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Abstract

Plan recognition is the problem of inferring the
goals and plans of an agent from partial observa-
tions of her behavior. Recently, it has been shown
that the problem can be formulated and solved us-
ing planners, reducing plan recognition to plan gen-
eration. In this work, we extend this model-based
approach to plan recognition to the POMDP set-
ting, where actions are stochastic and states are par-
tially observable. The task is to infer a probabil-
ity distribution over the possible goals of an agent
whose behavior results from a POMDP model. The
POMDP model is shared between agent and ob-
server except for the true goal of the agent that is
hidden to the observer. The observations are action
sequences O that may contain gaps as some or even
most of the actions done by the agent may not be
observed. We show that the posterior goal distribu-
tion P (G|O) can be computed from the value func-
tion VG(b) over beliefs b generated by the POMDP
planner for each possible goal G. Some extensions
of the basic framework are discussed, and a number
of experiments are reported.

1 Introduction
Plan recognition is the problem of inferring the goals and
plans of an agent from partial observations of her behavior
[Cohen et al., 1981; Yang, 2009]. The problem arises in a
number of applications, and has been addressed using a va-
riety of methods, including specialized methods [Avrahami-
Zilberbrand and Kaminka, 2005], parsing procedures [Py-
nadath and Wellman, 2002; Geib and Goldman, 2009] and
Bayesian networks algorithms [Bui, 2003; Liao et al., 2007].
In almost all cases, the space of possible plans or activities to
be recognized is assumed to be given by a suitable library of
policies or plans.

Recently, two formulations have approached the plan
recognition problem from a different perspective that replaces
the need for a set of possible agent policies or plans, by an
agent action model and a set of possible goals. The model ex-
presses how the agent can go about achieving these goals and
is used to interpret the observations. The result is a posterior

probability distribution over the possible goals. In these ap-
proaches, the possible agent behaviors are encoded implicitly
in the set of goals and action models, rather than explicitly as
a library of plans. The advantage of these approaches to plan
recognition is that they can leverage on model-based behavior
generators; namely, planners. In [Ramirez and Geffner, 2009;
2010], the model is a classical planning model, namely, the
initial state is fully known to agent and observer, and the ac-
tions have deterministic effects, while in [Baker et al., 2009],
the model is a Markov Decision Process (MDP), so that the
states are fully observable, and actions have stochastic effects.

In this work, we extend the model-based approach to plan
recognition over POMDP settings, where actions are stochas-
tic and states are partially observable. The task is to infer
a probability distribution over the possible goals of an agent
whose behavior results from a POMDP (Partially Observable
MDP) model. The model is shared between agent and ob-
server except for the true goal of the agent that is hidden
to the observer. The observations are action sequences that
may contain gaps as some or even most of the actions done
by the agent are not observed. We show that the posterior
goal distribution can be computed from the value function
over beliefs generated by a POMDP planner for each pos-
sible goal G. More precisely, executions are sampled from
this value function assuming that the agent tends to select the
actions that look best, and the likelihood of the observations
O given the goal G is approximated from these samples. In
analogy to the other cases, the goal recognition problem over
POMDPs is solved using an off-the-shelf POMDP planner.
While POMDP planners do not scale up as well as MDP plan-
ners, and certainly much worse than classical planners, we
show that still a rich variety of recognition problems involv-
ing incomplete information can be effectively modeled and
solved in this manner. The expressive power and computa-
tional feasibility of the approach will be illustrated through a
number of experiments over several domains.

The paper is organized as follows. We start with an ex-
ample (Sect. 2), and review previous approaches (Sect. 3)
and POMDPs (Sect. 4). We then consider a preliminary for-
mulation of POMDP goal recognition that assumes that all
agent actions and observations are visible to the observer
(Sect. 5), and a more general formulation that assumes nei-
ther (Sect. 6). We then report experiments (Sect. 7), discuss
extensions (Sect. 8), and summarize the main results (Sect. 8).
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2 Motivation
As an illustration of how a goal recognition problem can be
naturally cast in the POMDP setting, consider an agent that
is looking for an item A or B, each of which can be in one
of three drawers 1, 2, or 3, with probabilities P (A@i) and
P (B@i) equal to:

P (A@1) = 0.6 , P (A@2) = 0.4 , P (A@3) = 0

P (B@1) = 0.1 , P (B@2) = 0.6 , P (B@3) = 0.3 .

