
Abstract 
The paper describes a method of relation extrac-
tion, which is based on parsing the input text using 
a combination of a generic HPSG-based grammar 
and a highly focused domain- and relation-specific 
lexicon. We also show a method of unsupervised 
acquisition of such a lexicon from a large unla-
beled corpus. Together, the methods introduce a 
novel approach to the “Open IE” task, which is su-
perior in accuracy and in quality of relation identi-
fication to the existing approaches. 

1 Introduction 
Relation Extraction (RE) is the task of recognizing instances 
of specific relationships between two or more entities in a 
natural language text. In a traditional setting, the target rela-
tion types are known to a RE system in advance, and it can 
be prepared for its task either by a knowledge engineer 
hand-crafting the extraction rules, or by the system itself 
learning the rules from a set of hand-labeled training exam-
ples. Both ways require a large expenditure of manual labor. 
 In recent years, [Banko and Etzioni 2008] introduced a 
new setting for the RE task, called Open Information Ex-
traction (OpenIE). In this setting, the RE system does not 
know the target relations in advance, and cannot have any 
relation-specific human input. Thus, the task requires the 
system itself to identify the target relations and to train itself 
for extracting them. 
 IE systems that work on free text can perform either a 
shallow or a deep parsing. The advantages of shallow pars-
ing are high speed, simplicity of training and usage, and 
consequent higher accuracy. So, most of the state-of-the-art 
IE systems, including the OpenIE systems cited above, do 
not use deep parsing, because its obvious theoretical advan-
tages are offset by the practical limitations of existing gen-
eral-purpose parsers. 
 In this paper, we describe an RE system that does per-
form deep parsing, using a parser which is built specifically 
for the task of Information Extraction. The parser’s underly-
ing framework, called CARE-II, is capable of parsing arbi-
trary weighted typed-feature-structure-based context free 
grammars. This gives the framework a unique power, allow-
ing it to use a high-level unification-based grammar, such as 

HPSG, while still being able to flexibly interface with fea-
ture-rich sequence classifiers, such as CRF-based NER and 
PoS taggers [McCallum and Li 2003; Rosenfeld, Fresko et 
al. 2005; Avinesh and Karthik 2007], and to produce for 
each sentence a single best parse (among the exponentially 
many possibilities that can be allowed by a grammar), as 
evaluated according to the weights of the grammar and the 
classification scores produced by the sequence classifiers. 
 The parser we built on top of the CARE-II framework is 
generic – it uses an HPSG-like grammar (derived primarily 
from the example grammar in [Sag, Wasow et al. 2003]), 
but does not have lexical definitions for any words beside 
the most frequent functional (non-content) ones. Instead, it 
relies on the CRF-trained NER and PoS sequence classifiers 
to provide weights for different possible typed-feature-
structure assignments for different words. And then, for any 
input sentence, the parser is able to generate a single high-
est-weight parse – the parse which is the most consistent 
with the NER and POS classifiers. 
 The resulting parses contain many errors, and would 
probably not compare favorably with the results of the best 
existing standalone parsers. However, the goal of the system 
is not to provide a general-purpose parser, but to be easily 
adaptable for the IE task. And, given a target relation type, 
the system only requires the definitions for a small number 
of the relevant content words in order to function as an ac-
curate parser for the relevant sentences – the ones that ac-
tually contain instances of the target relations. 
 These definitions (the domain-specific lexicon) can be 
written manually. It is much easier than manually creating a 
set of extraction patterns or manually labeling a training set 
of sufficient size for automatic learning. However, this is 
still not suitable for the OpenIE task, where the target rela-
tions are not known beforehand. Thus, in this paper we de-
scribe a method for automatically extracting the required 
lexical entries from a large unlabeled text corpus.  

2 CARE-II Framework 
CARE-II is a framework for building Information Extrac-
tion systems that focus on natural language sentences. It 
includes a grammar description language and the supporting 
tools. The core of the framework is a parser, which is capa-
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ble of parsing arbitrary weighted typed-feature-structure 
context-free grammars (WTFSCFG-s). 

