
Large Neighborhood Search and Adaptive Randomized
Decompositions for Flexible Jobshop Scheduling

Dario Pacino

IT-University of Copenhagen

(dpacino@itu.dk)

Pascal Van Hentenryck

Brown University

(pvh@cs.brown.edu)

Abstract

This paper considers a constraint-based scheduling
approach to the flexible jobshop, a generalization
of the traditional jobshop scheduling where activi-
ties have a choice of machines. It studies both large
neighborhood (LNS) and adaptive randomized de-
composition (ARD) schemes, using random, tem-
poral, and machine decompositions. Empirical re-
sults on standard benchmarks show that, within 5
minutes, both LNS and ARD produce many new
best solutions and are about 0.5% in average from
the best-known solutions. Moreover, over longer
runtimes, they improve 60% of the best-known so-
lutions and match the remaining ones. The empir-
ical results also show the importance of hybrid de-
compositions in LNS and ARD.

1 Introduction

Constraint-based schedulers have been widely successful in
modeling and solving complex industrial scheduling appli-
cations. They provide a general-purpose approach to appli-
cations involving complex resources and constraints. More-
over, in recent years, the combination of Constraint-Based
Scheduling (CBS) and local search techniques (e.g., large
neighborhood search or iterative flattening) has been instru-
mental in obtaining high-quality solutions quickly and im-
proving best-known solutions in a variety of pure problems
such as cumulative scheduling and open-shop problems.

This research considers the application of constraint-based
scheduling to flexible jobshop problems, a generalization of
the traditional jobshop scheduling where activities have a
choice of machines. Flexible jobshops are quite challenging,
since they add another level of decisions and reduce the power
of filtering algorithms for disjunctive resources. In particular,
this paper studies both Large Neighborhood Search (LNS)
and Adaptive Randomized Decompositions (ARD) inspired
by research on large-scale vehicle-routing applications. LNS
uses random, temporal, and machine neighborhoods, while
ARD exploits temporal and machine decouplings to produce
subproblems that can be optimized separately.

Empirical results on some standard benchmarks show that,
within 5 minutes, both LNS and ARD produce many new

best solutions and are about 0.5% in average from the best-
known solutions. Moreover, over longer runtimes, they im-
prove 61% of the best-known solutions and match the remain-
ing ones. The empirical results also show the importance of
hybrid neighborhoods and decompositions in LNS and ARD.

These results are obtained with a rather naive CBS search,
which requires little development effort on top of a mod-
ern constraint-based scheduling and does not use advanced
search heuristics or learning techniques. As a consequence,
they further demonstrate the versatility of the general-purpose
approach of combining CBS with local search and decom-
position schemes. The ARD schemes are also shown to be
close in quality and efficiency to LNS, indicating that they are
likely to provide high-quality solutions to large-scale prob-
lems which cannot be handled globally.

The rest of this paper specifies the problem and reviews
prior work in Sections 2 and 3. Sections 4, 5, and 6 present the
CBS formulation and the LNS and ARD approaches. Section
7 contains the empirical results and Section 8 concludes the
paper.

2 Problem Specification

A flexible jobshop is specified by a set of jobs, each of which
consists of a sequence of activities. Each activity can exe-
cute on a set of machines, each with a possibly different du-
ration. No two activities can execute on the same machine at
the same time and the goal is to minimize the makespan, i.e.,
the completion date of all activities. More formally, each ac-
tivity a has a set M(a) of machines on which it can execute
and a duration d(a,m) for each machine m ∈ M(a). Every
job defined by a sequence of activities 〈a1, ..., an〉 generates
a set of precedence constraints (ai−1, ai) for i ≥ 2. We use
A to denote the set of activities, P the set of precedence con-
straints, and M the set of machines. The time horizon H for
the schedule is given by

[
0,
∑

a∈Amaxm∈M(a) d(a,m)
]
.

