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Abstract

Partial-order plans (POPs) have the capacity to
compactly represent numerous distinct plan lin-
earizations and as a consequence are inherently ro-
bust. We exploit this robustness to do effective ex-
ecution monitoring. We characterize the conditions
under which a POP remains viable as the regression
of the goal through the structure of a POP. We then
develop a method for POP execution monitoring
via a structured policy, expressed as an ordered al-
gebraic decision diagram. The policy encompasses
both state evaluation and action selection, enabling
an agent to seamlessly switch between POP lin-
earizations to accommodate unexpected changes
during execution. We demonstrate the effective-
ness of our approach by comparing it empirically
and analytically to a standard technique for execu-
tion monitoring of sequential plans. On standard
benchmark planning domains, our approach is 2 to
17 times faster and up to 2.5 times more robust
than comparable monitoring of a sequential plan.
On POPs that have few ordering constraints among
actions, our approach is significantly more robust,
with the ability to continue executing in up to an
exponential number of additional states.

1 Introduction

Partial-order plans (POPs) reflect a least commitment strat-
egy [Weld, 1994]. Unlike a sequential plan that specifies a
set of actions and a total order over those actions, a POP only
specifies those action orderings necessary to the achievement
of the goal. In so doing, a POP embodies a family of sequen-
tial plans — a set of linearizations all sharing the same actions,
but differing with respect to the order of those actions.
Partial-order planning has been less popular in recent years
in great part because of the speed with which sequential plan-
ners can produce a solution using heuristic search techniques.
However we argue that it is not enough to generate plans
quickly; an agent or agents must also be able to successfully
execute a plan to achieve their goal, and often must do so in
the face of an unpredictable and changing environment. For
many problems, POPs, when combined with effective execu-
tion monitoring, can provide flexibility and robustness when
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it’s needed most — at execution time. To investigate this claim,
we examine the problem of POP execution monitoring.

Models of the world and the effects of agents’ actions on
the world are often imperfect, leading to changes in the state
of the world that deviate from those predicted by our models.
In execution monitoring (EM), the state of the world is moni-
tored as a plan is being executed. When there is a discrepancy
between the predicted and observed world state, a typical EM
system attempts to repair the plan or replan from scratch. EM
may have many stages including state estimation, evaluating
if execution can continue (state evaluation), selecting the ac-
tion to perform (action selection), and replanning in the pres-
ence of plan failure. In this work we are primarily concerned
with state evaluation and action selection: given a plan and
the current state of the world, can we continue executing our
plan, and if so how should we proceed.

Effective EM systems determine the subset of relevant con-
ditions that preserve plan validity and focus on discrepancies
with respect to these conditions. Shakey the robot’s trian-
gle tables were an attempt to model such conditions [Fikes
et al., 1972]. Recently Fritz and Mcllraith [Fritz and McIl-
raith, 2007] characterized the conditions under which a par-
tially executed sequential plan remains valid as the regression
of the goal back through the plan that remains. An EM algo-
rithm compares the conditions associated with each step of
the plan to the state of the world and proceeds with the plan
from the matching point. For partial-order planning, EM is
perhaps best exemplified by the SIPE [Wilkins, 1985] and
Prodigy [Veloso et al., 1998] systems which take a different
approach: monitoring the violation of so-called causal links
and attempting to repair them as necessary.

In this paper we address the problem of POP EM by build-
ing on the insights developed for sequential plan EM. We
likewise appeal to a notion of regression to identify the con-
ditions under which a POP remains viable. We then compile
these conditions into a structured policy that compactly maps
them to an appropriate action. We evaluate our approach an-
alytically and empirically, comparing it to the standard tech-
nique for monitoring sequential plans. On International Plan-
ning Competition (IPC) domains where there are numerous
ordering constraints, and as such few distinct POP lineariza-
tions, our approach is 2 to 17 times faster and up to 2.5 times
more robust. On POPs that have few ordering constraints, the
number of states for which our POP remains viable may be



exponentially larger than the number of such states resulting
from a sequential plan. We identify further characteristics of
a POP that give our approach a distinct advantage.

In the next section we provide a brief description of related
approaches, the state of the art in execution monitoring, and
describe our characterization of POP viability. We describe
our approach to EM using a structured policy in Section 3 and
present the experimental results in Section 4. We conclude
with a discussion in Section 5.

