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Abstract

The Markov decision process model is a power-
ful tool in planing tasks and sequential decision
making problems. The randomness of state tran-
sitions and rewards implies that the performance
of a policy is often stochastic. In contrast to the
standard approach that studies the expected per-
formance, we consider the policy that maximizes
the probability of achieving a pre-determined tar-
get performance, a criterion we term probabilis-
tic goal Markov decision processes. We show that
this problem is NP-hard, but can be solved using a
pseudo-polynomial algorithm. We further consider
a variant dubbed “chance-constraint Markov deci-
sion problems,” that treats the probability of achiev-
ing target performance as a constraint instead of the
maximizing objective. This variant is NP-hard, but
can be solved in pseudo-polynomial time.

1 Introduction

The Markov Decision Process (MDP) model is a powerful
tool in planning tasks and sequential decision making prob-
lems [Puterman, 1994; Bertsekas, 1995]. In MDPs, the sys-
tem dynamics is captured by transition between a finite num-
ber of states. In each decision stage, a decision maker picks
an action from a finite action set, then the system evolves to
a new state accordingly, and the decision maker obtains a re-
ward. Both the state transition and the immediate reward are
often random in nature, and hence the cumulative reward X
may be inherently stochastic. Classical approach deals with
the maximization of the expected value of X, which implic-
itly assumes that the decision maker is risk-neutral.

In this paper we propose and study an alternative opti-
mization criterion: fix a target level V' € R, the decision
goal is to find a policy 7 that maximizes the probability of
achieving the target, i.e., to maximize Pr(X, > V). The
criterion of maximizing the probability of achieving a goal,
which we call probabilistic goal, is an intuitively appealing
objective, and justified by axiomatic decision theory [Castag-
noli and LiCalzi, 1996]. Moreover, empirical research has
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also concluded that in daily decision making, people tends
to regard risk primarily as failure to achieving a predeter-
mined goal [Lanzillotti, 1958; Simon, 1959; Mao, 1970;
Payne et al., 1980; 1981].

Different variants of the probabilistic goal formulation
such as chance constrained programs!, have been extensively
studied in single-period optimization [Miller and Wagner,
1965; Prékopa, 1970]. However, little has been done in
the context of sequential decision problem including MDPs.
The standard approaches in risk-averse MDPs include max-
imization of expected utility function [Bertsekas, 1995],
and optimization of a coherent risk measure [Riedel, 2004;
Le Tallec, 2007]. Both approaches lead to formulations that
can not be solved in polynomial time, except for special
cases including exponential utility function [Chung and So-
bel, 1987], piecewise linear utility function with a single
break down point [Liu and Koenig, 2005], and risk mea-
sures that can be reduced to robust MDPs satisfying the so-
called “rectangular condition” [Nilim and El Ghaoui, 2005;
Iyengar, 2005].

Two notable exceptions that explicitly investigate the prob-
abilistic goal or chance constrained formulation in the context
of MDPs are [Filar et al., 1995] and [Delage and Mannor,
2010]. The first reference considers the average reward case
of MDPs, and reduces the probability of achieving a target to
the probability of entering irreducible chains. The analysis is
thus very specific and can not be extended to finite horizon
case or discounted reward infinite horizon case. The second
reference investigated, instead of the internal randomness,
the parametric uncertainty of the cumulative reward. That is,
the parameters of the MDP, namely the transition probability
and the reward, are not precisely known. While the decision
maker is risk-neutral to internal randomness — performance
fluctuation due to the stochasticity of the state transition, im-
mediate reward and possible randomness of the action, he/she
is risk averse to the performance deviation due to the param-
eter uncertainty. Conceptually, in this setup one can think of
of having many identical machines all with the same uncer-
tain parameter, and the goal is to maximize the probability
that the average reward (w.r.t. all machines) achieves a cer-

Tnstead of maximizing the probability of achieving a target,
chance constrained program requires such probability to be no less
than a fixed threshold.



tain target. Because of this apparent difference in modeling,
the techniques used in [Delage and Mannor, 2010] do not ex-
tend to the probabilistic goal of the internal randomness, the
setup that we consider.