The actions available to the agent are to open and close the
drawers, to look for an item inside an open drawer, and to
grab an item from a drawer if it’s known to be there. The
agent is a male, and hence the probability that he doesn’t ob-
serve the object in the drawer when the object is there is non-
zero, say 0.2, but the probability that he observes an object
that is not there is 0.

Let us assume that the possible goals G1, G2, and G3 of the
agent are to have item A, item B, or both, with priors 0.4, 0.4,
and 0.2. We want to find out the goal posterior probabilities
when the behavior of the agent is partially observed. In our
setting, the observer gets to see some of the actions done by
the agent, but not necessarily all of them. The observer must
then fill the gaps. Let us assume that it is observed that the
agent opens drawer 1, then drawer 2, and then drawer 1 again;
i.e.,

O = {open(1), open(2), open(1)}.
The most likely explanation of this observation trace is that
the agent is looking for item A; else it wouldn’t have started
by looking in drawer 1 where the probability of finding B is
0.1. Then, it’s likely that the agent didn’t observe A in that
drawer, that it closed it, and then looked for A in drawer 2.
Then, probably the agent didn’t find A in drawer 2, and thus
looked again in drawer 1.

Indeed, the algorithm that we will describe, concludes that
the posterior probabilities for the three possible goals are
P (G1|O) = 0.53, P (G2|O) = 0.31, and P (G3|O) = 0.16,
with G1 as the most likely goal.

As far as we know, there are no other systems or formula-
tions that can handle this type of scenarios where the agent
gets partial observations from the environment, and the ob-
server gets partial information about the actions of the agent,
with some of the agent actions going possibly unnoticed.

3 Previous Approaches
As mentioned in the introduction, the problem of plan, goal,
or activity recognition has been addressed in many ways, in
most cases assuming that there is a library of possible plans
or policies that represents the possible agent behaviors. The
problem has been formulated in a variety of ways, as a de-
ductive problem over a suitable logical theory [Kautz and
Allen, 1986], a matching problem over a suitable AND/OR
graph [Avrahami-Zilberbrand and Kaminka, 2005], a pars-
ing problem over a grammar [Pynadath and Wellman, 2002;
Geib and Goldman, 2009], and an inference task over a dy-
namic Bayesian network [Bui, 2003; Liao et al., 2007].

Some recent approaches, however, attempt to map the
plan recognition problem into plan generation to leverage

on the performance of state-of-the-art planners. Ramirez and
Geffner [2010] consider the problem of plan recognition over
classical planning models where the goal of the agent is hid-
den to the observer. They show that the posterior distribution
P (G|O) over the possible agent goals G given a sequence of
observations O, can be defined from the costs c(G,O) of the
plans that achieve G while complying with the observations
O, and the costs c(G,O) of the plans that achieve G while
not complying with O. Indeed, they define the likelihood
P (O|G) as a monotonic (sigmoid) function of the difference
in costs c(G,O) − c(G,O). Thus, when the best plans for
G all comply with O, this difference is non-negative, and the
larger the difference, the larger the likelihood P (O|G). In or-
der to compute the posterior probabilities P (G|O) for a set
G of possible goals G, the likelihoods P (O|G) are derived in
2|G| planner calls, and they are then plugged into Bayes rule
along with the priors P (G) to yield the posterior probabilities
P (G|O).