2 Execution Monitoring of a POP

In this paper we restrict our attention to STRIPS planning
problems. A planning problem is a tuple IT = (F,0,I,G)
where F'is a finite set of facts, O is the set of operators, I C F'
is the initial state, and G C F is the goal state. A complete
state (or just state) s is a subset of F. Facts not in s are
interpreted as being false in the state. An operator o € O is
defined by three sets: PRE(o), the facts that must be true in
order for o to be executable; ADD(0), the facts that operator
o adds to the state; and DEL(o), the facts that operator o
deletes from the state. An action refers to a specific instance
of an operator, and we say that an action a is executable in
state s iff PRE(a) C s. Similarly, a sequence of actions @ is
executable, if the preconditions of each action in the sequence
are true in the corresponding state. We say that a state entails
a formula, s = ¢, if the conjunction of facts in s with the
negation of the facts not in s logically entails the formula .
If ¢ is a conjunction of positive facts then s |= v iff the
conjuncts of ¢ form a subset of s. A sequential plan for II
is a sequence of actions @ such that @ is executable from [
and achieves G. We refer to the suffix of a sequential plan
(or sequence of actions) @ = [ay,...,ay] to be the empty
sequence or the sequence of actions [a;, . . ., a,] where i > 1.
We define the prefix of a sequential plan analogously.

An EM system typically monitors the execution of a plan
with the objective of ensuring that the plan is executing as
intended. When something goes awry, the system takes an
ameliorative action such as repairing the plan or replanning
from scratch. Here we address the problem of monitoring
the execution of a POP, with a view to exploiting its inherent
flexibility and robustness.

We define a POP with respect to a planning problem II as
a tuple (A4, O) where A is the set of actions in the plan and
O is a set of orderings between the actions in A (e.g., for
a,az € A, (a1 < az) € O) [Weld, 1994]. A total ordering
of the actions in A that respects O is a linearization. A POP
provides a compact representation for multiple linearizations.

Depending on how the POP was constructed, it may in-
clude a set of causal links. Each causal link contains a pair
of ordered actions and a fact that the first action achieves
for the second. Causal links often serve as justifications for
the ordering constraints. We do not exploit them in our ap-
proach to EM, but previous systems for POP EM, such as
SIPE [Wilkins, 1985] and Prodigy [Veloso et al., 1998], typ-
ically monitor and exploit causal links. If a causal link be-
comes violated, these systems attempt to repair the plan or
replan from what is known of the current state. The Prodigy
system extended this approach to interleave planning and ex-
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ecution. Both SIPE and Prodigy monitor the validity of the
entire POP that remains to be executed. In contrast, we would
like to monitor the validity of any potential partial execution
of the POP and not only the current partial execution. Doing
so allows us to continue executing the POP from an arbitrary
point in the plan.

We take an approach to EM that builds directly on insights
from EM for sequential planning dating back as far as Shakey
the robot [Fikes et al., 1972], and recently formalized by Fritz
and Mcllraith [2007]. A central task of execution monitor-
ing is to determine whether the plan being executed remains
valid, given what is known of the current state. Recall that
given a planning problem IT = (F, O, I, G) a sequential plan
is valid iff the plan is executable in I and G holds in the result-
ing state. We extend this definition to say that the sequential
plan remains valid with respect to s iff there is a suffix of the
plan that is executable in s and G holds in the state resulting
from executing the suffix in s. It is the validity with respect
to the current state that is at the core of monitoring sequential
plan execution.

We define the validity of a POP analogously: given a plan-
ning problem II, a POP P is valid with respect to state
iff every linearization of P is valid. We could similarly de-
fine the notion of a POP remaining valid relative to a state
s of the world, but validity is clearly too strong a condition.
Rather, given that a POP compactly represents multiple lin-
earizations, an appropriate analogue is to ensure that at least
one of these linearizations remains valid.

Definition 1 (POP viability). Given a planning problem II
and associated POP P, P is viable with respect to state s iff
there exists a linearization of P that remains valid for s.

Whereas the objective of EM for sequential plans is to de-
termine whether a plan remains valid, we claim that the objec-
tive of POP EM is to determine if the POP is viable with re-
spect to the current state. Following the methodology adopted
for EM of sequential plans, we can address this question ef-
fectively by identifying the relevant conditions that lead to
POP viability and ensure that one of these conditions holds.

