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Abstract

Planning with partial observability can be formu-
lated as a non-deterministic search problem in be-
lief space. The problem is harder than classi-
cal planning as keeping track of beliefs is harder
than keeping track of states, and searching for ac-
tion policies is harder than searching for action se-
quences. In this work, we develop a framework for
partial observability that avoids these limitations
and leads to a planner that scales up to larger prob-
lems. For this, the class of problems is restricted
to those in which 1) the non-unary clauses repre-
senting the uncertainty about the initial situation
are invariant, and 2) variables that are hidden in the
initial situation do not appear in the body of con-
ditional effects, which are all assumed to be deter-
ministic. We show that such problems can be trans-
lated in linear time into equivalent fully observable
non-deterministic planning problems, and that an
slight extension of this translation renders the prob-
lem solvable by means of classical planners. The
whole approach is sound and complete provided
that in addition, the state-space is connected. Ex-
periments are also reported.

1 Introduction

Planning problems with partial observability can be formu-
lated as non-deterministic search problems in belief space
[Bonet and Geffner, 2000]. This is the mainstream ap-
proach in both contingent [Hoffmann and Brafman, 2005;
Bryce et al., 2006; Cimatti et al., 2004] and POMDP plan-
ning [Kaelbling et al., 1999]. The difficulties for scaling
up, in comparison to classical planners, arise from two rea-
sons: keeping track of beliefs is harder than keeping track of
states, and searching for action policies or trees, is harder than
searching for action sequences. In general, there is no escape
from these difficulties, and the challenge is to improve the
belief representation and the heuristic or value functions over
beliefs. Yet, another approach is to introduce restrictions on
the problems to allow for more efficient solution methods.

In this work, we develop a framework for planning un-
der partial observability that avoids the difficulties mentioned
above. For this, the range of problems is restricted to those in

which R1) the non-unary clauses representing the uncertainty
about the initial situation are invariant (i.e. respected by all
the actions), and R2) the fluents that are hidden in the initial
situation do not appear in the body of conditional effects, all
of which are assumed to be deterministic.

An special class of problems that fit these restrictions is
the class of deterministic planning problems where the uncer-
tainty is about the initial values of a set of multi-valued vari-
ables that are used in goals or action preconditions but not in
the body of conditional effects. It follows from recent results
by Albore et al. [2009] that contingent problems P of this
form are simple in the following sense: they all have bounded
contingent width (width 1 indeed), which means that they can
be efficiently translated into equivalent fully-observable non-
deterministic planning problems that require no beliefs.

In this work, we go beyond the general results of Albore
et al., and introduce a translation that is tailored to contin-
gent problems that comply with R1 and R2 above, that is
both more compact and convenient. The translation is more
compact because it is linear rather than quadratic, and it is
more convenient because a small modification of it renders
the problem solvable by a classical planner. The whole ap-
proach is shown to be both sound and complete, provided that
in addition to R1 and R2, the state space is connected.

The work is related to a number of proposals for plan-
ning with sensing aimed at scalability that do not address
the contingent planning problem in its full generality. One
thread of such work can be understood as assuming that ac-
tion preconditions are made of two parts: hidden precondi-
tions and known preconditions. For example, the action of
going through a door may have two preconditions: that the
agent is at the door and that the door is open. If the agent
always knows its location; the first precondition would in-
volve no uncertainty, while the second precondition may be
hidden. The assumption in these proposals is that the hid-
den preconditions become observable, and hence known to
be either true or false, in states where the non-hidden pre-
conditions hold. Under this assumption, an effective greedy
method for on-line planning is to: A) make the most con-
venient assumption about the values of the hidden variables,
B) execute the plan that is obtained from the resulting clas-
sical planning problem, and C) revise the assumptions and
replan, if during the execution, the observations refute the
assumptions made. An instance of this general idea, used
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in robot navigation tasks, goes under the name of ‘freespace
assumption planning’ [Koenig et al., 2003], where the hid-
den variables refer to the traversable status of cells in a grid.
Variations on this basic idea appear in off-line planners that
are aimed at solving the fully-observable non-deterministic
problem [Ferguson et al., 2005], in certain cases assuming
that one value of the hidden (binary) variables is ‘preferred’
to the other possible value(s) [Likhachev and Stentz, 2009],
and in the use of ‘safe-assumptions’ for simplifying the plan-
ning process that can be formally verified at run time [Albore
and Bertoli, 2006]. The use of LRTA* for path-finding in
partially-observable settings can also be seen from this per-
spective, as the algorithm requires the action cost c(a, s) only
when the agent is at s where the cost value is assumed to
be observable. Last, the recent framework of continual plan-
ning [Brenner and Nebel, 2009] accommodates a language
for expressing explicit assumptions of this form in partially-
observable settings that involve more than one agent.

