
Abstract
The paper describes a method of relation extrac-
tion, which is based on parsing the input text using
a combination of a generic HPSG-based grammar
and a highly focused domain- and relation-specific
lexicon. We also show a method of unsupervised
acquisition of such a lexicon from a large unla-
beled corpus. Together, the methods introduce a
novel approach to the “Open IE” task, which is su-
perior in accuracy and in quality of relation identi-
fication to the existing approaches.

1 Introduction
Relation Extraction (RE) is the task of recognizing instances
of specific relationships between two or more entities in a
natural language text. In a traditional setting, the target rela-
tion types are known to a RE system in advance, and it can
be prepared for its task either by a knowledge engineer
hand-crafting the extraction rules, or by the system itself
learning the rules from a set of hand-labeled training exam-
ples. Both ways require a large expenditure of manual labor.
 In recent years, [Banko and Etzioni 2008] introduced a
new setting for the RE task, called Open Information Ex-
traction (OpenIE). In this setting, the RE system does not
know the target relations in advance, and cannot have any
relation-specific human input. Thus, the task requires the
system itself to identify the target relations and to train itself
for extracting them.
 IE systems that work on free text can perform either a
shallow or a deep parsing. The advantages of shallow pars-
ing are high speed, simplicity of training and usage, and
consequent higher accuracy. So, most of the state-of-the-art
IE systems, including the OpenIE systems cited above, do
not use deep parsing, because its obvious theoretical advan-
tages are offset by the practical limitations of existing gen-
eral-purpose parsers.
 In this paper, we describe an RE system that does per-
form deep parsing, using a parser which is built specifically
for the task of Information Extraction. The parser’s underly-
ing framework, called CARE-II, is capable of parsing arbi-
trary weighted typed-feature-structure-based context free
grammars. This gives the framework a unique power, allow-
ing it to use a high-level unification-based grammar, such as

HPSG, while still being able to flexibly interface with fea-
ture-rich sequence classifiers, such as CRF-based NER and
PoS taggers [McCallum and Li 2003; Rosenfeld, Fresko et
al. 2005; Avinesh and Karthik 2007], and to produce for
each sentence a single best parse (among the exponentially
many possibilities that can be allowed by a grammar), as
evaluated according to the weights of the grammar and the
classification scores produced by the sequence classifiers.
 The parser we built on top of the CARE-II framework is
generic – it uses an HPSG-like grammar (derived primarily
from the example grammar in [Sag, Wasow et al. 2003]),
but does not have lexical definitions for any words beside
the most frequent functional (non-content) ones. Instead, it
relies on the CRF-trained NER and PoS sequence classifiers
to provide weights for different possible typed-feature-
structure assignments for different words. And then, for any
input sentence, the parser is able to generate a single high-
est-weight parse – the parse which is the most consistent
with the NER and POS classifiers.
 The resulting parses contain many errors, and would
probably not compare favorably with the results of the best
existing standalone parsers. However, the goal of the system
is not to provide a general-purpose parser, but to be easily
adaptable for the IE task. And, given a target relation type,
the system only requires the definitions for a small number
of the relevant content words in order to function as an ac-
curate parser for the relevant sentences – the ones that ac-
tually contain instances of the target relations.
 These definitions (the domain-specific lexicon) can be
written manually. It is much easier than manually creating a
set of extraction patterns or manually labeling a training set
of sufficient size for automatic learning. However, this is
still not suitable for the OpenIE task, where the target rela-
tions are not known beforehand. Thus, in this paper we de-
scribe a method for automatically extracting the required
lexical entries from a large unlabeled text corpus.

2 CARE-II Framework
CARE-II is a framework for building Information Extrac-
tion systems that focus on natural language sentences. It
includes a grammar description language and the supporting
tools. The core of the framework is a parser, which is capa-

Unsupervised Lexicon Acquisition for HPSG- ased Relation Extraction �

Benjamin Rozenfeld and Ronen Feldman
Digital Trowel and Hebrew University of Jerusalem

Israel
grurgrur@gmail.com, ronen.feldman@huji.ac.il

B

1890

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

ble of parsing arbitrary weighted typed-feature-structure
context-free grammars (WTFSCFG-s).