Fritz et al. formalized such conditions by characterizing
them in terms of regression [Waldinger, 1977]. For our pur-
poses, we exploit a simple form of regression, restricted to
STRIPS, and limit our exposition accordingly. Regression is
a form of syntactic rewriting that allows us to compute the
weakest condition that must hold prior to the execution of an
action in order for a formula to hold after the action occurs.
We formally define regression as follows:

Definition 2 (Regression in STRIPS). Given a planning
problem IT and a conjunction of facts, 1, expressed as a set
of facts, we define the regression of a conjunctive formula
1 with respect to an action a, denoted R[¢, al, as follows:
R, a] = (v \ ADD(a)) U PRE(a), if ADD(a) C ¢ and
DEL(a) N = 0 (otherwise R[1), a] is undefined). The re-
peated regression over a sequence of actions @, denoted as
R*[,d], is simply the repeated application of the regres-
sion operator through each action in the sequence (assum-
ing it is defined at each step): e.g., if @ = [a1, az, as] then
R*[¢,d] = R[R[R[Y, as], az], ai].

Exploiting the notion of regression, Fritz et al. identified



the conditions that ensure the validity of a plan: given a se-
quential plan @ = [a1, ..., a,], d remains valid with respect
to a world state s, iff s entails one of the following conditions:
RIG, an], R*|G,|an-1,an]], ..., R*[G,d]. These condi-
tions were integrated into an EM algorithm that checked the
condition associated with each suffix, from the shortest to the
longest suffix (i.e., the original plan) and resumed execution
of the first suffix whose associated condition was entailed by
the state (Def. 3, [Fritz and Mcllraith, 2007]). If no such con-
dition was found, the EM system would decide to replan. We
refer to this approach as the Sequential Method.

Returning to EM of POPs, since we have defined POP
viability in terms of the remaining validity of a POP lin-
earization, it follows that we can define analogous conditions
for each POP linearization and the union of these conditions
comprise the conditions for POP viability.

Proposition 1. Given a planning problem IT = (F, O, I, G),
a POP P is viable with respect to state s iff at least one lin-
earization of P has a suffix @ such that s = R*[G, a].

As there may be an extremely large number of lineariza-
tions, computing the conditions for each one is inefficient.
However, there is often structure in a POP that we can exploit
to compute the conditions for POP viability more efficiently.
To this end, we provide a method for constructing conditions
that avoids enumerating all of the linearizations. Intuitively,
we regress the goal back through the POP, exploiting the con-
ditions and actions shared amongst the linearizations suffixes.
During the process, we gradually reduce the POP until we
have enumerated every condition.

To construct the conditions we use the following notation:

o last((A, 0N {a]|a € AND(a < a) € O}: The
set of actions that appear in a POP such that there is no
ordering constraint originating from the action.

def

o prefiz({A,0),a) = (A\a,0 — {(d’ < a)|a € A})
is the POP that remains after we remove action a and
all of the associated ordering constraints from the POP.
prefiz((A, O),a) is undefined if @ ¢ last((A, O)).

Definition 3 (I'-conditions). A I'-condition is a tuple con-
taining a formula and a POP. Given a planning problem
Il = (F,0,I,G) and POP P = (A, O), we define the set
of I'-conditions for P and Il as 'y p = Ulﬁ‘o ~i, where
Yo = {{(G, P)} and we define ~; inductively as follows:

Yi+1 =

U {{R[Y,a],prefiz(P,a)) | a € last(P)}

(¥, P)evi

Intuitively, every tuple in ; contains a condition for a lin-
earization suffix of size ¢ to be a valid plan from the current
state, as well as a POP that contains the actions not in the
suffix. We relate the conditions for POP viability and the for-
mula I'r; p through the following theorem.

Theorem 1 (Condition Correspondence). Given a planning
problem 11, the POP P is viable with respect to state s iff 3
(¢, P') € Ty p such that s |= ).
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Proof sketch. Any linearization of the POP P must end
with an action found in last(P), otherwise it would violate
an ordering constraint. From this, we can see that every set
of actions that make up a linearization suffix will be enumer-
ated, and a POP corresponding to the actions not in the suffix
will appear in a tuple. Theorem 1 holds for ~g, and induc-
tively we find that for every level ¢, ; will contain tuples for
every set of actions that make up a suffix of size ¢ and their as-
sociated conditions, establishing an equivalence between the
conditions of I'ry, p and the conditions of the linearizations of
P. Thus, following Proposition 1, Theorem 1 holds. [

With a method for computing the required conditions for
POP viability, we turn our attention to how we exploit these
conditions for the overall EM strategy.