The other recent model-based approach to plan recogni-
tion is in the MDP setting where actions are assumed to have
stochastic effects and states are fully observable [Baker et al.,
2009]. Baker et. al. show that from the value function VG(s)
that captures the expected cost from state s to the goal G, for
every state s and goal G, it is possible to define the probabil-
ity that the agent will take a given action a in s if her goal
is G. From this probability P (a|s,G) and simple manipula-
tions involving basic probability laws, they derive the likeli-
hood that a sequence of actions and state observations results
given that the agent starts in a state s and pursues goal G.
As before, from the likelihoods P (O|G) and the goal priors
P (G), they derive the posterior probabilities P (G|O) using
Bayes rule. Once again, the main computational work is done
by the planner, in this case an MDP planner, that must furnish
the value function VG(s) for all goals G and states s. Notice
that in both the classical and MDP formulations, probabilities
are inferred from costs; in the first case, the costs c(G,O) and
c(G,O), in the second, the expected costs VG(s). The formu-
lation that we develop below takes elements from both formu-
lations while extending them to the POMDP setting where
actions are stochastic and states are partially observable.

4 Background: Goal MDPs and POMDPs
Shortest-path MDPs provide a generalization of the state
models traditionally used in heuristic search and planning in
AI, accommodating stochastic actions and full state observ-
ability [Bertsekas, 1995]. They are given by

• a non-empty state space S,
• a non-empty set of goal states SG ⊆ S,
• a set of actions A,
• probabilities Pa(s

′|s) for a ∈ A, s, s′ ∈ S, and
• costs c(a, s) for a ∈ A and s ∈ S.

The goal states t are assumed to be absorbing and cost-free;
meaning Pa(t|t) = 1 and c(a, t) = 0 for all a ∈ A. Goal
MDPs are shortest-path MDPs with a known initial state s0
and positive action costs c(a, s) for all a and non-terminal
states s. Shortest-path and Goal MDPs appear to be less ex-
pressive than discounted reward MDPs, where there is no
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goal, rewards can be positive, negative, or zero, and a param-
eter γ, 0 < γ < 1, is used to discount future rewards. Yet,
the opposite is true: discounted reward MDPs can be trans-
formed into equivalent Goal MDPs, but the opposite transfor-
mation is not possible [Bertsekas, 1995]. The same is true for
discounted reward POMDPs and Goal POMDPs [Bonet and
Geffner, 2009].

The solution to MDPs are functions π mapping states into
actions. The expression V π(s) denotes the expected cost that
results from following the policy π from the state s to a goal
state, and it can be computed by solving a system of |S| linear
equations. The optimal policies are well-defined if the goal
is reachable from every state, and corresponds to the policies
π∗ that minimize V π(s) over all states s. The optimal cost
function V ∗(s) = V π(s) for π = π∗, turns out to be the
unique solution to the Bellman equation:

V (s) = min
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s
′|s)V (s′)

}
(1)

for all s ∈ S \ SG, and V (s) = 0 for s ∈ SG. The Bellman
equation can be solved by the Value Iteration (VI) method,
where a value function V , initialized arbitrarily over non-goal
states, is updated iteratively until convergence using the right-
hand side of (1). The optimal policy π∗ is the policy πV that
is greedy in the value function V

πV (s) = argmin
a∈A

{
c(a, s) +

∑
s′∈S

Pa(s
′|s)V (s′)

}
(2)

when V = V ∗. Recent variants of value iteration aim to
exploit the use of lower bound (admissible) cost or heuris-
tic functions to make the updates more focused and achieve
convergence on the states that are relevant. One of the first
such methods is Real-Time Dynamic Programming (RTDP),
that in each trial simulates the greedy policy πV , updating the
value function V over the states that are visited [Barto et al.,
1995]. With a good initial lower bound V , RTDP and other
recent heuristic search algorithms for MDPs, can deliver an
optimal policy without considering many of the states in the
problem.

POMDPs (Partially Observable MDPs) generalize MDPs
by modeling agents that have incomplete state information
[Kaelbling et al., 1999] in the form of a prior belief b0 that ex-
presses a probability distribution over S, and a sensor model
made up of a set of observation tokens Obs and probabilities
Qa(o|s) of observing o ∈ Obs upon entering state s after
doing a. Formally, a Goal POMDP is a tuple given by:

• a non-empty state space S,
• an initial belief state b0,
• a non-empty set of goal states SG ⊆ S,
• a set of actions A,
• probabilities Pa(s

′|s) for a ∈ A, s, s′ ∈ S,
• positive costs c(a, s) for non-target states s ∈ S,
• a set of observations Obs, and
• probabilities Qa(o|s) for a ∈ A, o ∈ Obs, s ∈ S.