2.1 WTFSCFG
WTFSCFG is a WCFG (weighted context-free grammar), in
which any symbol, terminal or non-terminal, carries a typed
feature structure (FS); the grammar rules have access to the
feature structures of their component symbols, building
from them the feature structures of their heads, using the
operations of unification, slot extraction, and slot removal.
 The full syntax of typed feature structures in CARE-II
grammar language is rather complicated, so in this paper we
will use the standard notation of attribute-value matrices,
with an additional ‘=’ operator, which can be used in the
feature structures attached to the heads of grammar rules.
For example, the Head-Specifier Rule [Sag, Wasow et al.
2003] can be written as follows (“Phrase” is a nonterminal
symbol of a grammar):

� �2

1
1 2

SYN VAL SPR

SPR
SYN VAL

COMPS

1.0:

;

Phrase

Phrase Phrase

�� �� 	
 �� �� �� �
� �	
� �� �

 �
 �
 �	

 �� �� �� �

The “<–1.0>” specifies a constant cost associated with the
application of the rule, the weight part in the WCFG. [Note:
all general rules have the same small constant cost, to en-
courage the compactness of a parse.] In other respects, the
rule is a simple CFG production rule

 Phrase : – Phrase Phrase;

extended with the feature structures. The CFG rule states
that two adjacent Phrase-s can be reduced to a single
Phrase. And the feature structures in the full WTFSCFG
rule above constrain the FS-s that can be carried by these
Phrase-s in the following ways: (1) the value of
SYN.VAL.COMPS of the FS carried by the second Phrase
in the rule body must be unified with an empty list, (2) the
value of SYN.VAL.SPR of the same FS must be unified
with a single-element list, (3) this single element must be
unified with the FS carried by the first Phrase in the rule
body, and (4) the resulting Phrase will carry the second
feature structure, exactly as it becomes after all the unifica-
tions and after further setting the value of SYN.VAL.SPR to
empty list. (Note: this last operation removes the direct re-
sults of the unification of SYN.VAL.SPR with 1 , but keeps
the changes that resulted from co-referencing values within
the feature structure.)

2.2 Terminal symbols
The CARE-II framework works at the level of tokens
(words, punctuation, etc), so each terminal symbol of a
grammar must span zero or more tokens. Like non-terminals
defined by grammar rules, the terminal symbols can also
have weights and may carry feature structures. The ambigui-
ties are allowed – the same words can be matched to differ-

ent terminal symbols, with associated different weights and
feature structures.
 The framework allows several varieties of terminals: di-
rect tokens, tokens defined by regular expressions, word
lists and sequence classifier labels. For the purposes of the
grammar in this paper, only two kinds are relevant: first,
there is a single word list, called Lexicon, which lists all
explicitly defined words in the grammar, together with their
weights and feature structures. And second, there are se-
quence classifier labels, described below.

2.3 Sequence Classifiers
In general, a sequence classifier is a component that takes as
input a sequence of tokens (the input sentence) and selects
for each token a single label from a small predefined set of
labels. For example, a named entity recognizer (NER)
would select the labels from a set like {“Person”, “Organi-
zation”, “Location”, “None”}, while a part-of-speech tagger
(PoS) would select the labels from a set like {“NN”,
“NNP”, “JJ”, “VB”, “VBG”, …}.

The CARE-II framework is able to use any sequence
classifier that normally works by assigning (in whatever
way) weights to different labels and/or pairs of labels at
every position in the input sentence, and then selecting the
best (highest-scoring) sequence of labels using the Vitterbi
algorithm. This includes start-of-the-art feature-rich CRF-
based or MaxMargin-based NER and PoS taggers [Rosen-
feld, Fresko et al. 2005]. The classifiers are not utilized in
the standard way, however. Instead of first running a clas-
sifier and then using the produced single fixed sequence of
labels, the framework retrieves the actual weights that the
classifier assigns, and uses them directly as the weights of
the terminal symbols. So, instead of the classifier’s Vitterbi
algorithm, it is the more general WTFSCFG inference algo-
rithm, which finds the highest-scoring grammar parse,
which maximizes the sum of the weights of words, rules,
and classifier labels that participate in it.