2.1 WTFSCFG  
WTFSCFG is a WCFG (weighted context-free grammar), in 
which any symbol, terminal or non-terminal, carries a typed 
feature structure (FS); the grammar rules have access to the 
feature structures of their component symbols, building 
from them the feature structures of their heads, using the 
operations of unification, slot extraction, and slot removal. 
 The full syntax of typed feature structures in CARE-II 
grammar language is rather complicated, so in this paper we 
will use the standard notation of attribute-value matrices, 
with an additional ‘=’ operator, which can be used in the 
feature structures attached to the heads of grammar rules. 
For example, the Head-Specifier Rule [Sag, Wasow et al. 
2003] can be written as follows (“Phrase” is a nonterminal 
symbol of a grammar): 
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The “<–1.0>” specifies a constant cost associated with the 
application of the rule, the weight part in the WCFG. [Note: 
all general rules have the same small constant cost, to en-
courage the compactness of a parse.] In other respects, the 
rule is a simple CFG production rule 

 Phrase  : –  Phrase  Phrase; 

extended with the feature structures. The CFG rule states 
that two adjacent Phrase-s can be reduced to a single 
Phrase. And the feature structures in the full WTFSCFG 
rule above constrain the FS-s that can be carried by these 
Phrase-s in the following ways: (1) the value of 
SYN.VAL.COMPS of the FS carried by the second Phrase 
in the rule body must be unified with an empty list, (2) the 
value of SYN.VAL.SPR of the same FS must be unified 
with a single-element list, (3) this single element must be 
unified with the FS carried by the first Phrase in the rule 
body, and (4) the resulting Phrase will carry the second 
feature structure, exactly as it becomes after all the unifica-
tions and after further setting the value of SYN.VAL.SPR to 
empty list. (Note: this last operation removes the direct re-
sults of the unification of SYN.VAL.SPR with 1 , but keeps 
the changes that resulted from co-referencing values within 
the feature structure.) 

2.2 Terminal symbols 
The CARE-II framework works at the level of tokens 
(words, punctuation, etc), so each terminal symbol of a 
grammar must span zero or more tokens. Like non-terminals 
defined by grammar rules, the terminal symbols can also 
have weights and may carry feature structures. The ambigui-
ties are allowed – the same words can be matched to differ-

ent terminal symbols, with associated different weights and 
feature structures. 
 The framework allows several varieties of terminals: di-
rect tokens, tokens defined by regular expressions, word 
lists and sequence classifier labels. For the purposes of the 
grammar in this paper, only two kinds are relevant: first, 
there is a single word list, called Lexicon, which lists all 
explicitly defined words in the grammar, together with their 
weights and feature structures. And second, there are se-
quence classifier labels, described below. 

2.3 Sequence Classifiers 
In general, a sequence classifier is a component that takes as 
input a sequence of tokens (the input sentence) and selects 
for each token a single label from a small predefined set of 
labels. For example, a named entity recognizer (NER) 
would select the labels from a set like {“Person”, “Organi-
zation”, “Location”, “None”}, while a part-of-speech tagger 
(PoS) would select the labels from a set like {“NN”, 
“NNP”, “JJ”, “VB”, “VBG”, …}. 

The CARE-II framework is able to use any sequence 
classifier that normally works by assigning (in whatever 
way) weights to different labels and/or pairs of labels at 
every position in the input sentence, and then selecting the 
best (highest-scoring) sequence of labels using the Vitterbi 
algorithm. This includes start-of-the-art feature-rich CRF-
based or MaxMargin-based NER and PoS taggers [Rosen-
feld, Fresko et al. 2005]. The classifiers are not utilized in 
the standard way, however. Instead of first running a clas-
sifier and then using the produced single fixed sequence of 
labels, the framework retrieves the actual weights that the 
classifier assigns, and uses them directly as the weights of 
the terminal symbols. So, instead of the classifier’s Vitterbi 
algorithm, it is the more general WTFSCFG inference algo-
rithm, which finds the highest-scoring grammar parse, 
which maximizes the sum of the weights of words, rules, 
and classifier labels that participate in it. 