A solution to the flexible jobshop is a pair of assignments
(σ, μ), where μ : A �→ M assigns a machine μ(a) ∈ M(a)
to each activity a and σ : A �→ H assigns a starting date
σ(a) to each activity a. A solution is feasible if it satisfies the
precedence and capacity constraints, i.e.,

∀(ai, aj) ∈ P : σ(aj) ≥ σ(ai) + d(ai, μ(ai))
∀m ∈ M, t ∈ H : |A(σ,m, t)| ≤ 1

where A(σ,m, t) is the set of activities assigned to machine

1997

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

m at time t, i.e.,

{a ∈ A | μ(a) = m ∧ σ(a) ≤ t ≤ σ(a) + d(a, μ(a))} .

An optimal solution is a feasible solution (σ, μ) minimizing

maxa∈A σ(a) + d(a, μ(a)).

We also use ω(a) to denote σ(a) + d(a, μ(a)) in this paper.

3 Prior Work

Approaches to solve flexible shop problems are often divided
between hierarchical and simultaneous searches. Hierarchi-
cal heuristics [Akella and Gershwin, 1984; Bona et al., 1990;
Brandimarte, 1993; Escudero, 1989] are based on the prop-
erty that, given a machine assignment, the objective function
can be optimized solving a classic jobshop problem. Simulta-
neous approaches [Barnes and Chambers, 1996; Brucker and
Neyer, 1998; Jurisch, 1992; Hurink et al., 1994; Vaessens,
1995; Mastrolilli and Gambardella, 2000; Hmida et al., 2007;
2010; Gao, 2008; Pezzella et al., 2008] tend to identify
neighborhoods which either solve the routing and the assign-
ment into different transactions [Barnes and Chambers, 1996;
Brucker and Schlie, 1990; Jurisch, 1992; Hurink et al., 1994;
Hmida et al., 2007; 2010] or at the same time [Dauzère-
Pérès and Paulli, 1997; Vaessens, 1995; Mastrolilli and Gam-
bardella, 2000; Gao, 2008; Pezzella et al., 2008]. Specifically
to the benchmarks used in this paper, [Mastrolilli and Gam-
bardella, 2000] proposed a tabu search procedure using two
neighborhoods functions defined by the moving of an opera-
tion and its feasible or optimal insertions, improving a large
number of the best-known upper bounds. An hybrid search
combining genetic and variable neighborhood descent algo-
rithms was implemented by [Gao, 2008], reporting better per-
formance than the tabu search. However, details of new upper
bounds have not been reported. A constraint programming
approach was developed by [Hmida et al., 2010] using dis-
crepancy search but the results are dominated by both [Mas-
trolilli and Gambardella, 2000] and [Gao, 2008].

4 A Constraint-Based Scheduling Model

A simple Constraint-Based Scheduling (CBS) formulation
for the flexible shop is shown in figure 1 (using a COMET-
like syntax). Lines 1–5 initialize the constants, i.e., the set of
activities and machines, the durations, the set of machines re-
quired by each activity, and the set of precedence constraints.
Lines 6 and 7 define the decision variables as activity objects,
which can be queried for their starting and ending dates. Line
8 defines a pool of unary resources which maintain the ma-
chine selection of each activity and the capacity constraints
using edge-finder and NotFirst/NotLast propagators. Line 9
declares the array of selected machines for each activity (see
also lines 20–21) Lines 11–22 define the objective function
and the constraints of the problem. The search procedure
is specified in lines 24–30 and is rather naive. It starts by
branching over the machine selection variables, considering
activities with the fewest machines first (lines 24–26). The
machines are then ranked, starting with those with the least
slack (lines 27–28), before assigning the earliest starting dates
to all activities (lines 29–30).