It is also assumed that goal states t are cost-free, absorbing,
and fully observable; i.e., c(a, t) = 0, Pa(t|t) = 1, and t ∈
Obs, so that Qa(t|s) is 1 if s = t and 0 otherwise.

The most common way to solve POMDPs is by formu-
lating them as completely observable MDPs over the belief
states of the agent. Indeed, while the effects of actions on
states cannot be predicted, the effects of actions on belief
states can. More precisely, the belief ba that results from do-
ing action a in the belief b, and the belief boa that results from
observing o after doing a in b, are:

ba(s) =
∑
s′∈S

Pa(s|s′)b(s′) , (3)

ba(o) =
∑
s∈S

Qa(o|s)ba(s) , (4)

boa(s) = Qa(o|s)ba(s)/ba(o) if ba(o) �= 0. (5)

As a result, the partially observable problem of going from an
initial state to a goal state is transformed into the completely
observable problem of going from one initial belief state into
a target belief state. The Bellman equation for the resulting
belief MDP is

V (b) = min
a∈A

{
c(a, b) +

∑
o∈Obs

ba(o)V (boa)

}
(6)

for non-target beliefs b and V ∗(bt) = 0 otherwise, where
c(a, b) is the expected cost

∑
s∈S c(a, s)b(s).

Like classical planning models, MDPs and POMDPs can
be defined in compact form through the use of PDDL-like
planning languages where states are valuations over a set of
variables, and the goal states are the states where goal formu-
las (from now one, just goals) are true. If the goals are not ob-
servable, the mapping is slightly less direct and requires the
use of dummy goals. Our experiments for goal recognition
over POMDPs are carried on with the GPT planner [Bonet
and Geffner, 2001] that allows for this type of compact repre-
sentations, and solves Goal POMDP models using RTDP-Bel
[Bonet and Geffner, 2000; 2009]; an adaptation of RTDP to
Goal POMDPs.

5 Goal Recognition: Complete Observations
Our first formulation of goal recognition over POMDPs is a
direct generalization of the MDP account [Baker et al., 2009].
This account makes two assumptions. First, that the observa-
tion sequence is complete, meaning that O contains all the
actions done by the agent, and hence, that there are no gaps
in the sequence. Second, that the states of the MDP are fully
observable not only to the agent, but also to the observer. The
assumptions are pretty restrictive but serve to reduce the goal
recognition problem to a simple probabilistic inference prob-
lem. In the POMDP setting, the second assumption translates
into the (partial) observations gathered by the agent being vis-
ible to the observer as well. Thus, in this setting, the observer
gets two types of information: the complete sequence of ac-
tions O done by the agent, and the corresponding sequence of
POMDP observation tokens o ∈ Obs that the agent received.
In the next section, we will relax both of these assumptions.

The POMDP is assumed to be known by both the agent
and the observer, except for the actual goal G of the agent.
Instead, the set G of possible goals is given along with the
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priors P (G). The posterior goal probabilities P (G|O) can be
obtained from Bayes rule:

P (G|O) = αP (O|G)P (G) (7)

where α is a normalizing constant that doesn’t depend on
G. The problem of inferring the posteriors P (G|O) gets thus
mapped into the problem of defining and computing the like-
lihoods P (O|G). The key assumption is that if the agent is
pursing goal G, the probability P (a|b,G) that she will choose
action a in the belief state b is given by the Boltzmann policy:

P (a|b,G) = α′exp{β QG(a, b)} (8)

where α′ is a normalizing constant and β captures a ‘soft ra-
tionality’ assumption [Baker et al., 2009]: for large β, the
agent acts greedily on QG (optimally if QG is optimal); for
low β, the agent selects actions almost randomly.