This method of using sequence classifiers makes the 
framework very flexible, since it allows the labels of indi-
vidual tokens to change from the labeling that would be 
given by standalone NER/PoS, if the change is perceived to 
be beneficial to the whole parse. This, in turn, allows a very 
general, only partially lexicalized grammar, which contains 
rules for only the most frequent but not all linguistic con-
structions, to still achieve reasonable parsing quality. And it 
allows to seamlessly extend the grammar with domain-
specific lexical entries in order to get high-quality parsing 
for sentences in the specific domain. This last trait is very 
important in a parsing framework used for information ex-
traction. 

2.4 Parsing Algorithm 
The parsing algorithm is an extension of the Agenda-based 
parser for PCFG-s [Klein and Manning 2001]. The exten-
sion allows arbitrary weights, as well as feature structures 
and their manipulation. In the general case, inference with 
feature structures is Turing-machine-powerful, so the algo-
rithm’s worst-case space and time complexity is exponen-
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tial. However, with careful writing of the grammar rules and 
feature structures, it can be made to stay efficiently poly-
nomial.  

2.5 Generic Grammar 
The English grammar that is used for this paper is based on 
HPSG, as described in [Sag, Wasow et al. 2003] and 
adapted for the CARE-II framework. It contains around 
thirty general rules and the lexicon definitions for several 
hundred functional words: determiners, pronouns, preposi-
tions, auxiliary verbs, etc. 
 The content words are defined generically, with the help 
of PoS and NER sequence classifiers, CRF-trained using the 
training corpora from CoNLL-2000 [Tjong, Sang et al. 
2000] and CoNLL-2003 [Tjong, Sang et al. 2003] shared 
tasks, respectively. The definitions allow any word in the 
input sentence to be assigned to any word class (in the 
HPSG sense), with the weights set as specified by the clas-
sifiers. 
 The grammar’s two main non-terminals are Phrase and 
Word. The Phrase rules are the generic HPSG-like rules, 
which build more complex phrases from simpler phrases 
and from Word-s, in the manner similar to the Head-
Specifier rule shown in the section 2.1 above. Word func-
tions as the single terminal symbol for these rules, but itself 
is defined by several rules, which connect it to the true ter-
minals. There are three kinds of these rules. First, there is a 
simple rule: 

1 1: ;Word Lexicon�  

which allows any word defined in the Lexicon word set to 
function as a Word. Then, there is a set of rules for generic 
content words that are not named entities. For example, the 
rule for generic adjectives looks like this (slightly simpli-
fied): 
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Here,  JJ +None  means “any word, with the weight equal to 
the weight assigned by the PoS classifier to ‘JJ’ and NER 
classifier to ‘None’”. Similar rules are written for nouns 

(NN*), adverbs (RB*), and various verb forms (VB*). The 
verb forms have three separate definitions each, for intransi-
tive, transitive, and ditransitive forms. There is no need to 
define separate generic forms for verbs with preposition 
phrase (PP) complements, since they can be parsed as PP 
modifiers. The verbs with non-standard complements (rais-
ing and control verbs, complementation verbs) are directly 
listed in the lexicon together with the functional verbs, but 
without non-generic semantic information. 
 Finally, there is a set of rules for named entities: Person, 
Organization, and Location. For example, the Person rule is: 
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The “semantics” part of the HPSG grammar is integrated 
with the CARE-II in such a way as to produce a parse in the 
form of a special labeling of the input sentence. In this labe-
ling, every sequence of tokens that corresponds to a Word 
inside the parse is put under a tag. The tags have unique ID 
attributes that correspond to SEM.INDEX values. The other 
tag attributes correspond to subslots of SEM.RESTR. The 
grammar is built in such a way that Words in a parse never 
intersect, and so the tags never intersect also, and the parses 
can be interpreted as a word dependency graphs, with words 
having links pointing to other words. 

3 Example Relation-Specific Lexicon 
For an example relation, we will use the Acquisition relation 
between companies, as in the sentence:  

Qualcomm has acquired Elata for 57 million in cash. 