In our work, we exploit similar intuitions but adopt a more
general formulation that generalizes and makes precise the
idea and scope of ‘planning under optimism’ in partially ob-
servable settings. In particular, we cast our work in the gen-
eral setting of domain-independent contingent planning, and
establish conditions for a sound and complete approach.

The paper is organized as follows. We start with a gen-
eral definition of partially observable planning and then con-
sider the properties and methods for the class of problems
that comply with the restrictions R1 and R2. We then define
a planner based on these results and report experiments that
illustrate the scope and effectiveness of the formulation.

2 Partially Observable Planning

We start with the general problem of planning with partial
observability and deterministic actions.

2.1 Language

The language is a simple extension of STRIPS with con-
ditional effects, negation, an uncertain initial situation, and
sensing. More precisely, a partially observable problem is
a tuple P = 〈F,O, I,G,M〉 where F stands for the fluent
symbols, O for the actions, I is a set of clauses over F defin-
ing the initial situation, G is a set of F -literals defining the
goal situation, and M represents the sensor model. An action
a has preconditions given by a set of literals, and a set of con-
ditional effects a : C → L where C is a set of literals and
L is a literal. The sensor model M is a set of pairs (C,L)
where C is a set of literals and L is a positive literal. The
pair indicates that the truth value of L is observable when C
is true. Each pair (C,L) can be understood as a sensor that
is active when C is true, or as an information-gathering ac-
tion with precondition C that reveals the boolean value of L.
Unlike the other actions, however, these sensing actions trig-
ger when their preconditions hold. We use ¬L to denote the
complement of L.

2.2 Policies

The general solution to a partially observable planning prob-
lem can be expressed in many forms, the most common of

which are trees of possible executions, and functions map-
ping belief states into actions. Here, for convenience, we mix
these two forms and let policies Π denote partial functions
from belief states b into action sequences, under the restric-
tion that the action sequence Π(b) must be applicable in b.

Recall that a state s is a truth valuation over the fluents, a
belief state b is a non-empty collection of states, and a formula
A holds or is true in b if A is known to be true in b, meaning
that A holds in every state s ∈ b. Likewise, an action a is
applicable in b if the preconditions of a hold in b, and a maps
b into the belief b′ if a is applicable in b, and b′ is the set of
states that result from applying the action a to each state s in
b. Similarly, an action sequence π = a0, . . . , am is applicable
in b = b0 and results in the belief b′ = bm+1 if the action ai
maps bi into bi+1 for i = 0, . . . ,m.

Finally, a policy Π solves the problem P iff all the execu-
tions that are possible according to Π given the initial belief
state of P , reach a goal belief. The initial belief is the set of
states that satisfy I , and the goal beliefs are the sets of states
where G is true. An execution b0, b1, . . . , bn is possible ac-
cording to Π if b0 is the initial belief state of P , bi+1 is the
result of applying the action sequence Π(bi) to bi, and bi+2

is a possible successor belief of bi+1, i = 0, 2, 4, . . .. The
belief b′ is a successor of b, written b′ ∈ Succ(b), if b′ rep-
resents a maximal set of states in b that agree on the literals
that are sensed in b. These literals are those appearing in sen-
sors (C,L) in M such that C is true in b, and neither L nor
¬L are true in b; we call these sensors the active sensors in b.
As an illustration, if b consists of two states s = {p, q} and
s′ = {p,¬q}, then the sensor (C,L) with C = p and L = q
is active in b, and its successors are b1 = {s} and b′1 = {s′},
as C is true in b, and b1 and b′1 are the maximal sets of states
in b that agree on the value of the sensed literal q.