This method of using sequence classifiers makes the
framework very flexible, since it allows the labels of indi-
vidual tokens to change from the labeling that would be
given by standalone NER/PoS, if the change is perceived to
be beneficial to the whole parse. This, in turn, allows a very
general, only partially lexicalized grammar, which contains
rules for only the most frequent but not all linguistic con-
structions, to still achieve reasonable parsing quality. And it
allows to seamlessly extend the grammar with domain-
specific lexical entries in order to get high-quality parsing
for sentences in the specific domain. This last trait is very
important in a parsing framework used for information ex-
traction.

2.4 Parsing Algorithm
The parsing algorithm is an extension of the Agenda-based
parser for PCFG-s [Klein and Manning 2001]. The exten-
sion allows arbitrary weights, as well as feature structures
and their manipulation. In the general case, inference with
feature structures is Turing-machine-powerful, so the algo-
rithm’s worst-case space and time complexity is exponen-

1891

tial. However, with careful writing of the grammar rules and
feature structures, it can be made to stay efficiently poly-
nomial.

2.5 Generic Grammar
The English grammar that is used for this paper is based on
HPSG, as described in [Sag, Wasow et al. 2003] and
adapted for the CARE-II framework. It contains around
thirty general rules and the lexicon definitions for several
hundred functional words: determiners, pronouns, preposi-
tions, auxiliary verbs, etc.
 The content words are defined generically, with the help
of PoS and NER sequence classifiers, CRF-trained using the
training corpora from CoNLL-2000 [Tjong, Sang et al.
2000] and CoNLL-2003 [Tjong, Sang et al. 2003] shared
tasks, respectively. The definitions allow any word in the
input sentence to be assigned to any word class (in the
HPSG sense), with the weights set as specified by the clas-
sifiers.
 The grammar’s two main non-terminals are Phrase and
Word. The Phrase rules are the generic HPSG-like rules,
which build more complex phrases from simpler phrases
and from Word-s, in the manner similar to the Head-
Specifier rule shown in the section 2.1 above. Word func-
tions as the single terminal symbol for these rules, but itself
is defined by several rules, which connect it to the true ter-
minals. There are three kinds of these rules. First, there is a
simple rule:

1 1: ;Word Lexicon�

which allows any word defined in the Lexicon word set to
function as a Word. Then, there is a set of rules for generic
content words that are not named entities. For example, the
rule for generic adjectives looks like this (slightly simpli-
fied):

� �1

1

HEAD

SPR

COMPS

HEAD
SYNSYN VAL

VAL.SPRLMOD

SEM INDEX

RMOD

GAP

RELN
SEM RESTR

ARG

:

adj

noun

Word

adj

	

	

	�

	

	

� �� �

 �
 �� �
 �
 �
 �
 �
 �
 �
 �
 �
 �� �� �
 �
 �
 �
 �
 �
 �
 �� �
 �
 �
 �
 �
 �
 �
 �
 �� �
 �
 �
 �
 �� �
 �
 �

 �
 �� �

 �

� �� �
 �

 �
 �
 �� �� �� �

;JJ None� �
Here, JJ +None means “any word, with the weight equal to
the weight assigned by the PoS classifier to ‘JJ’ and NER
classifier to ‘None’”. Similar rules are written for nouns

(NN*), adverbs (RB*), and various verb forms (VB*). The
verb forms have three separate definitions each, for intransi-
tive, transitive, and ditransitive forms. There is no need to
define separate generic forms for verbs with preposition
phrase (PP) complements, since they can be parsed as PP
modifiers. The verbs with non-standard complements (rais-
ing and control verbs, complementation verbs) are directly
listed in the lexicon together with the functional verbs, but
without non-generic semantic information.
 Finally, there is a set of rules for named entities: Person,
Organization, and Location. For example, the Person rule is:

