-
ways be learned from Ei and E,, as the top element (T = G)
of the complete grammar lattice. In Figure 1 the complete
grammar lattice is shown in blue, and we have |Pg| = |ER|.
This property of the search space holds for algorithms where
the learner has knowledge of the representative examples, be-
ing it ordered or unordered.

However, in the case of Algorithm 2 when we learn di-
rectly from E,, the search space only converges to a com-
plete grammar lattice (Figure 1). Initially when we have that
|Pg| = |E*| > |ER|, the search space is not a complete

complete grammar lattice
|Pe| = |ER|
KERNEL

|Pe| = |E"| > |ExR|
Figure 1: Hypothesis space

grammar lattice since we have grammar rules that do not pre-
serve the parsing of the representative examples. For exam-
ple, let us assume that we start with E,={loud clear noise,
loud noise, noise} and we only have as background knowl-
edge the pre-terminal rules. The grammar rule first learned
by Algorithm 2 for the example loud clear noise would be
N1 — Adj Adj Noun: ®. This rule will not parse the
representative example loud noise, and will be outside the
complete grammar lattice, as given in [Muresan and Ram-
bow, 2007]. However these rules will be eliminated (stage 2),
and in the end only the rules which preserve the parsing of
the representative examples are kept. Thus, the search space
will converge to a complete grammar lattice (|Pg| = |ER|).
The algorithm is guaranteed to converge to the lattice top el-
ement (T), since the rule generalization in LearnRule is the
inverse of the rule specialization operator used by Muresan
and Rambow [2007] to define the complete grammar lattice.

All algorithms introduced in this paper are polynomial.
This result provides an advance in practical grammar learn-
ing for deep language understanding. While learnability re-
sults have been proven for some classes of Combinatorial
Categorial Grammars [Steedman, 1996], to our knowledge
no tractable learning algorithm has been proposed.

First, the procedure LearnRule is linear on the length
of the learned rules and has the complexity O(|8] *
maz(|chs(w;)|) * |E, | x|o|®), where 3 is the right hand side
of grammar rules. We assume a constant bound on the length
of the grammar rules. Given this, the complexity of Algo-
rithm 1 is |Er| multiplied with the complexity of the proce-
dure LearnRule, i.e., O(|Eg| * | 3| *x maz(|chs(w;)|) * | E,| *
o).

Algorithm 2 terminates after |E'g| iterations in the worst
case. The complexity of each iteration step is |E*| multi-
plied with the complexity of the procedure LearnRule, thus
the overall complexity of Algorithm 2 is O(|Eg| * |E*| * | 5] *
maz(|chs(w;)|) * |E,| * |o]3).

Annotation Effort: Algorithm 1 and Algorithm 2 when
E* = FE} require a small amount of annotation since only
the representative examples E'r need to be fully annotated
— the sublanguage E, used for generalization can be just
weakly annotated (i.e., bracketed) or even unannotated. In
turn, Algorithm 2 when E* = FE, requires a larger annota-
tion effort since the entire F, set needs to be fully annotated
(i.e., utterances and their semantic molecules). To alleviate
this effort, we have developed an annotation tool that inte-
grates the parser and the lexicon in order to provide the user
with the utterance and the semantic molecules of the chunks,
so the user does not need to write the semantic representation
by hand.

1863

S Experiments

An advantage of providing polynomial algorithms for LWFG
learning is that instead of writing grammars for deep linguis-
tic processing by hand, we can learn such grammars from
examples. Capturing tense, aspect, modality and negation
of verbal constructions has been one of the classic bench-
marks for deep linguistic processing grammar formalisms,
since modeling these phenomena is crucial for temporal rea-
soning and interpretation of facts and beliefs.

In our experiment, to learn sentence structures with subject
and verbal constructions including auxiliary verbs — which
capture tense, aspect, modality and negation —- we used 20
representative examples E'r (phrases annotated with their se-
mantic molecules, similarly to the example in Section 2), and
106 examples in the generalization sublanguage F,. All ex-
amples were derived from Quirk et al’s English grammar
[Quirk et al., 1972].

All algorithms converged to the same grammar, which con-
tains 20 rules, including the compositional constraints, also
learned. Convergence of the algorithms to the same target
grammar is guaranteed by the theoretical results presented in
Section 4.