For simplicity we will consider only the two main fields: the 
Acquirer and the Acquired, both of the type ‘Organization’. 
In order to allow the framework together with the generic 
grammar to extract the relation instance 

 Acquisition(Acquirer = “Qualcomm” 
Acquired = “Elata”) 

from the sentence above, it is sufficient to define a single 
content word – the verb “to acquire”. The definition can 
look like this: 
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The additional positive weight encourages the parses involv-
ing the verb “acquire” over generically defined words. 

If this definition is added to the grammar, the sentence 
above will be parsed into the following: 

  <1: RELN=Org> Qualcomm </1> 
  <2: RELN=perfect ARG=3> has </2> 
  <3: RELN=Acquire ACQUIRER=1 ACQUIRED=4 PAST=true> 
                                               acquired </3> 
  <4: RELN=Org> Elata </4> 
          … 

from which it is trivial to extract the relation instance frame. 
Note, that the same grammar will correctly extract the rela-
tion from sentences containing the verb “acquire” in any 
form and tense, including gerund. The word “acquisition”, 
on the other hand, is not accessible to the grammar rules, 
and so must be defined separately. Other words that may 
need to be defined are: “purchase”, “shares”, “interest”, 
“assets”, etc. The number of relevant words is usually not 
too large – on the order of 10-50 per relation, with many of 
the words sharing definitions, and so the task of writing 
them is more accessible for manual knowledge engineering 
than writing traditional extraction rules or labeling a large 
training corpus. The OpenIE task, however, requires the 
system to generate the relations and the lexicon automatical-
ly. 

4 Unsupervised Domain-Specific Lexicon Ac-
quisition 

The general idea of the acquisition method is to extract and 
analyze a set of frequent patterns from a large unlabeled 
corpus. Unlike most methods of unsupervised (or even su-
pervised) pattern extraction, the goal here is to find patterns 
that are both semantically and linguistically meaningul. On-
ly such patterns can be directly converted into lexical defini-
tions. On the one hand, this severely restricts the possible 
pattern forms. But on the other hand, the lexical entries be-
come much more general than the patterns from which they 
were originally generated, because the full power of the 
grammar’s general rules is allowed to work on the lexical 
entries. And yet, their extractions remain just as precise, 

because only linguistically correct constructions are allowed 
by the grammar. 
 The first stage of the method is to parse a large unlabeled 
corpus using the generic grammar. This may result in many 
parsing mistakes, but genuine meaningful patterns would 
still appear much more frequently in the parsed text than 
random mistakes, which is used for their identification. In 
the second stage, the extracted frequent patterns are con-
verted into lexical entries and the corpus is reparsed using 
the combined grammar. This produces much more precise 
results and also significantly increases recall. In the third 
stage, the relations extracted by different lexical patterns are 
filtered, compared to each other, and merged together into 
single relation types if they have sufficient overlap. In the 
final stage, names are given to the relation types and their 
slots, and the lexical entries are re-generated accordingly, 
producing the final domain-specific lexicon. 

4.1 Patterns 
The research on OpenIE [Banko and Etzioni 2008] indicates 
that there exist several common linguistic pattern types 
which produce the majority of interesting relations. All of 
them and more are included in the set of pattern types that 
are checked by our system. 

The patterns are pieces of parses, and the parses are word 
dependency graphs. Thus, all patterns are connected depen-
dency sub-graphs, and each one includes at least two entity 
placeholders. There are three sets of pattern types: verb-
based, noun-based, and BE-based. 
 The main set of patterns is the verb-based. In these pat-
terns the head word is a verb, and the entities are either sub-
jects, or objects, or connected to the verb or to its object via 
a sequence of preposition phrases. For example: 

 X/Org �s� acquired �c� Y/Org 
 X/Org �s� merged �m� with �c� Y/Org 
 X/Org �s� completed �c� 
                              � acquisition �m� of �c� Y/Org 

The link types s, c, and m indicate subject, complement, and 
modifier, respectively. These and several other links are 
defined in the generic grammar. The raising and comple-
mentation verbs are excluded from participation in patterns, 
so “X continues to claim that it will acquire Y” is equivalent 
to “X acquired Y” for the purposes of pattern extraction. 
 The noun-based patterns are headed by a noun, and the 
entities are connected via preposition phrases, possessives, 
or compounds. For example: 

 (acquisition �m� of �c� X/Org) �m� by �c� Y/Org 
 X/Org �poss� ’s �m� acquisition �m� by �c� Y/Org 
 merger �m� of �c� (X/Org �conj� and �conj� Y/Org). 