1 range A = . . . ;
2 range M = . . . ;
3 i n t [] d [A] = . . . ;
4 i n t [] m[A] = . . . ;
5 s e t { P r e c e d e n c e } P = . . . ;
6 A c t i v i t y a c t [a in A] () ;
7 A c t i v i t y makespan () ;
8 UnaryResourceP oo l poo l (M) ;
9 var{ i n t } sm [A] ;

10

11 minimize
12 makespan . end ()
13 s u b j e c t to {
14 f o r a l l (c in P)
15 a c t [c . b e f o r e] p r e c e d e s a c t [c . a f t e r] ;
16 f o r a l l (a in A)
17 a c t [a] p r e c e d e s makespan ;
18 f o r a l l (a in A)
19 a c t [a] poo l . r e q u i r e s (m[a] , d [a]) ;
20 f o r a l l (a in A)
21 sm [a] = pool . g e t S e l e c t e d M a c h i n e (a c t [a]) ;
22 }
23 u s i n g {
24 f o r a l l (a in A) by (s i z e (sm [a]))
25 t r y a l l (m in m[a])
26 sm [a] = m;
27 f o r a l l (m in M) by (s l a c k (m))
28 r ank (m) ;
29 f o r a l l (a in A)
30 l a b e l (a c t i v i t y [a] . s t a r t ()) ;
31 }

Figure 1: A Constraint Programming (CP) model

5 Large Neighborhood Search

Large Neighborhood Search (LNS) is a combination of Local
Search and CP, which has proved effective in solving large-
scale combinatorial optimization problems. The search pro-
cedure is based on a destruction/construction principle. Once
an initial solution is found, part of the variable assignments
are relaxed (destruction), while keeping the remaining vari-
ables fixed. A new solution is then found by re-optimizing
the assignment of the free variables (construction). These two
steps are then iterated until some termination criterion. When
applied to scheduling problems, it is beneficial to impose only
precedence constraints between the “fixed” variables, and not
actual starting times. In particular, the idea is to extract a
partial order from the current best solution and to ensure
that the new solution satisfies this ordering (e.g., [Carchrae
and Beck, 2009; Godard et al., 2005; Cesta et al., 2000;
Michel and Van Hentenryck, 2004]). This is captured, for
flexible jobshops, by the following definitions.

Definition (POS-feasible Solution). Let R be a set of ac-
tivities to relax and (σo, μo) be a feasible solution. A solu-
tion (σ, μ) is POS-feasible wrt (σo, μo) and R if it satisfies
σ(a) ≥ σ(b) + d(b, μ(b)) for all a, b ∈ A \ R such that
σo(a) ≥ σo(b) + d(b, μo(b)) and μo(a) = μo(b).

It is also desirable to fix the machines of the activities which
have not been relaxed.

1998

Definition (Fully POS-feasible Solution). Let R be a set
of activities to relax and (σo, μo) be a feasible solution. A
POS-feasible (σ, μ) is fully POS-feasible wrt (σo, μo) and R
if it is POS-feasible wrt (σo, μo) and R and satisfies μ(a) =
μo(a) ∧ μ(b) = μo(b) for all a, b ∈ A \ R.

The neighborhoods in this paper only consider fully POS-
feasible solutions and are generalizations of those used in
[Carchrae and Beck, 2009]. They differ on the choice of the
set R of activities to relax and whether or not some addi-
tional machine constraints are placed on the relaxed activities.
Three main neighborhoods are considered:

1. The random neighborhood: The set R is a random set of
activities.

2. The time-window neighborhood: A time window [α, β]
is chosen randomly and R is the set of all activities in
the interval [α, β].

3. The machine neighborhood: A set of machines is se-
lected randomly and R is the set of all activities on those
machines.

Moreover, three additional neighborhoods are constructed
from these by selecting a subset R ⊆ R and imposing the
constraint: ∀a ∈ R : μ(a) = μo(a).