3 Simple Partially Observable Planning

The definitions above are general and standard. Next, we fo-
cus on the restrictions and transformations that allow us to
replace belief states by plain states. Let us recall that an in-
variant in a planning problem is a formula that is true in each
possible initial state, and remains true in any state that can
be reached from them with the available actions. For exam-
ple, for an object o that can be picked up and dropped into a
number of different positions li, i = 1, . . . , n, formulas like
at(o, l1)∨· · ·∨at(o, ln)∨hold(o), ¬at(o, li)∨¬hold(o), and
¬at(o, li) ∨ ¬at(o, lk), i �= k, are all invariant. The first ex-
presses that a set of literals is exhaustive, meaning that at least
one of them must be true in every reachable state, while the
other two, capture mutual exclusivity, meaning that at most
one of them can be true in a reachable state. There are sev-
eral algorithms for detecting such invariants [Fox and Long,
1998], and some of them [Helmert, 2009], focus exactly on
the detection of sets of literals that are mutually exhaustive
and exclusive, and which can be assumed to represent the
different values of a multi-valued variable [Bäckström and
Nebel, 1995]. Such invariants are usually denoted as expres-
sions oneof(x1, . . . , xn) where the xi’s are atoms.

Interestingly, it turns out that when the non-unary clauses
in I are all invariant (i.e., those expressing uncertainty) and
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the effects of the actions do not depend on fluents that are
hidden in I (these are the fluents p such that neither p nor ¬p
are known to be true in I), then the beliefs that need to be
maintained in the planning process can be characterized in a
simple form. We say that such problems are simple:

Definition 1. A (deterministic) partially observable problem
P = 〈F,O, I,G,M〉 is simple if the non-unary clauses in I
are all invariant, and no hidden fluent appears in the body of
a conditional effect.

For example, if I is made up of the expression
oneof(x1, x2, x3) and the literal ¬x1, and first, the xi lit-
erals do not appear in the body of a conditional effect, and
second, the ‘one-of’ expression is an invariant, then the prob-
lem is simple. On the other hand, if I is encoded with the
expressions oneof(x2, x3) and ¬x1, the problem would not
be simple, even if the new formulas are logically equivalent
to the old ones. The reason is that the information about the
original one-of invariant is lost in the new encoding.

Notice that hidden fluents can appear in action precondi-
tions and heads of conditional effects in simple problems,
and hence, there is no requirement for hidden fluents to be
invariant or static themselves: they can change. Similarly,
the literals that are known to hold in I can change as well.
What cannot change are the problem constraints captured by
the non-unary clauses in I .

One-of expressions are normally used to encode multi-
valued variables, and in the absence of other non-unary
clauses in the initial situation, problems featuring such con-
structs express uncertainty only about the initial value of such
variables. The simplicity of the belief representation often re-
quired for such problems follows from recent results in [Al-
bore et al., 2009], where partially observable problems P are
mapped into equivalent non-deterministic planning problems
X(P ) that are fully-observable and hence require no beliefs
at all. Albore et al. show that the size of the translation X(P )
is O(|P |w(P )+1), where w(P ) in the contingent width of P .
The contingent width, like the notion of conformant width
that it generalizes [Palacios and Geffner, 2009], represents
the maximum number of hidden multi-valued variables that
interact in the problem such that all of them are relevant to
a goal, an action precondition, or an observable literal. Vari-
ables interact one with the other through action conditional
effects, but do not interact at all through action preconditions,
as in the latter case, the value of the variables must be known
with certainty. Thus, our simple problems P have width
w(P ) = 1, and hence, they can be translated into equiva-
lent fully-observable problems X(P ) of size O(|P |2). This
thus means, among other things, that the complexity of the
belief representation required for such problems is no more
than quadratic in the size of P , rather than exponential as in
the most general case.

By focusing on simple problems P , with multi-valued vari-
ables or not, we obtain a more efficient translation that is lin-
ear in P rather than quadratic, and which provides the basis
for solving P using classical planners. The linear belief rep-
resentation and update is granted by the following:
Theorem 2 (Simple Beliefs). Let P be a simple partially ob-
servable problem, and let Iu stand for the set of non-unary

clauses (invariants) in the initial situation I of P . Then if b is
a reachable belief state from I that makes a set R of literals
true, then b is the set of states that satisfies R and Iu, and
hence, it is fully characterized by the formula R ∪ Iu.

In other words, in simple problems, we just need to keep
track of the set of literals that are true; the additional infor-
mation needed is captured by the invariants that are given in
I , which as invariants, do not change and hence do not have
to be tracked. A relevant result is the following. We say that
a literal L is known in a belief state b if L is known to be true
in b or known to be false in b:
Proposition 3 (Monotonicity). If the literal L is known in a
reachable belief state b over a simple problem P , and b′ is a
belief reachable from b, then L is known in b′.