Finally, the BE-patterns are headed by the verb “be” in its 
predicative (non-auxiliary) sense: 

 X/Person (is) �� mayor �m� of �c� Y/Loc 
 X/Person , ��  mayor  �m� of �c� Y/Loc , 
 X/Org �poss� ’s �m� headquarters (are) � 
                                                           � in �c� Y/Loc 
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The predicative BE is different from other verbs because of 
the way it behaves semantically. It does not have its own 
semantics, instead directly connecting the predicate to its 
subject. The same behavior is used for the semantics of ap-
positives, so they are equivalent to the BE-patterns. 

4.2 Initial Patterns Extraction 
The patterns extraction in the first stage of the process is 
straightforward: every pattern that belongs to one of the 
types described in the previous section and that appears at 
least 10 times is extracted and saved. 

No distinction is made at this point between patterns 
which are identical except for attachment of preposition 
phrases, because the generic grammar alone does not have 
enough information to make a correct informed decision 
about the PP attachment. 

If two patterns differ only by the entity types, and if one 
of them is much more frequent than the other (10 times or 
more), then the less frequent pattern is removed, in the as-
sumption that its appearance is the result of entity recogni-
tion errors. 

4.3 Initial Lexical Entries Generation 
The lexical entries are generated directly from the patterns, 
in a mostly straightforward way. For example, the pattern  
“X/Org acquired Y/Org” from the section 4.1 would gener-
ate the definition of the verb “acquire” from section 3, iden-
tical in all respects except for the relation and slot names. 
The names are created automatically, and are non-
informative at this point in the process. 

The patterns that contain preposition phrases require ad-
ditional decisions before they can be converted into lexical 
entries: whether to declare the PP as a complement or as a 
modifier, and to which word should the PP be attached if 
there is a choice. These decisions can be made statistically, 
by counting the frequencies of the PP-s appearing after the 
corresponding verbs and nouns, and the frequencies of the 
same words appearing alone or with different prepositions. 
In our current experiments, though, a simpler method was 
chosen: all prepositions get connected to the pattern’s head 
word as complements, except for two cases: (1) the preposi-
tion “of” appearing between two nouns is always interpreted 
as a possessive, and is considered to be equivalent to the 
possessive clitic “’s” and to noun compounds when one of 
the NP-s is an entity; and (2) if one pattern is fully contained 
inside another, then the PP-s from inside the embedded pat-
tern are attached to the head of the embedded pattern, not 
the containing one. 

4.4 Clustering of the Results 
There are many possible ways to cluster the patterns and 
their extractions in order to produce the final relation types. 
Since the main focus of this work is elsewhere, we chose the 
simplest method: to combine any two patterns with suffi-
ciently overlapping sets of extractions, where “sufficiently 
overlapping” means having at least two common relation 
instances. 

Finally, the clustered patterns can be used to generate 
names for the relation and for its slots. This is also not the 
main focus of the work, so no sophisticated naming scheme 
was used. Just the main word of the most frequent pattern in 
a cluster, qualified if necessary (in case of ambiguities) by 
adding the types of the arguments and other words in the 
pattern. 

5 Experimental Evaluation 
We used two large text corpora for evaluation: the 
“ACMM” corpus and the RCV1 corpus of Reuters news 
[Lewis, Yang et al. 2004], both of which were used to eva-
luate the URIES system [Rosenfeld and Feldman 2007]. 
This allows us to compare the quality of our linguistically-
aware relation identification to the one based on clustering 
of shallow parse patterns and their extractions. 
 The ACMM corpus consists of a concatenation of four 
separate corpora, for the Acquisition, Merger, MayorOf, and 
CEO_Of relations. Each sentence in the corpus contains at 
least one keyword related to one of these four relations. The 
relations identified by our system were somewhat more 
general: the system merged together Acquisition and Mer-
ger, and combined CEO_Of with other head positions in 
companies (e.g., “Chairman_Of”). In other respects, the 
system achieved better accuracy than its predecessors. It 
also identified and extracted many other relations. The par-
tial list of extractions is shown in Table 1: 
 