6 Adaptive Randomized Decompositions

The concept of Adaptive Randomized Decomposition (ARD)
was proposed in [Bent and Van Hentenryck, 2010] to tackle
large scale vehicle routing problems. Its aim is to find a se-
quence of decouplings, i.e., subproblems that can be indepen-
dently optimized and whose solution can be merged back into
an existing solution to produce a better solution. Formally,
given an instance P of a flexible shop problem, the idea is to
use the current solution π to find a decoupling (Po, Ps) with
projected solution πo and πs. The problem Po is then re-
optimized and its solution is merged into πs to obtain a new
solution for P . The ARD thus follows two simple principles:

1. Starting from an initial solution π0 of P , it produces a
sequence of solutions π1, ..., πn such that the objective
function f(π0) ≥ f(π1) ≥ ... ≥ f(πn).

2. At step i, the solution πi−1 is used to obtain the decou-
pling (Po, Ps) of P with solutions πo and πs. The prob-
lem Po is then re-optimized and its solution π∗o is used
to obtain the new solution of πi = MERGE(π∗o , πi−1).

The choice of algorithms for optimizing the sub-problems is
independent from the ARD scheme. Our results were ob-
tained by using CP and LNS algorithms.

6.1 Time Decomposition

The time decomposition extracts a subproblem consisting of
the activities that lies within a time window 〈s, e〉.

Definition. A time decomposition 〈Rd,Pd, α, β, γ, φ〉 of a
solution (σo, μo) wrt 〈s, e〉 is a flexible jobshop defined over
the activities

Rd = {a ∈ A|ωo(a) > s ∧ σo(a) < e},

with precedence constraints

Pd = {(a, b) ∈ P|a ∈ Rd ∧ b ∈ Rd},

with availability constraints on the machines

γ(m) = mina∈{a∈A\Rd|σo(a)≥e∧μ(a)=m} σo(a)

φ(m) = maxa∈{a∈A\Rd|ωo(a)≤s} ωo(a)),

and with bounds on the activity starting times

α(a) =

{
ωo(b) if ∃(b, a) ∈ P : b
∈ Rd

0 otherwise;

β(a) =

{
σo(b) if ∃(a, b) ∈ P : b
∈ Rd

∞ otherwise.

A feasible solution to the time decomposition satisfies all tra-
ditional constraints of the flexible shop, as well as the addi-
tional constraints:

∀a ∈ Rd : σ(a) ≥ φ(μ(a))
∀a ∈ Rd : ω(a) ≤ γ(μ(a))
∀a ∈ Rd : σ(a) ≥ α(a)
∀a ∈ Rd : ω(a) ≤ β(a).

The time decomposition remains essentially a flexible shop
problem, and can be solved using the same algorithms. How-
ever, since the problem is now decoupled, knowledge of how
the re-optimized schedule will affect the overall solution is
missing. Moreover, using the makespan minimization as ob-
jective is not flexible enough as we will illustrate shortly. It is
more appropriate to use an objective function that maximizes
the distance between each activity and their completion time
bounds, allowing a better left shift of the entire schedule.

Definition (Time Decomposition Objective). The objective
of a time decomposition 〈Rd,Pd, α, β, γ, φ〉 is defined by

maximize min
a∈Rd

min(β(a) − ω(a), γ(μ(a))− ω(a))

Figure 2 illustrates the benefit of this new objective. Part (a)
shows the decomposition (jobs are denoted by colors), Part
(b) shows the optimized schedule using the makespan ob-
jective, and Part (c) the schedule obtained with new objec-
tive. The new objective achieves a better makespan overall,
although its local makespan is worse.

6.2 Machine Decomposition

The idea behind the machine decomposition is to extract a
subproblem by selecting activities executing on a subset of
the machines Md.