2.1 Condition-Action List

To put the conditions for POP viability to use, we must de-
termine what the agent’s behavior will be when a condition
is met. Below we deal with the case when the current state
satisfies more than one condition, but assuming that a condi-
tion is met, we ultimately want to return an appropriate ac-
tion. In the construction of the I'-conditions, we are contin-
uously choosing the next action through last(P). To build a
mapping of conditions to actions, we record the action that
was used to construct a condition in an ordered list called
the Condition-Action List. Our final condition-action list will
map a regressed formula to a single action. Using the con-
struction of I'r;, p, we present a procedure for computing the
condition-action list in Algorithm 1.

Algorithm 1: Condition-Action List Generator

Input: POP (A, O). Planning problem IT = (F, O, I, G).
Output: List of (¢, a) pairs.

1L=][];
2T = {{(G, (A, 0)};

3fori=1---|A|do
4 | foreach (¢, P) € I"do
5 Lforeach a € last(P) do

/'L is the list of (1), a) pairs to be returned
/I T is a set of tuples of the form (3, P)

6 | L.append( (R[+,a],a) );

/* Update to vyi4+1
7 | I'=Uw, per iR, a], prefiz(P,a)) | a € last(P)};

g return L;

%/

The algorithm begins by initializing I' to contain the entire
POP, and the goal as the associated formula. In each iteration,
we update I and add the (1), a) pairs to the list. Note the order
of the (1, a) pairs in L: if one pair appears after another, we
know it must be from a suffix of equal or larger size. The
ordering of L is crucial for the next step of our approach,
since we prefer to execute actions closer to the goal.

Theorem 2 (Correctness of Algorithm 1). Given a planning
problem II and associated POP P, the tuples returned by Al-
gorithm 1, with input P and II, are precisely those in I'j, p
and the associated actions correspond to the first action in the
linearization suffix associated with the condition.



Proof sketch. The conditions computed by Algorithm 1
correspond precisely to those in I'rr p since line 7 performs
the update for successive «y; steps and line 6 adds the con-
ditions for each step. Since the actions chosen in line 5 are
from last(P), the actions in the tuples correspond to the first
action in the suffix associated with the condition. [J

We now have a specification of our objective (POP viabil-
ity), and an algorithm to compute the conditions under which
a POP remains viable (the condition-action list). Next, we
look at how to put this information to use.

3 POP Policy

Our approach for execution monitoring of a POP is to gen-
erate a structured policy that maps states to actions. Given
a state, the policy returns the action that gets us as close to
the goal as possible. We refer to this procedure as the POP
Method. By using the POP Method, we avoid the need to
check numerous conditions for the current state. We also
benefit from having an action returned that gets us as close
to the goal as any linearization with the Sequential Method.
Our contribution includes how we build, represent, and use
the structured policy for execution monitoring.

A structured policy is a function that maps any state to a
single action [Boutilier et al., 1995]. We have elected to use
an Ordered Algebraic Decision Diagram (OADD) [Bahar et
al., 1997] to represent our structured policy. An OADD is
a rooted directed acyclic graph where every node is either a
leaf node or an inner node. We associate an action (or L) to
every leaf node and a fact to every inner node. Inner nodes
have precisely two outgoing edges — a True and False edge
corresponding to the truth of the fact.

OADDs have one further restriction: the order of facts from
any root to leaf path must follow a predefined order. The or-
der ensures that if we check two facts on a path from the root
to a leaf node, we will always check them in the same order.
An Ordered Binary Decision Diagram (OBDD) is similar to
an OADD, with the main difference being that we associate
either True or False to a leaf node and not an action.

Once we have our condition-action list, we embody the fol-
lowing high-level behavior in our policy:

Property 1 (Opportunistic Property). For a state s, define
a valid linear suffix as a linearization suffix of our POP that is
valid with respect to s. If at least one valid linear suffix exists,
then return the first action of the shortest valid linear suffix.
If more than one qualifies as the shortest, pick one arbitrarily.

We achieve this property as long as the condition-action
list is in the correct order. To build the policy, we generate
an OADD where the inner nodes correspond to the truth of a
fact and the leaf nodes correspond to actions (or L. when we
do not have a matching condition). We found through experi-
mentation that ordering the facts based on where they appear
in the condition-action list is highly effective at producing a
smaller policy.