� �

� �� �

HEAD FORM

AGR PER

SPR

SYN COMPS
VAL

LMOD

RMOD

GAP

SEM RESTR RELN

_

: ;

noun
nform Person

third

Word

Person

NNP Person

	

	

	

	

	

� �

� �� � ��

 �

 ��

 �

 ��

 �
 �
 �� �

 �
 �

� �
 �
 �

 �
 �
 �
 �
 �
 �
 �
 �
 �

 �
 �
 �� �

 �
 �

 �
 �

 �
 �� �

 �
� �

The “semantics” part of the HPSG grammar is integrated
with the CARE-II in such a way as to produce a parse in the
form of a special labeling of the input sentence. In this labe-
ling, every sequence of tokens that corresponds to a Word
inside the parse is put under a tag. The tags have unique ID
attributes that correspond to SEM.INDEX values. The other
tag attributes correspond to subslots of SEM.RESTR. The
grammar is built in such a way that Words in a parse never
intersect, and so the tags never intersect also, and the parses
can be interpreted as a word dependency graphs, with words
having links pointing to other words.

3 Example Relation-Specific Lexicon
For an example relation, we will use the Acquisition relation
between companies, as in the sentence:

Qualcomm has acquired Elata for 57 million in cash.

For simplicity we will consider only the two main fields: the
Acquirer and the Acquired, both of the type ‘Organization’.
In order to allow the framework together with the generic
grammar to extract the relation instance

 Acquisition(Acquirer = “Qualcomm”
Acquired = “Elata”)

from the sentence above, it is sufficient to define a single
content word – the verb “to acquire”. The definition can
look like this:

1892

DefVerb: <1> “acquire”,

1

2

1

2

SYN.HEAD.FORM

SEM.INDEX
ARG_ST

SYN.HEAD.FORM

SEM.INDEX

RELN

SEM.RESTR ACQUIRER

ACQUIRED

_

_
,

_

stv lxm

nform Org

nform Org

Acquire

� �

 �

 �

 �� �

 �
 �� �
 �

 �� �

 �
 �� �
 �

 �� �
 �
 �
 �
 �
 �
 �� �� �

;

The additional positive weight encourages the parses involv-
ing the verb “acquire” over generically defined words.

If this definition is added to the grammar, the sentence
above will be parsed into the following:

 <1: RELN=Org> Qualcomm </1>
 <2: RELN=perfect ARG=3> has </2>
 <3: RELN=Acquire ACQUIRER=1 ACQUIRED=4 PAST=true>
 acquired </3>
 <4: RELN=Org> Elata </4>
 …

from which it is trivial to extract the relation instance frame.
Note, that the same grammar will correctly extract the rela-
tion from sentences containing the verb “acquire” in any
form and tense, including gerund. The word “acquisition”,
on the other hand, is not accessible to the grammar rules,
and so must be defined separately. Other words that may
need to be defined are: “purchase”, “shares”, “interest”,
“assets”, etc. The number of relevant words is usually not
too large – on the order of 10-50 per relation, with many of
the words sharing definitions, and so the task of writing
them is more accessible for manual knowledge engineering
than writing traditional extraction rules or labeling a large
training corpus. The OpenIE task, however, requires the
system to generate the relations and the lexicon automatical-
ly.

4 Unsupervised Domain-Specific Lexicon Ac-
quisition

The general idea of the acquisition method is to extract and
analyze a set of frequent patterns from a large unlabeled
corpus. Unlike most methods of unsupervised (or even su-
pervised) pattern extraction, the goal here is to find patterns
that are both semantically and linguistically meaningul. On-
ly such patterns can be directly converted into lexical defini-
tions. On the one hand, this severely restricts the possible
pattern forms. But on the other hand, the lexical entries be-
come much more general than the patterns from which they
were originally generated, because the full power of the
grammar’s general rules is allowed to work on the lexical
entries. And yet, their extractions remain just as precise,