To the best of our knowledge, the probabilistic goal or
chance constrained formulation has not been investigated for
finite-horizon or infinite-horizon discounted reward MDPs.
Our contributions include the following:

1. We compare different policy sets: we show that for a
probabilistic goal MDP, an optimal policy may depend
on accumulated reward, and randomization does not im-
prove the performance.

. We show that the probabilistic goal MDP is NP-hard.
Thus, it is of little hope that such problem can be solved
in polynomial time in general.

. We propose a pseudo-polynomial algorithm based on
state-augmentation, that solves the probabilistic goal
MDP.

We investigate chance constrained MDPs and show it
can be solved in pseudo polynomial time.

Before concluding this section, let us briefly discuss some
practical examples that motivate this study. Consider the fol-
lowing scenario that many of us have experienced. Suppose
one wants to drive to the airport to catch a plane which is
soon to take off. He/she needs to decide which route to take,
while the time he/she will spend on each link is random. This
can be modeled as an MDP with a deterministic transition
probability and random reward. It is clear that the expected
time the decision maker will spend on route is less critical
than whether he/she will catch the plane, a natural fit for
probabilistic goal MDP. Other examples can be found in fi-
nance, where synthetic derivatives that are triggered by dis-
crete events are becoming common, and hence minimizing or
maximizing the probability of such event is relevant and im-
portant; and airplanes design, where one seek a reconfigura-
tion policy that maximizes the chance of not having a critical
failure.

2 Setup

In this section we present the problem setup and some
necessary notations. A (finite) MDP is a sextuple <
T,S5, A, R,p, g > where

T is the time horizon, assumed to be finite;

S is a finite set of states, with s € S the initial state;

A is a collection of finite action sets, one set for each
state. For s € S, we denote its action set by As;

'R is a finite subset of R, and is the set of possible values
of the immediate rewards. We let K = max,cr |r;

p is the transition probability. That is, p;(s’|s, a) is the
probability that the state at time ¢t + 1 is s, given that the
state at time ¢ is s, and the action chosen at time ¢ is a.

g is a set of reward distributions. In particular, g:(r|s, a)
is the probability that the immediate reward at time ¢ is
r, if the state is s and action is a.
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As standard, we use symbol 7 to denote a policy of an
MDP. A history-dependent, deterministic policy is a map-
ping from the history H; = (So.¢, ao.t,70.+) of the process
to an action a € As,. We use 11" to represent the set of
history-dependent deterministic policies. The set of deter-
ministic policies that only depend on the current state (and
the time horizon), which is often called Markovian policies,
is denoted by II*. As we show in the sequel, it is sometimes
beneficial to incorporate the accumulated reward in the deci-
sion. The set of policies that depend on the time horizon, the
current state, and the accumulated reward up-to-now, which
we called “pseudo-Markovian” policy, is denoted by IT%**.

Besides deterministic policy, we also considered random-
ized policy. That is, assuming there is available a sequence
of i.i.d. random variables Uy, - - - , Ur, independent to every-
thing else, and a history-dependent, randomized policy is a
mapping from (Hy, U;) to an action. We denote the set of
such policies by II"*. The set of Markovian and pseudo-
Markovian randomized policies are defined similarly, and de-
noted respectively by IT"*% and IT% %%,

Note that given the distribution of the reward parameter,
the total reward of the MDP under a policy 7 is a well de-
fined random variable, denoted by X,. We are interested in
the following problems. As standard in the study of computa-
tional complexity, the first problem we consider is a “yes/no”
decision problem.

Problem 1 (Decision Problem). Given V€ R and a €
(0,1). Is there a © € II"" such that

Pr(X,>V)>a?

We call this problem D(IT*%). Similarly, we define
D(I1%5%), D(I1%#%%), and their deterministic counterparts.

A related problem of more practical interest is the opti-
mization one.

Problem 2 (probabilistic goal MDP). Given V € R, find

7w € I that maximizes
Pr(X,>V).

Let us remark that while we focus in this paper the finite
horizon case, most results easily extend to infinite horizon
discounted reward case, due to the fact that the contribution
of the tail of the time horizon can be made arbitrarily small
by increasing the time horizon.