To build our policy, we apply the ITE method for OADD’s
[Bahar et al., 1997] in successive steps. The ITE method
takes in two OADD policies (Poly, Pols), and an OBDD
(obdd) that all follow the same order. It returns the OADD
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Figure 1: Simple OADD for the pair ({p2,pa}, a1)

Algorithm 2: POP Policy Generator

Input: Condition-Action List L in sorted order.

Output: Structured policy mapping state to action.
17 = policy(L.pop());
2 while |[L| > 0do

3 | next = policy(L.pop());
4 | m = ITE(OBDD(next), next, 7);

/I  is the current overall policy.

5 return 7;

with the following semantics when evaluating on state s: if
obdd(s) holds then return Pol; (s), otherwise return Pols(s).

Two key aspects for building the policy are how we choose
the individual policies to begin with, and subsequently how
we combine them into one overall policy. We do the former
by creating an individual policy for each (¢, a) pair in our
condition-action list L, and we achieve the latter by repeated
use of the ITE operation.

To create a policy for each (¢, a) pair, we need only to fol-
low the pre-defined ordering that respects v until it is fully
implied in the OADD, and then add «a as a leaf node. For ex-
ample, assume our ordering was py, . .., ps, and we want to
create the policy for the pair ({p2, ps},a1). The correspond-
ing OADD is shown in Figure 1. Notice the ordering of inner
nodes from the root to the leaf follows the fixed ordering.

For every pair in the condition-action list we associate an
OBDD to the corresponding simple policy by converting ac-
tions at the leaves to True. From this perspective, Algorithm
2 computes the overall policy, using the following notation:

e OBDD(pol): Convert the OADD pol to an OBDD.
e policy(7), a): Return the pair’s OADD policy.

e ITE(obdd, pol;, pols): Return the OADD policy corre-
sponding to the ITE operation.

e L.pop(): Pop and return the last element of L.

Theorem 3. The structured policy constructed by Algorithm
2 satisfies the opportunistic property.

Proof sketch. Consider the case where there exists a state s
such that s = R*[G, d1] and s |= R*[G, a3], where d] (resp.
az) is a valid linear suffix with a; (resp. az) as the first ac-
tion (and the one chosen in the construction of the condition-
action list). Assume that a3 is shorter than a1, and no shorter
valid linear suffix exists for the state s.

Since Algorithm 1 adds a (4, a) pair to L for every unique
condition of a suffix at a particular size, both (R*[G, ai], a1)
and (R*[G,d3),az) will appear in L. Since the size of



ay is shorter than aj, (R*[G,a3],as) must appear before
(R*[G,di],a1) in L. The semantics of ITE used on line 4
allows us to conclude that if s = R*[G, @3], then az would
be returned, not a;. [J

Without loss of generality, the proof assumes as # aj.
Note that an action may appear in multiple pairs in L.

4 Evaluation

We evaluate the claim that employing a POP and monitoring
it using our POP Method can provide enhanced flexibility at
execution time compared to the EM of a sequential plan using
a standard EM method. To do so, we provide both an analyt-
ical and experimental analysis of our approach compared to
a standard approach for monitoring sequential plans; the Se-
quential Method (cf. Section 2). We use five domains from
the International Planning Competition (IPC) to illustrate the
advantage of using our approach: Depots, Driverlog, TPP,
Rovers, and Zenotravel. We also investigate the relevant fea-
tures of a POP through three expository domains: Parallel,
Dependent, and Tail.

Experiments were conducted on a Linux desktop with a
two-core 3.0GHz processor. Each run was limited to 30 min-
utes and 1GB of memory. Plans for the Sequential Method
were generated by FF [Hoffmann and Nebel, 2001], and a
corresponding POP for the POP Method was generated by re-
laxing unnecessary ordering constraints in the sequential plan
to produce a so-called deordering [Béckstrom, 1998]. We
found that the deordering algorithm we used (originally due
to [Kambhampati and Kedar, 1994]) tended to produce the
minimum deordering of the plan. While this approach may
generate a POP that is fundamentally different from those
generated by a traditional POP algorithm, we found that de-
ordering is generally far more practical than computing the
POP from scratch.

4.1 Policy Efficiency

To measure impact that using a policy can have for EM, we
consider a POP that represents only one linearization. In such
a case, the POP Method and Sequential Method will return
the same action for any given state. Since we can use any
valid POP for Algorithm 1, we can feed in the sequential plan,
and then pass the resulting condition-action list to Algorithm
2 for the construction of the Sequential Policy. Since the Se-
quential Policy is able to query all conditions in the sequential
plan with a single traversal of an OADD, the time required to
return an action should be faster than the Sequential Method.