because only linguistically correct constructions are allowed
by the grammar.
 The first stage of the method is to parse a large unlabeled
corpus using the generic grammar. This may result in many
parsing mistakes, but genuine meaningful patterns would
still appear much more frequently in the parsed text than
random mistakes, which is used for their identification. In
the second stage, the extracted frequent patterns are con-
verted into lexical entries and the corpus is reparsed using
the combined grammar. This produces much more precise
results and also significantly increases recall. In the third
stage, the relations extracted by different lexical patterns are
filtered, compared to each other, and merged together into
single relation types if they have sufficient overlap. In the
final stage, names are given to the relation types and their
slots, and the lexical entries are re-generated accordingly,
producing the final domain-specific lexicon.

4.1 Patterns
The research on OpenIE [Banko and Etzioni 2008] indicates
that there exist several common linguistic pattern types
which produce the majority of interesting relations. All of
them and more are included in the set of pattern types that
are checked by our system.

The patterns are pieces of parses, and the parses are word
dependency graphs. Thus, all patterns are connected depen-
dency sub-graphs, and each one includes at least two entity
placeholders. There are three sets of pattern types: verb-
based, noun-based, and BE-based.
 The main set of patterns is the verb-based. In these pat-
terns the head word is a verb, and the entities are either sub-
jects, or objects, or connected to the verb or to its object via
a sequence of preposition phrases. For example:

 X/Org �s� acquired �c� Y/Org
 X/Org �s� merged �m� with �c� Y/Org
 X/Org �s� completed �c�
 � acquisition �m� of �c� Y/Org

The link types s, c, and m indicate subject, complement, and
modifier, respectively. These and several other links are
defined in the generic grammar. The raising and comple-
mentation verbs are excluded from participation in patterns,
so “X continues to claim that it will acquire Y” is equivalent
to “X acquired Y” for the purposes of pattern extraction.
 The noun-based patterns are headed by a noun, and the
entities are connected via preposition phrases, possessives,
or compounds. For example:

 (acquisition �m� of �c� X/Org) �m� by �c� Y/Org
 X/Org �poss� ’s �m� acquisition �m� by �c� Y/Org
 merger �m� of �c� (X/Org �conj� and �conj� Y/Org).

Finally, the BE-patterns are headed by the verb “be” in its
predicative (non-auxiliary) sense:

 X/Person (is) �� mayor �m� of �c� Y/Loc
 X/Person , �� mayor �m� of �c� Y/Loc ,
 X/Org �poss� ’s �m� headquarters (are) �
 � in �c� Y/Loc

1893

The predicative BE is different from other verbs because of
the way it behaves semantically. It does not have its own
semantics, instead directly connecting the predicate to its
subject. The same behavior is used for the semantics of ap-
positives, so they are equivalent to the BE-patterns.

4.2 Initial Patterns Extraction
The patterns extraction in the first stage of the process is
straightforward: every pattern that belongs to one of the
types described in the previous section and that appears at
least 10 times is extracted and saved.

No distinction is made at this point between patterns
which are identical except for attachment of preposition
phrases, because the generic grammar alone does not have
enough information to make a correct informed decision
about the PP attachment.

If two patterns differ only by the entity types, and if one
of them is much more frequent than the other (10 times or
more), then the less frequent pattern is removed, in the as-
sumption that its appearance is the result of entity recogni-
tion errors.

4.3 Initial Lexical Entries Generation
The lexical entries are generated directly from the patterns,
in a mostly straightforward way. For example, the pattern
“X/Org acquired Y/Org” from the section 4.1 would gener-
ate the definition of the verb “acquire” from section 3, iden-
tical in all respects except for the relation and slot names.
The names are created automatically, and are non-
informative at this point in the process.

The patterns that contain preposition phrases require ad-
ditional decisions before they can be converted into lexical
entries: whether to declare the PP as a complement or as a
modifier, and to which word should the PP be attached if
there is a choice. These decisions can be made statistically,
by counting the frequencies of the PP-s appearing after the
corresponding verbs and nouns, and the frequencies of the
same words appearing alone or with different prepositions.
In our current experiments, though, a simpler method was
chosen: all prepositions get connected to the pattern’s head
word as complements, except for two cases: (1) the preposi-
tion “of” appearing between two nouns is always interpreted
as a possessive, and is considered to be equivalent to the
possessive clitic “’s” and to noun compounds when one of
the NP-s is an entity; and (2) if one pattern is fully contained
inside another, then the PP-s from inside the embedded pat-
tern are attached to the head of the embedded pattern, not
the containing one.