The term QG(a, b) expresses the expected cost to reach the
goal G from b starting with the action a in b; i.e.,

QG(a, b) = c(a, b) +
∑
o∈O

ba(o)VG(b
o
a) (9)

where VG is the value function for the POMDP assuming that
the goal states are those in which G is true, c(a, b) is the ex-
pected cost of action a in b, and ba(o) and boa as defined above,
stand for the probability that the agent observes o after doing
action a in b, and the probability distribution that results from
doing a in b and observing o.

The observation sequence O that the observer gets in this
formulation is a sequence O1,n of pairs (ai, oi), i = 1, . . . , n,
where ai is an action, and oi is the observation token that the
agent obtains after doing action ai. The likelihood that mea-
sures how well G predicts the complete observation sequence
O for an agent starting in b, follows from the recursive de-
composition

P (Oi,n|b,G) = P (a|b,G) ba(o)P (Oi+1,n|boa, G) (10)

with a = ai, o = oi, and P (Oi,n|b,G) = 1 for i > n. The
likelihood P (O|G) is then P (O1,n|b0, G), which plugged
into Bayes rule (7) yields the desired posterior goal proba-
bilities P (G|O). The POMDP planner enters into this for-
mulation by providing the expected costs VG(b) to reach G
from b that are used via the factors QG(a, b) for defining the
probability that the agent will do action a in b (8).

6 Goal Recognition: Incomplete Observations
In the account above, the information available to the ob-
server contains both the actions done by the agent, and the
observation tokens that the agent receives from the environ-
ment. Moreover, this sequence of actions and tokens is as-
sumed to be complete, meaning that no one is missed by the
observer. In the account below, these two restrictions are re-
moved.

As before, we assume a shared POMDP between agent and
observer, except for the agent goal G that is hidden to the ob-
server but belongs to the set G of possible goals. The obser-
vation sequence O is now a sequence of actions a1, . . . , an
which is not necessarily complete, meaning that some of the
agent actions may have gone unnoticed to the observer, whom

hence cannot assume a priori that action ai+1 is the action
that the agent did right after ai. Still, as before, the posterior
goal probabilities P (G|O) can be derived using Bayes rule
(7) from the priors P (G) and the likelihoods P (O|G) that
can now be defined as

P (O|G) =
∑
τ

P (O|τ)P (τ |G) (11)

where τ ranges over the possible executions of the agent
given that she is pursuing goal G.

The executions τ contain the complete sequence of agent
actions. We will say that an execution τ complies with the
observation sequence O if the sequence O is embedded in
the sequence τ . Taking then the probabilities P (O|τ) as 1 or
0 according to whether the execution τ complies with O or
not, the sum in (11) can be approximated by sampling as

P (O|G) ≈ mO/m (12)

where m is the total number of executions sampled for each
goal G, and mO is the number of such executions that comply
with O.

For this approximation to work, executions τ for the goal
G need to be sampled with probability P (τ |G). This can be
accomplished by making the agent select the action a in a be-
lief b with a probability P (a|b,G) that results from the Boltz-
mann policy (8). As before, it is assumed that the POMDP
planner furnishes the value function VG(b) that encodes the
expected cost from b to the goal.

Once the action a is sampled with probability P (a|b,G),
the resulting observation o, that is no longer assumed to be
available to the observer, is sampled with probability ba(o).
The resulting traces b0, a0, o0, b1, a1, o1, . . . until the goal is
reached are such that bi+1 = boa for b = bi, a = ai, and
o = oi, where ai is sampled with probability P (ai|bi, G), and
oi is sampled with probability ba(oi) for b = bi and a = ai.

The likelihoods P (O|G) approximated through (12) are
then plugged into Bayes rule (7) from which the posterior
goal probabilities P (G|O) are obtained. The key computa-
tional burden in this account results from the calculation of
the value function VG over beliefs, that must be precomputed
by the POMDP planner, and the simulated executions that
need to be sampled for estimating the likelihoods P (O|G)
following (12).

7 Experiments
For testing the goal recognizer, we used the POMDP planner
GPT built around the RTDP-BEL algorithm. The software
for the goal recognition part was implemented on PYTHON,
making calls to GPT when necessary. GPT supports a very ex-
pressive language for encoding POMDPs which have allowed
us to test our approach over four non-trivial domains. Fea-
tures of these domains are shown in Table 1. The software
and example files are available from the authors.