In Figure 3, we show a sample from our learned grammar
corresponding to auxiliary constructions dealing with modals,
negation, subject-verb agreement, tense and aspect, as well
as the corresponding learned constraints for two of the rules.
We have 4 nonterminals for auxiliaries. AV 0 models simple
form of auxiliaries “be” and “have” as well as modal auxil-
iaries and the periphrastic auxiliary “do”, together with sub-
ject agreement and inversion; AV0 is also used for model-
ing constructions with relative pronouns used either in ques-
tions or relative clause constructions; AV'1 introduces nega-
tion; AV 2 introduces the modals and future tense; AV 3 intro-
duces the perfect aspect; while AV4 introduces the progres-
sive form of the auxiliary “to be”, which will be used in con-
junction with the passive constructions (e.g., “she may have
been being examined by ...”). In this grammar we have the
following chain of nonterminals {AV4, AV3, AV2, AV1,
AV0}. Even if for this grammar of auxiliaries the rules of
the grammar seem simple, and someone might wonder if they
could have been written by hand, the complexity of the task is
emphasized in the learned constraints. Moreover, the gram-
mar becomes more complex as we introduce complex noun
phrases that could generalize to Sbj, as well as other ver-
bal constructions. In Figure 2, we show the representative
examples used to learn the 8th and 14th grammar rules and
constraints, respectively. The examples in the generalization
sublanguage used for the 8th rule are {someone is not, who is
not, he is not, he can not, he has not}.

To test our learned grammar we have used the Test Suites
for Natural Language Processing (TSNLP) [Lehmann et al.,
19961, since it includes specific benchmarks for tense, as-
pect and modality (C_Tense_Aspect_Modality) and negation
(C_Negation), and it has been used for testing grammars for
deep linguistic processing. Using our learned grammar, our
parser correctly recognized the 157 positive examples for
tense, aspect and modality, and rejected all 38 ungrammat-
ical examples. For negation, out of 289 positive examples

Sample Representative Examples

(X.isa=someone, Y.tense=pr, Y.neg=y))

> (X.isa=someone, Y.tense=pr,Y.pg=y))

8. (someone is not, [cat:av1,stype:s,vtype:aux,vft:fin,int:no,dets:y,aux:be,neg:y,tense:pr,pers:(_,3),nr:sg,pf:no,pg:no,headS: X, head: Y]r<

14. (someone is being),[cat:av4,stype:s,vtype:aux,vft:fin,int:no,dets:y,aux:be,neg:no,tense: pr,pers:(_,3),nr:sg,pf:no,pg:y,headS: X ,head: Y]

Figure 2: Sample representative examples. The examples are represented as (w, h > b) instead of (w, (Z))

Sample Learned Grammar Pg

Sbi((5)) — Pro((31)): ®er(h, ha), (D)

Sbj((3)) = NNP((31)): ®ea(h, ha), D(b)

S0j((;)) = WP((;})): ®ea(h, ha), ®:(b)

Avo((}) — Sbi((11)), Auz((;2)): @ea(h, b, ha), ©i(b)
AVO((:)) - Aux((bll))7 55]((22)) ©C5(h,h1ah2)7©i(b)
AVO((Z)) — WP((Z;),Aum((’;i)): (I)CG(hv h17h2)7 l(b)
AVI((}) — AVO((31)): @er(h, ha), @i(b)

AVI((3)) = AVO((;1), Auz((}2)): @es(h, b, ha), i(b)
AV2((3)) — AVI((31)): @eo(h, h1), @i(b)

AV2((;)) = AVL((;1), Auz((32)): Pero(h, b, ha), (D)
AV3((3) — AV2((31)): ®eri(h, ha), ®i(b))

AV3((3)) = AV3((;1)), Auz((32)): Pera(h, b, hz), ®:(b)
AVA((3)) = AV3((5))): Pers(h, ha), i(b)

AVA((3) = AV3((}1), Auz((32)): era(h, ha, ha), @i (b)

Sample learned compositional constraints .

®cs(h,h1,h2)= {h.cat=avl,h.stype=h.stype,
h.vtype=h1.vtype,h.vtype=ho.vtype,
h.vft=fin,h,.vft=fin,h.int=h .int,

h.dets=h; .dets,h.aux=h1 .aux,h.neg=hs.neg,
h.tense=h1.tense,h.pers=hy.pers,h.nr=h;.0r,
h.pf=h1.pf,h.pg=h1.pg,h.headS=h .headS,
h.head=h .head,h.head=hs.head,h; .cat=av0,
hi.neg=no, hs.cat=aux, ha.aux=not}
{h.cat=av4,h.stype=h .stype,
h.vtype=h1.vtype,h.vtype=ha.vtype,
h.vft=fin,h,.vft=fin,h.int=h .int,

h.dets=h .dets,h.aux=be,h.aux=Dbe,
ho.aux=be,h.neg=h;.neg,

h.tense=h .tense,h.pers=h1 .pers,h.nr=h; .nr,
h.pf=h1.pf,h.pg=h2.pg,h.headS=h.heads,
h.head=h; .head,h.head=hs.head, h;.cat=av3,
hi.pg=no,hs.cat=aux,hs.vft=nfin}