These results provide conditions under which (reachable)
beliefs can be given a very simple representation with no in-
formation loss, in terms of literals that need to be maintained,
and invariants that need to be detected in the initial situation.

3.1 Compiling beliefs away: K ′(P ) Translation

The translation K ′(P ) below, like the translation X(P ), cap-
tures partially observable problems P at the ‘knowledge-
level’ [Petrick and Bacchus, 2002] by applying an extension
of the K0 translation for conformant problems [Palacios and
Geffner, 2009]. The K0 translation replaces each literal L by
two fluents KL and ¬KL that stand for whether L is known
to be true or not, and is complete for problems with 0 confor-
mant width.
Definition 4. For a partially observable problem P =
〈F,O, I,G,M〉, K ′(P ) = 〈F ′, O′, I ′, G′,M ′, D′〉 is the
fully observable non-deterministic problem where
• F ′ = {KL,K¬L : L ∈ F},
• I ′ = {KL : L ∈ I},
• G′ = {KL : L ∈ G},
• M ′ = {KC,¬KL,¬K¬L → KL|K¬L : (C,L) ∈ M},
• D′ = {KC ⊃ KL : if ¬C ∨ L invariant in I}
• O′ = O but with each precondition L for a ∈ O replaced

by KL, and each conditional effect C → L replaced by
KC → KL and ¬K¬C → ¬K¬L.
The expressions KC and ¬K¬C for C = L1 ∧ L2 . . . are

abbreviations of the formulas KL1∧KL2 . . . and ¬K¬L1∧
¬K¬L2 . . . respectively.

In K ′(P ), the M ′ component stands for a set non-
deterministic rules KC,¬KL,¬K¬L → KL|K¬L, that
capture the effects of the sensors (C,L) in P at the
knowledge-level. Namely, such rules make L known (ei-
ther true or false), when C is known to be true, and L is not
known. Likewise, the D′ component captures the invariants
in I with the literals L replaced by KL.

The solution to the fully-observable non-deterministic
problem K ′(P ) can be expressed in a way analogous to the
solutions to the partially observable problem P , but as a pol-
icy Π mapping states s over K ′(P ) into action sequences
Π(s) that must be applicable in the state s. The criterion of
applicability is the same as in classical planning, as the state
s is fully known, and all the actions in K ′(P ) have determin-
istic effects. The non-determinism in K ′(P ) is the result of
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the non-deterministic rules that represent the effect of sen-
sors, and enters into the conditions that make the policy Π a
solution to the problem K ′(P ).

A policy Π solves K ′(P ) iff all the executions that are pos-
sible according to Π in K ′(P ) reach a goal state. A goal state
is a state where the literals KL ∈ G′ are true. An execution
s0, . . . , sn is possible according to Π if s0 = I ′ and si+1 is
the result of applying the action sequence Π(si) to si, and
si+2 is a possible successor state of si+1, for i = 0, 2, 4, . . ..

The set Succ(s) of successor states of s is defined in terms
of the non-deterministic rules in M ′ encoding sensing, and
the clauses in D′ encoding invariants. Let ri = Ai → Bi|Ci

for i = 1, . . . , n, be the set of non-deterministic rules in M ′
such that Ai is true in s, and let Succ0(s) be the set of states
s′ that can be produced from s by applying action sequences
a1, . . . , an, where ai is an action with the single (determin-
istic) conditional effect Ai → Bi, or the single conditional
effect Ai → Ci. Then Succ(s) is defined as the set of states
in Succ0(s), each one closed under the formulas in D′; i.e,
s′′ ∈ Succ(s) iff s′ ∈ Succ0(s) and s′′ is s′ extended with
the literals KL entailed by the literals in s′ and D′.

Provided with these definitions, the relationship between
partially observable problems P and their fully-observable
translations K ′(P ) is captured by the following results. The
expression sb is used to denote the set of literals KL such that
L is true in b, and bs is used to denote the single reachable be-
lief state b that makes a literal L true iff KL is in s (this belief
state is unique in simple problems as a result of Thm. 2).
Theorem 5 (Soundness). Let Π be a policy that solves the
fully-observable problem K ′(P ) for a partially observable
problem P . Then if Π maps s into the action sequence π, the
function Π′ that maps bs into π is a policy that solves P .