DRAWERS is the domain described in Section 2. OFFICE
is adapted from [Bui, 2003]. The agent is at the lab which
consists of two rooms: one is her office, where she has a
workstation and a cabinet to store her coffee cup and blank
paper. The other is the club, where the coffee machine and
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Name |S| |A| |Obs| |b0| |G| |T |
OFFICE 2,304 23 15 4 3 3.4

DRAWERS 3,072 16 16 6 3 4.5
KITCHEN 69,120 29 32 16 5 10.1

Table 1: Features of the four domains: number of states, actions,
observation tokens, states in initial belief, and possible goals. T is
time in seconds to compute VG(b0) for all goals G in G.

printer are placed. The two rooms are connected by a cor-
ridor. The agent is initially on the corridor. The printer can
be out of paper, clogged, both or none. The agent goals are
to print an article, have a cup of coffee or both. To print an
article, the agent needs to get to her workstation, send the file
to the printer queue and get to the printer. With probability
0.2 the printer gets clogged while printing. If the printer is
out of paper, blank paper needs to be fetched from the cab-
inet. When the printer is clogged, the agent has to execute
several actions to service it. To have coffee, the agent needs
to pick the cup from the cabinet and go to the coffee machine.
The prior of the joint goal is defined as the product of the pri-
ors for each of the individual goals, which are assumed to be
equally likely.

In KITCHEN, the agent goal is to cook one of five possible
dishes. There are ingredients i1, i2, i3, i4 which are placed at
random on two cupboards. Each dish requires up to three dif-
ferent ingredients which are required to be mixed in a bowl.
The agent can inspect the cupboards the find the ingredients
it needs, having to approach them first. In addition, there are
three objects needed – a tray, a pan and a pot – which are
all located in a third cupboard. Whenever a recipe involves
boiling or frying an ingredient, or a mix of them, the agent
needs to place the required objects on the stove. The agent
can navigate between locations, and all goals have the same
prior.

The dataset is made up of a set of instances 〈O,G〉, where
O is an observation sequence obtained by randomly collect-
ing either 30%, 50%, or 70% of the actions from greedy ex-
ecutions leading to G obtained from the value function com-
puted by GPT for each of the goals G ∈ G. For each goal G
and each observation ratio, 10 instances 〈O,G〉 where gen-
erated in this way with G as the hidden goal. Then, rather
than reporting posteriors P (G′|O) for all G′, we analyze the
binary goal classifier that results from mapping the observa-
tion sequence O into the set of most likely goals. These are the
goals G′ that maximize the posterior probability P (G′|O).1
For this, we treat the pairs 〈O,G〉 as positive instances (P),
and the pairs 〈O,G′〉 for all G′ �= G as negative instances
(N). A positive instance 〈O,G〉 is a then true positive (TP) if
G is found most likely given O and is a false positive (FP)
if not. Similarly, a negative instance 〈O,G〉 is a true nega-
tive (TN) if G is not among the most likely goals given O,
and else is a false negative (FN). We denote the resulting goal
classifier as GR(m,β), where m is the number of samples
for each goal used in (12) and β is the level of noise in the ac-
tion selection (8). The classifiers GR(m,β) are evaluated ac-
cording to the standard measures TPR, FPR, ACC, and PPV

1We consider two numbers x, x′ equal when |x− x′| < 10−7.
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Figure 1: ROC graph showing aggregate results for goal classifier
GR(m,β) for different m and β values (number of samples and
noise level in action selection). Squares, triangles and circles denote
different m values: 100, 1000 and 10000. Black, gray, and light gray
denote different β values: 1, 10, 40. Results for random strategy
represented by the dotted line.