Identified Relation Count Precision 
Acquisition/Merger (Org, Org) 38499 0.93 
ExecutiveOf (Person, Org) 4350 0.96 
MayorOf (Person, Loc) 690 0.97 
Headquarters_In (Org, Loc) 426 0.84 
Represent/Advise (Org, Org) 363 0.75 
IsMemberOf (Person, Org) 190 0.85 
…     

Table 1. Extractions from the ACMM corpus 
 
The precision figures were estimated by randomly checking 
100 relation instances from each cluster. The relation names 
are manually given. 
 The RCV1 corpus consists of all sentences from the news 
articles, without preselecting. Thus, the relations identified 
and extracted from it are more diverse. The top several iden-
tified relations are shown in Table 2: 
 

Identified Relation Count Identified Relation Count 

Acquisition/Merger 11211 PeopleInteract 2858 

TalkedWithNews 8208 AppointExecutive 1459 

VisitedLocation 5094 RatingOfCompany 1245 

RelationsCountries 3384 People Talk/Write 460 

President/Head of 3060 SportsTeamCoach 235 

LocatedIn 2982 …   
Table 1. Top identified relations in the RCV1 corpus 
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 There is no easy way to numerically compare our system 
to the state-of-the-art OpenIE system TextRunner [Banko 
and Etzioni 2008; Lin, Etzioni et al. 2009]. However, it is 
easy to show specific instances of general problems – sen-
tences for which TextRunner systematically makes mis-
takes, yet which are processed correctly by our system, be-
cause it is more linguistically aware and utilizes deep pars-
ing. For example, the TextRunner query for “is mayor” pro-
duces such results as: 

�  “LDA” from the sentence “The LDA is the Mayor’s 
agency for business and jobs.” 

� “year” from “Later this year he is elected Mayor for 
the first time.” 

� “bright spots” from “Look around, you'll see bright 
spots in city Morganton News Herald - The follow-
ing is Morganton Mayor Mel Cohen's state of the 
city speech.” 

These examples should demonstrate the TextRunner’s 
weakness. Even when the query is constrained to “Person is 
mayor of City”, which reduces the recall from several thou-
sands to just 33 instances, the last sentence from the three 
above still remains. 

6 Related Work and Conclusions 
Sekine [2006] coined the term “on demand information ex-
traction” and developed a system that reduced the human 
labor needed to create IE systems in new domains. Shinya-
ma and Sekine’s [2006] preemptive IE system utilized clus-
tering techniques to discover relationships between binary 
entities in a corpus of news articles. Open IE was first intro-
duced in [Banko and Etzioni 2008].   

The CARE-II framework is a descendant of the older 
CARE (CRF-Assisted Relation Extraction) framework, 
which used the same approach of combining weighted dis-
criminative context-free grammars with Vitterbi-based se-
quence classifiers, but lacked the typed feature structures. It 
was primarily intended for supervised IE. 
 There are several directions, in which our system can be 
further improved and extended. One is allowing the system 
to actively seek the sentences, which can confirm or dis-
prove the hypotheses about whether two patterns describe 
the same or different relations. The system may use the in-
stances of one pattern to generate possible candidate phrases 
of the other, and use a search engine to look for them in the 
Web. Success or failure in finding them would be evidence 
for equivalence or non-equivalence of the relations. 
 Some parts of the system are yet in preliminary stages 
and need further work: PP attachment discovery, relation 
naming. 
 Another important shortcoming of the system is its re-
liance on predefined entity types. By using statistical entity 
discovering systems, and then applying the patterns discov-
ery, it is possible to extract new entity types and new rela-
tions containing them. 
 Also, the extracted patterns may be context-dependent, 
and it may significantly improve the accuracy of the system 

to use text clustering / text classification methods when 
processing huge heterogenous text corpora like Web. 
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