4.4 Clustering of the Results
There are many possible ways to cluster the patterns and
their extractions in order to produce the final relation types.
Since the main focus of this work is elsewhere, we chose the
simplest method: to combine any two patterns with suffi-
ciently overlapping sets of extractions, where “sufficiently
overlapping” means having at least two common relation
instances.

Finally, the clustered patterns can be used to generate
names for the relation and for its slots. This is also not the
main focus of the work, so no sophisticated naming scheme
was used. Just the main word of the most frequent pattern in
a cluster, qualified if necessary (in case of ambiguities) by
adding the types of the arguments and other words in the
pattern.

5 Experimental Evaluation
We used two large text corpora for evaluation: the
“ACMM” corpus and the RCV1 corpus of Reuters news
[Lewis, Yang et al. 2004], both of which were used to eva-
luate the URIES system [Rosenfeld and Feldman 2007].
This allows us to compare the quality of our linguistically-
aware relation identification to the one based on clustering
of shallow parse patterns and their extractions.
 The ACMM corpus consists of a concatenation of four
separate corpora, for the Acquisition, Merger, MayorOf, and
CEO_Of relations. Each sentence in the corpus contains at
least one keyword related to one of these four relations. The
relations identified by our system were somewhat more
general: the system merged together Acquisition and Mer-
ger, and combined CEO_Of with other head positions in
companies (e.g., “Chairman_Of”). In other respects, the
system achieved better accuracy than its predecessors. It
also identified and extracted many other relations. The par-
tial list of extractions is shown in Table 1:

Identified Relation Count Precision
Acquisition/Merger (Org, Org) 38499 0.93
ExecutiveOf (Person, Org) 4350 0.96
MayorOf (Person, Loc) 690 0.97
Headquarters_In (Org, Loc) 426 0.84
Represent/Advise (Org, Org) 363 0.75
IsMemberOf (Person, Org) 190 0.85
…

Table 1. Extractions from the ACMM corpus

The precision figures were estimated by randomly checking
100 relation instances from each cluster. The relation names
are manually given.
 The RCV1 corpus consists of all sentences from the news
articles, without preselecting. Thus, the relations identified
and extracted from it are more diverse. The top several iden-
tified relations are shown in Table 2:

Identified Relation Count Identified Relation Count

Acquisition/Merger 11211 PeopleInteract 2858

TalkedWithNews 8208 AppointExecutive 1459

VisitedLocation 5094 RatingOfCompany 1245

RelationsCountries 3384 People Talk/Write 460

President/Head of 3060 SportsTeamCoach 235

LocatedIn 2982 …
Table 1. Top identified relations in the RCV1 corpus

1894

 There is no easy way to numerically compare our system
to the state-of-the-art OpenIE system TextRunner [Banko
and Etzioni 2008; Lin, Etzioni et al. 2009]. However, it is
easy to show specific instances of general problems – sen-
tences for which TextRunner systematically makes mis-
takes, yet which are processed correctly by our system, be-
cause it is more linguistically aware and utilizes deep pars-
ing. For example, the TextRunner query for “is mayor” pro-
duces such results as:

� “LDA” from the sentence “The LDA is the Mayor’s
agency for business and jobs.”

� “year” from “Later this year he is elected Mayor for
the first time.”

� “bright spots” from “Look around, you'll see bright
spots in city Morganton News Herald - The follow-
ing is Morganton Mayor Mel Cohen's state of the
city speech.”

These examples should demonstrate the TextRunner’s
weakness. Even when the query is constrained to “Person is
mayor of City”, which reduces the recall from several thou-
sands to just 33 instances, the last sentence from the three
above still remains.