We refer to the ratio of effort as the total time for the Se-
quential Method to return a result for every state in a prede-
fined set of 500 states, divided by the total time for the Se-
quential Policy to return the same actions. Figure 2 gives an
indication of the time savings of our approach. Sorted based
on the ratio of effort, the x-axis includes every problem from
the five IPC domains. The y-axis indicates the ratio of effort
for a given problem. For each problem, the same 500 random
states were used for both approaches. The Sequential Policy
is 2 to 17 times faster, and the gains become more pronounced
with larger plans. With a mean ratio of 6, the use of a struc-
tured policy can have substantial gains when it comes to re-
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Figure 2: Efficiency of querying the structured policy. The
y-axis indicates the total time for the Sequential Method (on
500 random states) divided by the total time for the Sequential
Policy. The x-axis ranges over all five IPC problem sets, and
is sorted based on the y-axis value.

acting quickly. While the absolute gains are small (on the or-
der of milliseconds at times), the relative speedup may prove
to be crucial for real-time applications such as RoboCup. In
such domains, the agent must evaluate the state and decide on
an action several times a second.

4.2 Analytical Results

In Section 1, we argued that a POP provides flexibility and
robustness at run time. In this analysis we try to quantify the
added flexibility afforded by the POP in concert with the POP
Method, relative to the Sequential Method. We refer to the
number of complete states for which an approach is capable
of returning an action as the state coverage. We can measure
the state coverage by using model counting procedures on the
constructed OADD. In the case of the Sequential Method, we
generate the OADD as in the previous section. The number of
models for either OADD corresponds to the number of states
for which the approach can return an action. Figure 3 shows
the relative state coverage for the five IPC domains (the POP
Method coverage divided by the Sequential Policy coverage).

The y-axis indicates the ratio of states covered for a given
problem: state coverage of the POP Method divided by the
state coverage of the Sequential Method. For example, a
value of 1.5 indicates that the POP Method returns an ac-
tion in 50% more states than the Sequential Method. We sort
problems from each domain based on their y-axis value. The
relative state coverage (or coverage ratio) ranges from 1 (i.e.,
the same number of states are handled) to 2.5. Larger plans do
not necessarily have a higher coverage ratio, and we conjec-
ture that the ratio has more to do with the structure of a POP,
than its size. The state coverage is an approximation since the
set of states used in the model count include states that will
never occur in practice, either because they are inconsistent
or unreachable. Nonetheless, the coverage ratio gives us an
approximate measure of the relative gain the flexibility of a
POP has to offer when realized with our proposed approach.
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Figure 3: Analytic comparison of state coverage for the POP
Method and the Sequential Method. The y-axis indicates the
state coverage of the POP Method divided by the state cover-
age of the Sequential Method. We sort problems from each
domain based on their y-axis value.

4.3 Expository Domains

The evaluation above was performed on IPC domains which
were designed to be challenging domains for sequential plan-
ning algorithms. As such, there tends to be significant depen-
dencies between actions and the number of action orderings
is large. The high level of dependency is not present in a
variety of real-world planning applications (e.g., distributed
plans for multiple agents). To evaluate our EM approach for
POP, we designed three expository domains that emphasize
features we expect to find in real-world planning problems.

Parallelism

The Parallel domain demonstrates the impact of multiple lin-
earizations. We construct the Parallel domain so that a so-
lution has k actions that can be performed in parallel. Each
action has a single precondition satisfied by the initial state
and a single add effect required by the goal. There are no
ordering constraints among the actions, and an example with
k = 3 is shown in Figure 5.

As a consequence of the having no ordering constraints, a
solution to a problem in the Parallel domain has a large num-
ber of linearizations; with k parallel actions, there are k! lin-
earizations. If the actions mostly have different preconditions
and effects, the POP Method will be applicable in many more
states than the Sequential Method. There are many states that
the Sequential Method fails to capture because of the limited
number of unique conditions present in any single lineariza-
tion. Every linear solution to a Parallel problem has this prop-
erty. In contrast, the POP Method captures the condition for
every linearization suffix. Consequently, we find an exponen-
tially increasing gap in state coverage.