Theorem 6 (Completeness). Let Π be a policy that solves the
partially observable problem P . Then if Π maps a reachable
belief state b into the action sequence π, the function Π′ that
maps sb into π is a policy that solves K ′(P ).

In other words, the partially observable problem P can be
solved by solving the fully-observable translation K ′(P ), and
moreover, this is always possible if P is simple and solvable.
We turn next to the problem of solving the translation K ′(P )
using classical planners.

3.2 Classical K(P ) Translation

The action sequence π associated with the response Π(b) = π
for a belief b maps b into a new belief b′. Yet, if b′ is not a
goal belief, nor a belief where a sensor (C,L) becomes ac-
tive, then Succ(b′) = {b′} and an equivalent policy Π′ can
be obtained by changing Π(b) to the concatenation of π and
π′ where Π(b′) = π′. This reduction just removes an ‘idle
pivot’ belief in some executions, leaving the other executions
untouched. If we apply this argument iteratively, we see that
for completeness it suffices to focus on policies Π that map
beliefs reachable from I and Π into goal beliefs or beliefs that
activate a sensor (C,L). We call such policies reduced.

In the case of simple problems P and in light of the com-
pleteness theorem, reduced policies Π over P , translate into
reduced policies Π over K ′(P ) where Π(s) is an action se-
quence that maps s into a state s′ where the goal G′ is true,

or KC is true for a sensor (C,L) such that KL and K¬L
are both false in s. This means that the action sequence Π(s)
can be conceived as a plan for the classical planning problem
that results from K ′(P ) = 〈F ′, O′, I ′, G′,M ′, D′〉 when the
initial situation is s, the new goal is the disjunction of the old
goal G′ and the various such KC’s, and the components M ′
and D′ are ignored. Any sequence Π(s) = π obtained from
a classical planner for that problem will achieve the goal or
make a hidden fluent known. Since the number of fluents is
finite, and known fluents remain known, any Π constructed in
this manner, is guaranteed to solve K ′(P ) and hence P , if in
addition, the space is connected, a condition that ensures that
all such classical planning problems have solutions.1

The shortcoming of policies derived in this manner is that
they may drive the agent to look for information that is not
necessary for achieving the goal. In order to compute policies
Π that are always goal oriented, we make two refinements in
the definition of the classical planning problem K(P ). First,
the goal of K(P ) is set to the goal of K ′(P ). Second, in
order to make the goal achievable from any state even when
information from sensors is needed, we translate the invari-
ants and sensors in P into actions in K(P ). A sensor (C,L)
is translated into two deterministic actions, one with precon-
ditions KC, ¬KL and ¬K¬L, and effect KL, and the other
with same preconditions but effect K¬L. We denote these ac-
tions as A(C,L) and A(C,¬L), and call them assumptions,
as each makes an assumption about the truth value of the lit-
eral L whose value is observed when C is true.
Definition 7. The classical problem K(P )[s] is defined from
P and the translation K′(P ) = 〈F ′, O′, I ′, G′,M ′, D′〉 as
K(P )[s] = 〈F ′′, O′′, I ′′, G′′〉 where F ′′ = F ′, G′′ = G′,
I ′′ = s, and O′′ is O′ union the actions KC → KL for
the invariants ¬C ∨ L in P , and the actions A(C,L) and
A(C,¬L) for the sensors (C,L) in P .

Since this classical problem is key in the computational ac-
count, let us illustrate it through an example. Let the invariant
oneof(y1, . . . , yn, h) represent the possible locations yi of an
object, with h standing for the object being held, and let x1,
. . . , xn denote the possible agent locations. The agent loca-
tion is known but the object location is not, except for h that is
initially false. There are actions that allow the agent to move
from one location to the next, and actions to pick up the ob-
ject from a location if the object is known to be there. From
a given location, the agent can sense whether the object is in
that location or not, and the goal is to hold the object. The
encoding P of this problem is direct with the one-of invariant
in I , and the sensors (xi, yi) in M , i = 1, . . . , n. The trans-
lation K ′(P ) is direct as well with fluents Kxi, K¬xi, Kyi,
and K¬yi, and pick-up actions with precondition Kxi and
Kyi, and effects Kh and K¬yi. The translation K(P )[s]
extends K ′(P ) with actions standing for the invariants, and
actions standing for the sensors. The former feature actions
with preconditions K¬h and K¬yi for i �= k, and effect
Kyk, while the latter feature actions (assumptions) A(xi, yi)
and A(xi,¬yi) for 1 ≤ i ≤ n, both with preconditions Kxi,
¬Kyi, and ¬K¬yi, and effects Kyi and K¬yi respectively.