Domain Obs % L T ACC PPV TPR
30 4.9 24.6 0.99 0.97 1.00

office 50 7.6 24.7 1.00 1.00 1.00
70 10.8 24.8 1.00 1.00 1.00
30 3.8 95.2 0.86 0.73 0.73

kitchen 50 5.8 95.1 0.93 0.85 0.85
70 8.3 95.2 0.98 0.95 0.95
30 2.9 38.8 0.84 0.77 0.77

drawers 50 3.9 38.8 0.87 0.80 0.80
70 6.0 38.8 0.96 0.93 0.93

Table 2: Performance of classifier GR(m = 10, 000, β = 40): do-
mains, observation ratio, average length of observation sequences
(L), average time in seconds to process O (T), average accuracy
(ACC), precision (PPV) and True Positive rate (TPR).

that stand for the True Positive Rate, False Positive Rate, Ac-
curacy, and Precision, defined by the ratios TP/P , FP/N ,
TP + TN/P +N , and TP/TP + FP respectively.

Figure 1 shows the aggregate results of the goal recognizer
GR(m,β) over the four domains in the form of a ROC graph
[Fawcett, 2006] that plots TPR vs. FPR. As it can be seen,
the performance of the goal classifier approaches the optimal
vertex (1, 0) as the number of samples m becomes large. Per-
formance is good – high TPR, low FPR – for m ≥ 1000 and
high β values. Table 2 offers a detailed picture of the perfor-
mance of the classifier for such values of m and β. In all do-
mains we see how the accuracy of goal recognition increases
as more information is conveyed by the input observation se-
quence, with near optimal results in all cases as the ratio of
observations approaches 70%.

8 Extensions
The model above for goal recognition over POMDPs is sim-
ple but quite expressive, and still there are a number of natural
extensions, some of which we describe next.
• Agent POMDP model partially known by observer: in the
above formulation, the agent POMDP model is known by the
observer except for the hidden goal. Incomplete information
about the initial belief state b0 of the agent, however, can be
accommodated as well. The simplest approach is to define
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a set B0 of possible initial belief states b0 each with a prob-
ability P (b0). The formulation can then be generalized to
deal with both hidden goals G and hidden initial belief states
b0, and the posterior probabilities over the collection of such
pairs can be computed in a similar manner.
• Failure to observe and actions that must be observed: as
argued in [Geib and Goldman, 2009], information about ac-
tions a that if done, must always be observed, is valuable, as
the absence of such actions from O imply that they were not
done. This information can be used in a direct manner by
adjusting the notion of when a sample execution τ complies
with O. In the presence of must-see actions, executions τ
comply with O when τ embeds O, and every must-see action
appears as many times in τ as in O.
• Observing what the agent observes: we have assumed that
the observer gets a partial trace of the actions done by the
agent and nothing else. Yet, if the observer gets to see some of
the observation tokens o ∈ Obs gathered by the agent, she can
use this information as well. In particular, the number mO in
(12) would then be set to the number of sampled executions
for G that comply with both O and Obs.
• Noise in the agent-observer channel: if the observer gets
to see the actions done by the agent through a noisy chan-
nel where actions can be mixed up, the problem of determin-
ing where a sample execution τ complies with the observa-
tions O is no longer a boolean problem where P (O|τ) is
either 0 or 1 but a probabilistic inference problem that can
be solved in linear-time with Hidden Markov Model (HMM)
algorithms, that would yield a probability P (O|τ) in the in-
terval [0, 1]. For this, the model must be extended with prob-
abilities Q′(o|a) of observing token o from the execution of
action a, and hidden chain variables ti = j expressing that the
observation token oi in O = o1, . . . , on has been generated
by action aj in the sample execution τ = a1, . . . , am.

9 Summary

We have formulated and tested a new formulation of goal
recognition for settings where the agent has partial informa-
tion about the environment and the observer has partial in-
formation about the actions of the agent. The posterior goal
probabilities G for the hidden goals G ∈ G are computed
from Bayes rule using given priors P (G) and likelihoods
P (O|G) approximated in two steps: using first a POMDP
planner to produce the expected costs VG from beliefs to
goals, and using these costs to sample executions. A number
of direct extensions have also been discussed and a number
of experiments have been reported. The work assumes that
there is a POMDP model shared by agent and observer. The
ability to do goal and belief recognition when the two models
do not match remains as an interesting challenge for future
work.
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