Dc14(h, hi, he) =

Figure 3: Sample learned grammar rules and constraints for auxiliary verbs. pre(N¢g)={Pro,NNP,WP, Aux}

G She’ll have been being seen .

G He must have been succeeding .

G She would not be being seen .

G He will not have succeeded .

G He might not have been seen .

UG | She may be being seeing .

UG | He did succeeding.

UG | He not would be succeeding .

UG | He not might have been being seen .

Table 1: Example of grammatical(G) and ungrammati-
cal(UG) utterances, accepted and rejected by the learned
grammar, repectively

the parser covered 288° and rejected all the negative exam-
ples (129). Example of correct utterances and ungrammatical
utterances are given in Table 1.

Our parser returns the semantic representation of the ut-
terance. For example, for the utterance She might not have
been being seen the parser returns (l.isa = she,2.mod =
might,2.neg = y,2.tense = pr,2.pg = y,2.pf =
Y, 2.isa = see,2.ag = 1) (where pg and pf relates to verb’s
aspect: progressive and perfective, respectively; and ag refers
to the semantic role agent of the verb see, which is she).

5The example not covered was He not might have been succeed-
ing, which we believe should not be part of the grammatical exam-
ples, since it has negation before the modal might.

1864

6 Conclusions and Future Work

We have described two polynomial algorithms for Lexical-
ized Well-Founded Grammar learning, which are guaranteed
to learn the same unique target grammar. We have discussed
these algorithms in terms of their search space, complexity
and a priori knowledge that the learner needs to have (or-
dered vs. unordered representative examples, knowledge of
the representative examples vs. absence of such knowledge).
We have described an experiment of learning tense, aspect,
modality and negation of verbal constructions using these
algorithms, and show they covered well-established bench-
marks for these phenomena developed for deep linguistic for-
malisms. Proposing tractable learning algorithms for a deep
linguistic grammar formalism opens the door for large scale
deep language understanding. Moreover, being able to learn
from a small amount of data will enable rapid adaptation to
different domains or text syles.

We are currently extending the grammar with probabilities
in two ways: 1) adding probabilities at the rule level similar
to other probabilistic grammars, and 2) modeling a weighted
ontology (thus ®; behaves as a soft constraint, rather than a
hard one).

Acknowledgements

The author acknowledges the support of the NSF (SGER
grant I1S-0838801). Any opinions, findings, or conclusions
are those of the author, and do not necessarily reflect the
views of the funding organization.

References

[Bresnan, 2001] Joan Bresnan. Lexical-Functional Syntax.
Oxford: Blackwell, 2001.

[Carreras et al., 2008] Xavier Carreras, Michael Collins, and
Terry Koo. Tag, dynamic programming and the percep-
tron for efficient, feature-rich parsing. In Proceedings of
CoNLL, 2008.

[Clark and Curran, 2007] Stephen Clark and James R. Cur-
ran. Wide-coverage efficient statistical parsing with ccg
and log-linear models. Computational Linguistics, 33(4),
2007.

[Dupont et al., 1994] Pierre Dupont, Laurent Miclet, and En-
rique Vidal. What is the search space of the regular infer-
ence? In R. C. Carrasco and J. Oncina, editors, Proceed-
ings of the Second International Colloquium on Gram-
matical Inference (ICGI-94), volume 862, pages 25-37,
Berlin, 1994. Springer.

[Ge and Mooney, 2005] Ruifang Ge and Raymond J.

Mooney. A statistical semantic parser that integrates
syntax and semantics. In Proceedings of CoNLL-2005,
2005.

[He and Young, 2006] Yulan He and Steve Young. Spo-
ken language understanding using the hidden vector state
model. Speech Communication Special Issue on Spo-
ken Language Understanding in Conversational Systems,

48(3-4), 2006.

[Hockenmaier and Steedman, 2002] Julia Hockenmaier and
Mark Steedman. Generative models for statistical parsing
with combinatory categorial grammar. In ACL ’02: Pro-
ceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 335-342, 2002.