1The space is connected when for every pair of states reachable
from a possible initial state, one is reachable from the other.
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The classical planning problem K(P )[s] for s = I ′ is solv-
able if P is solvable and simple. Yet, the plan π obtained for
K(P )[s] cannot always be applied in one shot over K ′(P ).
This is because the plan may include actions that are not in
K ′(P ); i.e., those expressing invariants or assumptions. A
suitable non-empty prefix of the plan, however, can always
be applied. Let us say that a prefix π′ of the action sequence
Π(s) = π reveals an assumption in π if π′ achieves KC from
s for an assumption A(C,L) in π. Then:
Definition 8. The executable prefix of a plan π for the prob-
lem K(P )[s] is the shortest prefix of π that reveals an as-
sumption in π, with the invariant actions removed. If π has
no assumptions, it is π without the invariant actions.

Notice that any plan π for the state s that includes an as-
sumption A(C,L) must include a prefix that achieves KC,
as KC is a precondition of A(C,L). Thus, some action be-
fore the assumption produces an observation (in P ) that ei-
ther confirms or refutes the assumption. The invariant actions
are needed in K(P ) only after gathering the first observation,
and hence can be dropped from the prefix. The following ex-
ploration and exploitation principle [Kearns and Singh, 2002]
holds for executable prefixes that either must reach the goal
or activate a sensor:
Proposition 9 (Exploration or Exploitation). Let P be a par-
tially observable problem, b a reachable belief in P , and
π a plan for K(P )[sb]. Then, either b′ is a goal belief or
|Succ(b′)| > 1 where b′ is the result of applying the exe-
cutable prefix π′ of π in b.

The main result of the paper, about the conditions under
which partially observable problems P can be solved using
classical planners, can be expressed by means of the follow-
ing theorems, which require that the non-unary clauses in I ,
that express invariants, to be in prime implicate form:2

Theorem 10. Let P be a p.o. problem with a connected space
and the set of non-unary clauses in prime implicate form.
Then Π is a (reduced) policy that solves K ′(P ) iff for every
state s reachable by Π in K ′(P ), Π(s) = π is the executable
prefix of a classical plan for K(P )[s].
Theorem 11. Let P be a simple p.o. problem with a con-
nected space and the set of non-unary clauses in prime im-
plicate form. Then Π is a (reduced) policy that solves P iff
for every belief state b reachable by Π in P , Π(b) = π is the
executable prefix of a classical plan for K(P )[sb].

The first result follows from the fact that any executable
prefix achieves the goal of K ′(P ) or makes a hidden lit-
eral known. Then, from monotonicity in K ′(P ) (every know
literal remains known) and connectedness that ensures that
all relevant classical problems K(P )[s] remain solvable, any
policy defined from such plans will eventually reach the goal.
The second result is a consequence of the soundness and com-
pleteness properties of K ′(P ) for problems P that are simple.

3.3 K-Planner

The K-translation is the basis for an on-line K-planner for
partially observable problems. Following Theorem 11, the

2A set of clauses C is in prime implicate form if any clause C
entailed by C is a tautology or is subsumed by a clause C ′ in C.

domain N solved len. calls search

freespace 140 134 26.49 8.31 8.02
doors 90 69 132.96 85.17 11.98
wumpus 70 70 34.60 2.39 1.11
kill-wumpus 30 30 49.20 31.10 1.92
colored-balls 75 26 115.81 27.54 26.51
trail 140 133 22.77 8.18 7.54

Table 1: K-planner using FF. Columns stand for domain, num-
ber of instances, number of solved instances, and the average over
solved instances for the length of the on-line plan, and the number
of calls and search time invested by FF. Times are in seconds.

K-planner constructs a policy Π that solves P in on-line fash-
ion, setting the response Π(b) for the current belief as the
prefix π of the plan obtained with an off-the-shelf classical
planner for the classical problem K(P )[sb]. The K-planner
is always sound, and it is complete if P is simple and con-
nected. The K-planner solves an instance with a given hid-
den initial state if the single execution that results from the
policy Π(b) computed in this fashion reaches the goal. In the
K-planner, the beliefs b over P are represented by the states
over the translation K ′(P ).