Definition. A machine decomposition 〈Rd,Pd,md, α, β〉 of
a solution (σo, μo) wrt a set Md of machines is a flexible shop
defined over the activities Rd = {a ∈ A|μo(a) ∈ Md}, with
precedence constraintsPd = {(a, b) ∈ P|a ∈ Rd∧b ∈ Rd},
with bounds on the activity starting times

α(a) =

{
ωo(b) if ∃(b, a) ∈ P : b
∈ Rd

0 otherwise;

β(a) =

{
σo(b) if ∃(a, b) ∈ P : b
∈ Rd

∞ otherwise,

1999

b)OptimizingMakespanObjective

0 1 12111098765432

m3

m2

m1

timewindow fixedactivities

0 1 2 3 4 5 6 7 8 9 10 11 12

m3

m1

m2

timewindow fixedactivities

makespan

subproblemmakespan makespan

a)OriginalProblem

0 1 2 3 4 5 6 7 8 9 10 11 12

m3

m2

m1

makespansubproblemmakespan

c)OptimizingNewObjective

fixedactivitiestimewindow

Figure 2: Illustrating the Objective for Time Decompositions.

and a reduced set of machinesmd(a) for all activities a ∈ Rd

defined by md(a) = m(a) ∩ Md. A feasible solution to a
machine decomposition satisfies all constraints of the flexible
shop, as well as the additional constraints:

∀a ∈ Rd : σ(a) ≥ α(a)
∀a ∈ Rd : ω(a) ≤ β(a).

Since the machine decomposition has full knowledge of the
activities within each machine, minimizing the makespan
guarantees the generation of non-degrading solutions as long
as machines on the critical path are in the set Md.

6.3 Solution Merging

Time and machine decompositions ensure that precedence
and machine availability constraints are satisfied with respect
to the original solution. As a result, it is possible to com-
bine the machine assignments and the machine precedences
to merge the solutions.

Definition. Let (σd, μd) be a solution from the time decom-
position 〈Rd,Pd, α, β, γ, φ〉 wrt (σo, μo) and 〈s, e〉. The
merging of (σd, μd) and (σo, μo) is the solution (σm, μm)
obtained by

μm(a) = μd(a) if a ∈ Rd

μm(a) = μo(a) otherwise

and such that σm is assigned a start date minimizing the set
of precedence constraints

{(a, b)|μo(a) = μd(b) ∧ a �∈ Rd ∧ b ∈ Rd ∧ σd(b) ≥ ωo(a)} ∪

{(a, b)|μd(a) = μo(b) ∧ a ∈ Rd ∧ b �∈ Rd ∧ σo(b) ≥ ωd(a)} ∪

{(a, b)|μd(a) = μd(b) ∧ a ∈ Rd ∧ b ∈ Rd ∧ σd(b) ≥ ωd(a)} ∪

{(a, b)|μo(a) = μo(b) ∧ a �∈ Rd ∧ b �∈ Rd ∧ σo(b) ≥ ωo(a)}.

The merging is similar for the machine decomposition.

7 Experimental Evaluation

The proposed algorithms were evaluated on the eData set of
flexible shop instances from [Hurink et al., 1994]. Results
are reported over the set of instances la21 to la40 which are
the largest of the set (the remaining instances being relatively
easy). The algoritms were implemented on top of the COMET

system and run on an Intel 2.8 GHz Xeon processor with 8Gb
of RAM. Due to the non-deterministic nature of the searches,
average results over 10 runs are reported.

The large neighborhood algorithms LNS and the decompo-
sition algorithm ARD using CP or LNS for subproblems were
compared to the two best-performing heuristic algorithms.
We use the following notations: TB stands for the tabu search
of [Mastrolilli and Gambardella, 2000], hGA for the hybrid
genetic algorithm of [Gao, 2008], hLNS for the LNS search
using an hybrid random selection of the proposed relaxations,
ARD(CP) for the ARD procedure using CP as a search algo-
rithm and ARD(LNS) ARD using hLNS. Both ARD(CP) and
ARD(LNS) use an adaptive selection for time windows in the
following sense: if no improvement is found within 5 itera-
tions, the size of decomposition increases, only to be brought
back to the initial size upon finding an improved solution.

The ARD(CP) and ARD(LNS) use a time decomposition
chosen between 20% and 50% of the horizon, with 5% step
increase. The machine decomposition uses |M|/2 machines.
The hLNS search selects activities with 50% probability in
the random relaxation, time windows randomly chosen be-
tween 25% and 50% of horizon, and a number of machines
randomly selected in [2, |M|/4] in the machine relaxation.
Three additional relaxations are derived from these relax-
ations by fixing the machine of a relaxed activity to its current
selection with a 33% probability.