The coverage ratio was computed for problems in the Par-
allel domain with k£ ranging from 2 to 10. We present the
results in Figure 4a. A clear exponential trend in the increase
of state coverage occurs as we increase k.

Extra Support

An action has extra support if, for a precondition p, there are
multiple actions in the POP that act as the achiever of p in at
least one linearization. A POP is said to have extra support if
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Figure 5: Example of the Parallel domain with k = 3.
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Figure 6: Excerpt from the POP of a Dependent domain prob-
lem. An edge with no endpoint signifies that the action has
that fact as an effect. We only label edges of interest.

one of its actions has extra support. We construct problems in
the Dependent domain to require k successive pairs of actions
such that one action (a-) has an extra precondition satisfied
both by the initial state and the other action in the pair (a-).

An excerpt from a solution to a problem in the Dependent
domain is shown in Figure 6. The initial state satisfies the
precondition p3i of action as. The precondition can also be
satisfied by a4 in any linearization that has a4 ordered before
as. If the dynamics of the world cause p3:¢ to become False
during execution prior to executing as, then we must execute
a4 in order for a3 to be executable.

The achiever of a fact needed for extra support will depend
on the linearization. Monitoring multiple linearizations, the
POP Method is a more robust EM solution. Here we measure
robustness by how likely an approach is to achieve the goal
in a dynamic world. At every time step, we set a randomly
selected fact to False or do nothing if it is already False. We
then query the approach and execute the action returned. The
simulation repeats these two steps, and ends when either the
current state satisfies the goal or the approach cannot return
an action. We measure the likelihood of reaching the goal as
the percentage of trials that end in the goal state.

For a problem in the Dependent domain with a given k,
there are 2* linearizations of the POP. Only one of these will
have a 100% success rate when using the Sequential Method:
the linearization that correctly orders every pair of actions so
that ar- comes before a. Using the default linearization gen-
erated by FF (which orders a}- after a-), we ran 1000 trials
for both approaches. Figure 4b shows the result.

Informally, we can see that the likelihood of reaching the
goal approaches zero for the Sequential Method. As the plans
become longer, there is more opportunity for something to go
wrong due to the dynamics of the world. Since there is always
at least one linearization that will get us to the goal, the POP
Method always succeeds.
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Figure 4: Expository domain results. The x-axis indicates the parameter k used to construct the problem. (a) Coverage ratio of
the POP Method and the Sequential Method in the Parallel domain. (b) Likelihood of the Sequential Method to reach the goal
in the Dependent domain. (c) Mean number of actions needed by each approach to reach the goal in the Tail domain.

Figure 7: Example of the Tail domain with £ = 2. An edge
with no endpoint indicates an unused action effect.

Critical Orderings

A critical ordering is any pair of unordered actions in a POP
that must be ordered in a particular way for the Sequential
Method to work well. If two linearizations differ only in the
ordering of the critical pair of actions, then the Sequential
Method for one linearization will outperform the Sequential
Method for the other. Since the POP Method simultaneously
handles all linearizations, the ordering is irrelevant. We con-
struct the 7ail domain such that £ sequential actions each pro-
vide a single precondition to the “tail” action. However, there
is also a “head” action that follows the £ initial actions and
can produce all of the required preconditions for tail. The
only two actions left unordered are the head and tail actions.
An example with £ = 2 is shown in Figure 7.

Unlike the Dependent domain, it may be beneficial to have
a given ordering even when the agent will always reach the
goal. We investigate the performance of the two approaches
in a simulation where at every time step we set a randomly
selected fact to True or do nothing if it is already True. The
POPs have the property that any linearization will reach the
goal eventually when using the Sequential Method. What is
of interest is how quickly the goal is achieved.

When using the Sequential Method for the linearization
that has head ordered after tail, positive fact flips have little
impact on the number of steps to reach the goal. The other lin-
earization has the advantage of being able to serendipitously
Jjump into a future part of the plan. We show the mean number
of steps for each approach on eight instances in Figure 4c.

We see a clear trend for the Sequential Method that sug-
gests it requires roughly & actions to reach the goal. In con-
trast, the number of actions required on average for the POP
Method grows very slowly — the final problem taking only a
quarter of the actions to reach the goal on average. The POP
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Method is able to skip large portions of the plan when a fact
changes from False to True. The Sequential Method, on the
other hand, must continue executing almost the entire plan.