4 Experimental Results

We tested the K-planner on instances from several domains,
all of which can be naturally encoded as simple partially ob-
servable problems. Several of these domains are beyond the
reach of simple replanners as non-trivial beliefs that integrate
the observations gathered need to be maintained. In the K-
planner, this is achieved by keeping track of literals while
maintaining the invariants. The domains are:

• freespace: the agent needs to reach a final position by moving
through unknown terrain. Each cell of the grid is either blocked
or clear. As the agent moves, it senses the status of adjacent cells.

• doors: the agent moves in a grid to reach a final position, yet is
has to cross doors whose positions are only partially known.

• wumpus: the agent moves in a grid to reach a final position that
contains a number of deadly wumpuses that must be avoided. As
the agent moves, it smells the stench of nearby wumpuses.

• kill-wumpus: a variation of the above in which the agent must
locate and kill the single wumpus in the grid.

• colored-balls: the agent navigates a grid to pick up and deliver
balls of different colors to destinations that depend on the color
of the ball. The positions and colors of the balls are unknown, but
when the agent is at a position, he observes if there are balls in
there, and if so, their colors.

• trail: the agent must follow a trail of stones til the end. The
shape and length of the trail are not known. The agent cannot get
off trail but can observe the presence of stones in the nearby cells.

Experiments on a total of 545 instances were performed
using FF [Hoffmann and Nebel, 2001], on Linux machines
with Xeon X5355 CPUs and limits of 1,800 seconds and 2Gb
of RAM. Table 1 summarizes the results. For each domain,
the table shows the total number of solved instances and the
average length of the on-line plan, and the average number
of calls and search time over the solved instances.3 We do

3Search time is not the same as total time as the current imple-
mentation solves every problem K(P )[s] that arises in an execution
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Figure 1: Some instances of colored-balls, kill-wumpus and trail
with the initial state shown. The agent does not know, in colored-
balls, the position and colors of the balls, in kill-wumpus, the po-
sition of the wumpus, and in trail, the positions of the stones. The
plan found by K-planner for kill-wumpus and trail is shown.

not include comparisons with contingent planners because the
size of the contingent plans for these domains is just too large.
For instance, a 9×9 instance of colored balls solved by the
K-planner features 18 balls of 4 possible colors, resulting in
more than (81 · 4)18 = 1.54× 1045 possible initial states.

Some of the domains are well beyond the ability of sim-
ple replanners. For example, in kill-wumpus the agent must
perform complex inferences to locate the wumpus. The in-
variants are 1) ¬stench(p) ⊃ ¬wumpus(p′) for adj(p, p′),
2) ¬wumpus(p) ∨ ¬wumpus(p′) for p �= p′, and 3)
stench(p) ⊃ ∨4

i=1wumpus(pi) where {pi}4i=1 are the cells
adjacent to p. Fig. 1 shows a 5×5 instance with the path
traversed by the agent. Observe that when the agent reaches
(2, 2), it infers that the wumpus is at (3, 2). This is obtained
because at (2, 2) there is a stench which, by invariant 3, im-
plies that there is a wumpus at either (1, 2), (2, 3), (2, 1) or
(3, 2). The inference follows then because the agent visited
all such cells except (3, 2).

5 Summary

We have laid out a logical and computational framework for
planning with partial observability that exploits the use of
classical planners. The formulation generalizes and makes
precise the idea and the scope of ‘planning under optimism’
in partially observable settings. In particular, building on the
general setting of domain-independent contingent planning,
we established conditions under which the approach is sound
and complete. A number of experiments have also been re-
ported that illustrate the efficiency and expressive power of
the proposed framework. The basic framework can be ex-
tended in a number of ways, including the use of actions with
non-deterministic but observable effects. A limitation of the
framework is that the idea of ‘planning under optimism’ is not
always good; in particular, when backing up is impossible or
not feasible. In the future, we would like to explore exten-
sions that take such considerations into account. The planner
and the examples will be made available through the web.

from scratch. This means that the PDDL of every such problem is
parsed and preprocessed in each call. This is a considerable over-
head that explains why FF fails on some of the instances, as 1,800
seconds is the bound on total time. Most of this overhead can be
eliminated by implementing the K-planner inside the planner. This
would make the K-planner more efficient but planner dependent.
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