Overall Quality of the Results Table 1 depicts the quality
of solutions found in 5 and 10 minutes by using the Mean Rel-
ative Error (MRE) computed as 100%(UB − LB)/LB. The
first column describes the set of instances, while the following
columns present the aggregated results for each of the algo-
rithms, giving the best performance and showing the average
performance in parenthesis. Algorithms hLNS, ARD(CP),
and ARD(LNS) achieve comparable results to those found us-
ing the best heuristic methods and the best solutions of hLNS
and ARD(LNS) often produce improvements over the ded-
icated heuristics, in particular on la21-25 and la26-30. Note
also that hLNS and ARD produces results that are about 0.5%
in average from the best upper bound.

These results are surprisingly good, given that the CBS al-
gorithms use a rather simple search: They thus require very
little development effort on top of a modern constraint-based
scheduler (e.g., LNS adds another 50 lines of code) and could
certainly be improved by using more advanced search tech-
niques, such as texture-based heuristics [Beck et al., 1997].

Table 2 presents the best results for runs of 5 and 60 min-
utes for all the experiments. Bold face means an improvement
over the best known upper bound (last column) while italics
means that the best known upper bound has been matched. It

2000

Problem hLNS ARD(CP) ARD(LNS) TB hGA

5 min 10 min 5 min 10 min 5 min 10 min

la21-25 5.48 5.48 5.77 5.57 5.61 5.59 5.62 5.60

(6.13) (5.98) (6.73) (6.55) (6.50) (6.25) (5.93) (5.66)

la26-30 3.09 2.95 3.78 3.33 3.86 3.16 3.74 3.28

(4.41) (4.05) (4.89) (4.48) (5.13) (4.39) (3.76) (3.32)

la31-35 0.88 0.46 0.45 0.32 0.62 0.32 0.30 0.32

(1.25) (0.97) (1.08) (0.89) (1.33) (1.03) (0.32) (3.32)

la36-40 8.95 8.91 10.04 9.48 9.57 9.44 8.99 8.82

(10.09) (9.89) (11.52) (11.29) (10.95) (10.42) (9.13) (8.95)

Table 1: Quality of Solutions Obtained in 5 and 10 Minutes

Problem ARD(CP) ARD(LNS) hLNS UB

5 min 60 min 5 min 60 min 5 min 60 min

la21 1025 1016 1017 1015 1014 1009 1017

la22 881 881 882 880 880 880 882

la23 950 950 950 950 950 950 950

la24 909 909 908 908 909 908 909

la25 941 941 942 936 940 936 941

la26 1124 1111 1127 1109 1110 1107 1125

la27 1186 1182 1189 1182 1182 1181 1186

la28 1149 1145 1147 1144 1148 1142 1149

la29 1122 1117 1129 1111 1111 1111 1118

la30 1219 1214 1212 1196 1211 1195 1204

la31 1541 1533 1554 1541 1565 1539 1539

la32 1698 1698 1698 1698 1698 1698 1698

la33 1547 1547 1547 1547 1547 1547 1547

la34 1609 1599 1609 1599 1618 1599 1599

la35 1736 1736 1736 1736 1736 1736 1736

la36 1174 1162 1167 1160 1160 1160 1162

la37 1397 1397 1397 1397 1397 1397 1397

la38 1156 1143 1159 1143 1148 1143 1144

la39 1198 1186 1187 1184 1184 1184 1184

la40 1167 1161 1157 1147 1146 1144 1150

Table 2: Best Results For 5 and 60 Minutes Runs.

is interesting to point out that hLNS improves or matches all
the best results in 60 minutes and improves more than 50% of
them. In fact, hLNS produces similar results after 5 minutes,
except on two benchmarks. ARD(LNS) produces relatively
similar results: After a hour, it improves or matches all the
best-known upper bounds except on two instances. The re-
sults after 5 minutes are a bit weaker but they still improve or
match many of the best-known solutions.