[Hockenmaier and Steedman, 2007] Julia Hockenmaier and
Mark Steedman. Ccgbank: A corpus of ccg derivations
and dependency structures extracted from the penn tree-
bank. Computational Linguistics, 33(3):355-396, 2007.

[Joshi and Schabes, 1997] Aravind Joshi and Yves Schabes.
Tree-Adjoining Grammars. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, vol-
ume 3, chapter 2, pages 69-124. Springer, Berlin,New
York, 1997.

[Kay, 1973] Martin Kay. The MIND system. In Randall
Rustin, editor, Natural Language Processing, pages 155—
188. Algorithmics Press, New York, 1973.

[Kietz and DZeroski, 1994] Jorg-Uwe Kietz and SaSo
DZeroski. Inductive logic programming and learnability.
ACM SIGART Bulletin., 5(1):22-32, 1994.

[Kwiatkowksi et al., 2010] Tom Kwiatkowksi, Luke Zettle-
moyer, Sharon Goldwater, and Mark Steedman. Inducing
probabilistic ccg grammars from logical form with higher-
order unification. In Proceedings of EMNLP, 2010.

[Lehmann et al., 1996] Sabine Lehmann, Stephan Oepen,
Sylvie Regnier-Prost, Klaus Netter, and et al. Tsnlp - test
suites for natural language processing. In Proceedings of
COLING, 1996.

1865

[Lloyd, 2003] John W. Lloyd. Logic for Learning: Learning
Comprehensible Theories from Structured Data. Springer,
Cognitive Technologies Series, 2003.

[Marcus et al., 1994] Mitchell Marcus, Grace Kim,
Mary Ann Marcinkiewicz, Robert Maclntyre, Ann
Bies, Mark Ferguson, Karen Katz, and Britta Schasberger.
The penn treebank: annotating predicate argument struc-
ture. In HLT ’94: Proceedings of the workshop on Human
Language Technology, pages 114-119, 1994.

[Muresan and Rambow, 2007] Smaranda Muresan and
Owen Rambow. Grammar approximation by representa-
tive sublanguage: A new model for language learning. In
Proceedings of ACL, 2007.

[Muresan, 2006] Smaranda Muresan. Learning constraint-
based grammars from representative examples: Theory
and applications. Technical report, PhD Thesis, Columbia
University, 2006.

[Muresan, 2008] Smaranda Muresan. Learning to map
text to graph-based meaning representations via gram-
mar induction. In Coling 2008: Proceedings of the 3rd
Textgraphs Workshop, pages 9—16, Manchester, UK, 2008.

[Muresan, 2010] Smaranda Muresan. A learnable constraint-
based grammar formalism. In Proceedings of COLING,
2010.

[Neumann and van Noord, 1994] Giinter Neumann and
Gertjan van Noord. Reversibility and self-monitoring in
natural language generation. In Tomek Strzalkowski, edi-
tor, Reversible Grammar in Natural Language Processing,
pages 59-96. Kluwer Academic Publishers, Boston, 1994.

[Pollard and Sag, 1994] Carl Pollard and Ivan Sag. Head-
Driven Phrase Structure Grammar. University of Chicago
Press, Chicago, Illinois, 1994.

[Poon and Domingos, 2009] Hoifung Poon and Pedro
Domingos. Unsupervised semantic parsing. In Proceed-
ings of EMNLP’09, 2009.

[Quirk er al., 1972] Randolph Quirk, Sidney Greenbaum,
Geoffrey Leech, and Jan Svartvik. A Grammar of Con-
temporary English. Longman, 1972.

[Shieber et al., 1983] Stuart Shieber, Hans Uszkoreit, Fer-
nando Pereira, Jane Robinson, and Mabry Tyson. The
formalism and implementation of PATR-II. In Barbara J.
Grosz and Mark Stickel, editors, Research on Interactive
Acquisition and Use of Knowledge, pages 39—79. SRI In-
ternational, Menlo Park, CA, 1983.

[Steedman, 1996] Mark Steedman. Surface Structure and In-
terpretation. The MIT Press, 1996.

[Wong and Mooney, 2007] Yuk Wah Wong and Raymond
Mooney. Learning synchronous grammars for semantic
parsing with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association for Computational Lin-
guistics (ACL-2007), 2007.

[Zettlemoyer and Collins, 2005] Luke S. Zettlemoyer and
Michael Collins. Learning to map sentences to logical
form: Structured classification with probabilistic catego-
rial grammars. In Proceedings of UAI-05, 2005.