4.4 Discussion

The state coverage for the IPC domains was not as great as the
coverage for the expository domains because they impose sig-
nificant constraints on action orderings and thus do not high-
light the flexibility afforded by POPs and exploited in our EM
approach. In general it is beneficial to use our approach, even
for a single linearization. However, we have identified two
scenarios in which our approach fails. First, in the Parallel
domain with & actions, there are 2¥ — 1 unique conditions.
While this number is far less than the k x k! possible suffixes,
it is large enough to become unwieldy for £ > 15. Second,
even if the POP is a single linearization, interactions between
the ordering of the add effects and preconditions, along with
the fact ordering in the construction of the OADD, can re-
sult in an exponential blow up of the policy size. We have
not observed this behavior in our experiments. Both scenar-
ios suggest that in a richer domain, it would be interesting to
investigate a trade-off between the size of the policy repre-
sentation and its robustness.

5 Concluding Remarks

In this paper we examined the problem of monitoring the
execution of a POP. Due to its structure, a POP compactly
represents a family of plans that share actions but allows for
numerous (at the extreme, an exponential number of) differ-
ent linearizations. Our objective was to develop a means of
POP EM that would seamlessly switch between these differ-
ent plans based on the current state of the world, and thus
maximally exploit the flexibility of the POP. EM of sequen-
tial plans typically attempts to determine whether a plan re-
mains valid with respect to the state of the world. We defined
the objective of POP EM as determining POP viability and
characterized the conditions under which a POP was viable
by relating them to goal regression over all linearization suf-
fixes of the POP. Acknowledging the inefficiency of such a
computation, we developed a more efficient algorithm that
employed goal regression but exploited shared POP substruc-
ture to do so efficiently. We proved the correctness of this
algorithm with respect to POP viability. Then, rather than



employ these “relevant conditions” as input to a typical EM
algorithm, we employed these conditions in the construction
of a structured policy — an OADD that takes a state as input
and returns an action to perform in reaction to the state of the
world. In so doing, the policy combines two phases of EM —
state evaluation and action selection — into one system.

We evaluated our POP EM system both analytically and
experimentally with the objective of assessing the claim that
employing a POP, rather than a sequential plan, could provide
notably enhanced flexibility at execution time. Experiments
were run on [PC domains and on expository domains. On the
IPC domains (which were designed to be more constrained
than many real-world applications and as such are less able to
exploit the least commitment property of POPs) our approach
is able to continue executing in up to 2.5 times the number of
states as the sequential-plan-based approach. The speed-up
in identifying an action of our POP Policy compared to the
sequential-plan-based approach is up to a factor of 17. Our
expository domains highlight various properties that affect
POP EM. In these domains, we demonstrated an exponen-
tial increase in the number of states where the POP remains
viable relative to the sequential counterpart.

There are commonalities between our approach and work
on the topic of dynamic controllability (e.g., [Shah et al.,
2007]): our shared methodology is to compile plans into a
dispatchable form for online execution. However, whereas
the dynamic controllability work generally mitigates for un-
certainty in the execution time for actions, our work ad-
dresses unexpected change in the environment. Our work
complements dynamic controllability by focusing on a dif-
ferent source of uncertainty. In many real world scenarios,
both sources of uncertainty appear and we intend to explore
synergies between these two approaches.

Also related to our work are a number of systems for ap-
proximate probabilistic planning. For example, ReTrASE
[Kolobov et al., 2009] uses regression in a similar fashion to
build a “basis function” that provides the condition for which
a plan succeeds in a deterministic version of a probabilistic
planning problem. This use of determinization followed by
regression is related to previous work [Sanner and Boutilier,
2006; Gretton and Thiébaux, 2004] which uses first-order re-
gression on optimal plans over small problems to construct a
policy for larger problems in the same domain.

There are several extensions to our approach which we
hope to pursue. The computational effort required for con-
structing the OADD is typically the bottleneck, and using a
more concise representation of the policy may provide sig-
nificant gains. When the POP Method is unable to return an
action, we could instead attempt to re-plan using the infor-
mation already embedded in the policy. Doing so opens the
door to a variety of re-planning strategies, and suggests there
may be merit in finding a more intelligent construction of the
OADD. There is the potential to develop a better informed
heuristic for computing a sequential plan that will produce a
POP with the properties that lead to good performance in our
EM approach. We also plan to investigate the use of our POP
Method with probabilistic planners such as FF-Replan, where
we would hope to see a reduction in the number of re-plans
required during execution.
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