Observe that hLNS explores larger neighborhoods than
ARD(LNS) (since the relaxed activities can be inserted any-
where in the schedule), as well as the additional random
neighborhood. It is thus not surprising that hLNS dominates
ARD(LNS) on these instances. What is interesting is how
close their performances are: This provides some preliminary
evidence that ARD(LNS) may provide high-quality solutions
quickly to large instances for which it would be too costly to
reason about the schedule globally.

Impact fo the Neighborhoods We now study the impact of
the various neighborhoods and decompositions on runs of 15
minutes. Figure 3 compares the time and machine decom-
positions, as well as their hybridization. The results show
the clear benefit of the hybridization. Figure 4 depicts the
results for large neighborhood search. For these runs of 15
minutes, they indicate that the random and time neighbor-
hoods are most important: The machine neighborhood does
not seem to bring additional benefits. Figure 5 shows that

 1220

 1240

 1260

 1280

 1300

 1320

 1340

 0 2 4 6 8 10 12 14 16

M
ak

es
pa

n

Minutes.

Time Decomposition
Machine Decomposition

Hybrid Decomposition

Figure 3: The Impact of the Decompositions.

 1220

 1230

 1240

 1250

 1260

 1270

 1280

 1290

 1300

 1310

 0 2 4 6 8 10 12 14 16

M
ak

es
pa

n

Minutes.

Time & Machine Neighborhood
Random & Time Neighborhood

Random & Machine Neighborhood
Hybrid Neighborhood

Figure 4: The Impact of the Neighborhoods.

the machine neighborhood provides improvements for longer
runs: It compares LNS with and without the machine neigh-
borhood and ARD(LNS). The results indicate that the ma-
chine neighborhood starts improving the results after 15 min-
utes and is necessary for LNS to dominate ARD(LNS). These
results also shed some interesting light on the strength of the
decomposition approach, which does not rely on the random
neighborhood, giving us some reasonable confidence that it
will scale nicely on large-scale instances.

8 Conclusion

This paper presented large neighborhood and adaptive ran-
domized decomposition approaches to the flexible jobshop
problem. It demonstrated that a simple CBS formulation, en-
hanced with LNS or ARD, provides very high-quality results
quickly on some standard classes of benchmarks and requires
little development effort on top of a modern CBS systems.
Moreover, the approaches improved 60% of the best upper
bounds, while matching the remaining ones. The quality of
the decomposition approach indicates that it is likely to scale

2001

 1210

 1220

 1230

 1240

 1250

 1260

 1270

 1280

 0 10 20 30 40 50 60

M
ak

es
pa

n

Minutes.

ARD(LNS)
hLNS without Machine Neighborhood

hLNS

Figure 5: The Impact of the Neighborhoods over Long Runs.

to large-scale problems for which considering the problem in
its entirety is not feasible. These results were achieved with-
out advanced heuristics or learning techniques [Carchrae and
Beck, 2009], suggesting that there is room for significant im-
provements. Overall, these results seem to confirm that LNS
and ARD over a CBS formulation is an effective and general-
purpose approach to many complex scheduling problems.

References

[Akella and Gershwin, 1984] R. Akella and S. Gershwin.
Performance of Hierarchical Production Scheduling Pol-
icy. IEEE Transactions on Components, Hybrids, and
Manufacturing Technology, 7(3):225–240, 1984.

[Barnes and Chambers, 1996] W. J. Barnes and J. B. Cham-
bers. Flexible Job Shop Scheduling by Tabu Search, 1996.

[Beck et al., 1997] J.C. Beck, A.J. Davenport, E.M. Sitarski,
and M.S. Fox. Texture-based heuristics for scheduling re-
visited. In AAAI-97, 241–248. 1997.