6 Related Work and Conclusions
Sekine [2006] coined the term “on demand information ex-
traction” and developed a system that reduced the human
labor needed to create IE systems in new domains. Shinya-
ma and Sekine’s [2006] preemptive IE system utilized clus-
tering techniques to discover relationships between binary
entities in a corpus of news articles. Open IE was first intro-
duced in [Banko and Etzioni 2008].

The CARE-II framework is a descendant of the older
CARE (CRF-Assisted Relation Extraction) framework,
which used the same approach of combining weighted dis-
criminative context-free grammars with Vitterbi-based se-
quence classifiers, but lacked the typed feature structures. It
was primarily intended for supervised IE.
 There are several directions, in which our system can be
further improved and extended. One is allowing the system
to actively seek the sentences, which can confirm or dis-
prove the hypotheses about whether two patterns describe
the same or different relations. The system may use the in-
stances of one pattern to generate possible candidate phrases
of the other, and use a search engine to look for them in the
Web. Success or failure in finding them would be evidence
for equivalence or non-equivalence of the relations.
 Some parts of the system are yet in preliminary stages
and need further work: PP attachment discovery, relation
naming.
 Another important shortcoming of the system is its re-
liance on predefined entity types. By using statistical entity
discovering systems, and then applying the patterns discov-
ery, it is possible to extract new entity types and new rela-
tions containing them.
 Also, the extracted patterns may be context-dependent,
and it may significantly improve the accuracy of the system

to use text clustering / text classification methods when
processing huge heterogenous text corpora like Web.

References
[Avinesh and Karthik 2007] Avinesh, P. and G. Karthik.

Part-Of-Speech Tagging and Chunking using Condition-
al Random Fields and Transformation Based Learning.
Proceedings of SPSAL-2007.

[Banko and Etzioni 2008] Banko, M. and O. Etzioni. The
Tradeoffs Between Open and Traditional Relation Ex-
traction. ACL-08: HLT.

[Klein and Manning 2001] Klein, D. and C. D. Manning.
An O(n3) Agenda-Based Chart Parser for Arbitrary
Probabilistic Context-Free Grammars. Technical Report,
Stanford.

[Lewis, Yang et al. 2004] Lewis, D. D., Y. Yang, et al.
RCV1: A New Benchmark Collection for Text Categori-
zation Research. Journal of Machine Learning Research
5: 361-397.

[Lin, Etzioni et al. 2009] Lin, T., O. Etzioni, et al. Identify-
ing Interesting Assertions from the Web. CIKM'09.

[McCallum and Li 2003] McCallum, A. and W. Li. Early
results for Named Entity Recognition with Conditional
Random Fields, Feature Induction and Web-Enhanced
Lexicons. Proceedings of CoNLL-2003, Edmonton,
Canada: 188-191.

[Rosenfeld and Feldman 2007] Rosenfeld, B. and R. Feld-
man. Clustering for Unsupervised Relation Identifica-
tion. CIKM'07.

[Rosenfeld, Fresko et al. 2005] Rosenfeld, B., M. Fresko, et
al. A Systematic Comparison of Feature-Rich Probabilis-
tic Classifiers for NER Tasks. PKDD.

[Sag, Wasow et al. 2003] Sag, I. A., T. Wasow, et al. Syn-
tactic Theory: A Formal Introduction, CSLI Publica-
tions.

[Sekine 2006] Sekine, S. On-Demand Information Extrac-
tion. ACL-2006.

[Shinyama and Sekine 2006] Shinyama, Y. and S. Sekine.
Preemptive Information Extraction using Unrestricted
Relation Discovery. HLT-NAACL 2006.

[Tjong, Sang et al. 2003] Tjong, E., K. Sang, et al. Introduc-
tion to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition, Edmonton,
Canada.

[Tjong, Sang et al. 2000] Tjong, E. F., K. Sang, et al. Intro-
duction to the CoNLL-2000 Shared Task: Chunking.
Proceedings of CoNLL-2000 and LLL-2000, Lisbon,
Portugal.

1895