[Bent and Van Hentenryck, 2010] R. Bent and P. Van Hen-
tenryck. Spatial, Temporal, and Hybrid Decompositions
for Large-Scale Vehicle Routing with Time Windows. CP-
10, 99–113, 2010.

[Bona et al., 1990] B. Bona, P. Brandimarte, C. Greco, and
G. Menga. Hybrid hierarchical scheduling and control sys-
tems in manufacturing. IEEE Transactions on Robotics
and Automation, 6(6):673–686, 1990.

[Brandimarte, 1993] P. Brandimarte. Routing and schedul-
ing in a flexible job shop by tabu search. Annals of Oper-
ations Research, 41(3):157–183, 1993.

[Brucker and Neyer, 1998] P. Brucker and J. Neyer. Tabu-
search for the multi-mode job-shop problem. OR Spek-
trum, 20(1):21–28, 1998.

[Brucker and Schlie, 1990] P. Brucker and R. Schlie. Job-
shop scheduling with multi-purpose machines. Comput-
ing, 45(4):369–375, 1990.

[Carchrae and Beck, 2009] T. Carchrae and J. Beck. Princi-
ples for the design of large neighborhood search. Journal
of Mathematical Modelling and Algorithms, 8, 2009.

[Cesta et al., 2000] A. Cesta, A. Oddi, and S.F. Smith. It-
erative flattening: A scalable method for solving multi-
capacity scheduling problems. In AAAI-00, 2000.

[Dauzère-Pérès and Paulli, 1997] S. Dauzère-Pérès and
J. Paulli. An integrated approach for modeling and
solving the general multiprocessor job-shop scheduling
problem using tabu search Annals of Operations Research
70, 281-306.

[Escudero, 1989] L.F. Escudero. A mathematical formula-
tion of a hierarchical approach for production planning in
FMS. Modern Production Management Systems, 1989.

[Gao, 2008] J Gao. A hybrid genetic and variable neigh-
borhood descent algorithm for flexible job shop schedul-
ing problems. Computers & Operations Research,
35(9):2892–2907, 2008.

[Godard et al., 2005] D. Godard, P. Laborie, and W. Nuit-
jen. Randomized large neighborhood search for cumula-
tive scheduling. In ICAPS 2005, 81–89, 2005.

[Hmida et al., 2007] A. Hmida, M. Huguet, P. Lopez, and M.
Haouari. Climbing depth-bounded discrepancy search for
solving hybrid flow shop problems. European Journal of
Industrial Engineering, 1(2):223–243, 2007.

[Hmida et al., 2010] A. Hmida, M. Haouari, M. Huguet, and
P. Lopez. Discrepancy search for solving flexible schedul-
ing problems. In 2th International Workshop devoted to
Project Management and Scheduling, 2010.

[Hurink et al., 1994] J. Hurink, B. Jurisch, and M. Thole.
Tabu search for the job-shop scheduling problem with
multi-purpose machines. OR Spektrum, 15(4):205–215,
1994.

[Jurisch, 1992] B. Jurisch. Scheduling jobs in shops with
multi-purpose machines. Ph.d. dissertation, Universitat
Osnabruck, 1992.

[Mastrolilli and Gambardella, 2000] M. Mastrolilli and L.
Gambardella. Effective neighbourhood functions for the
flexible job shop problem. Journal of Scheduling, 3(1):3–
20, January 2000.

[Michel and Van Hentenryck, 2004] L. Michel and
P. Van Hentenryck. Iterative relaxations for iterative
flattening in cumulative scheduling. In ICAPS04, 2004.

[Pezzella et al., 2008] F Pezzella, G Morganti, and
G Ciaschetti. A genetic algorithm for the Flexible
Job-shop Scheduling Problem. Computers & Operations
Research, 35(10):3202–3212, 2008.

[Vaessens, 1995] RJM (Robert) Vaessens. Generalized job
shop scheduling : complexity and local search. doctoral
thesis, Eindhoven University of Technology, 1995.

2002