3 Comparison of policy sets

In this section we compare different policy sets. We say a
policy set IT is “inferior” to another IT', if D(II) being true
implies that D(IT") is true, and there exists an instance where
the reverse does not hold. We say two policy sets IT and IT'
are “equivalent” if D(IT) is true if and only if D(IT') is true.

We first show that randomization does not help: II" is
equivalent to 11", IT** is equivalent to IT****, and simi-
larly IT"® is equivalent to II**. This essentially means that
for probabilistic goal MDP, it suffices to focus on I~ 11t
and IT*. Note that it suffices to show the following theorem,
since the reverse direction holds trivially.
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Figure 1: Illustration of Example 1

Theorem 1. Given an MDP, o € [0,1), and V, if there exists
7w € I (respectively IT5%% and 115" ) such that
Pr(X., >V)>a,

then there exists © € TI" (respectively 11"** and 11*) such
that
PrX,>V)>a.

Proof. Since T' < o0, the set 1" is finite, i.e., there is a finite
number of deterministic history dependent policies. For suc-
cinctness of presentation, we write m,, ~ 7, where m,, € T
and 7 € II", to denote the event (on probability space of U)
that 7, (Hy, Up.t) = w(Hy) forall ¢ and H;. Fix a randomized
policy € 11", due to theorem of total probability we have

Pr(X,, >V) > Pr(Xe, > Vim, ~ ) Pr(m, ~
mellh

Z Pr(X; > V)Pr(n, ~ ).
mellh

Note that )} _;n Pr(m, ~ m) = 1, we have that

m?ﬁ Pr(X,>V)>Pr(X,, >V),
TE

which establishes the theorem for the history-dependent case.
The other two cases are essentially same and hence omitted.
It is straightforward to generalize the finite horizon case
to the discounted infinite horizon case, due to the fact that
the contribution of the tail of the time horizon can be made
arbitrarily small. (The proof is by contradiction: if there is a
difference in performance in the limit, it must appear in finite
time as well.) ]

We next show that in general, II%* is inferior to II%$®,
This essentially means that including the information of ac-
cumulated reward can improve the performance of a policy
for probabilistic goal MDP.

Example 1. Consider the MDP as in Figure 1: S
{50, $1,t}, where t is the terminal state. The initial state s
has one action, which leads to state s;, and the immediate re-
ward is that with probability 0.5 it is +1, and otherwise —1.
State s; has two actions a and b, both lead to state ¢t. The
immediate reward of a is always 0, and that of b is that with
probability 0.5 it is +1, and otherwise —2. Observe that for
either fixed action a or b, Pr(X > 0) = 0.5. In contrast,
consider the policy 7 that at state s1, takes action a if the ac-
cumulated reward is +1, otherwise takes action b. Observe
that Pr(X, > 0) = 0.75, which shows that II** is inferior
to It

)
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Figure 2: Example of NP-hard probabilistic goal MDP

Finally, we remark that adding extra information beyond
the cumulative reward does not improve the performance for
probabilistic goal MDP, as we will show in Section 5. The
policies clasees IT1*'** and II" are therefore equivalent.

4 Complexity

In this section we show that in general, solving the probabilis-
tic goal MDP is a computationally hard problem.

Theorem 2. The problem D(II) is NP-hard, for 11 equals to
Hh, Hh,u’ Ht,s’ Ht,s,u, Ht,s,w or Ht,s,z,u-

Proof. We start with proving the result for IT%* , by show-
ing that we can reduce a well-known NP complete problem,
KnapSack Problem (KSP), into a probabilistic goal MDP, and
hence establish its NP-hardness. Recall that a KSP is the
following problem. There are n items, 1 through n, each
item ¢ has a value v; and a weight w;. We can assume they
are all non-negative integers. The KSP problem is to decide
given two positive number W and V', whether there exists a
I C [1: n] such that

Z w; < Wj Z v > V.
iel iel

Given n, w;, v;, W and V, we construct the following
MDP. Let T = n + 2. There are n + 2 states: S =
{s1,--+,8n,8"% t}: s; is the initial state and ¢ is the ter-
minal state. Each state s; has two actions: if action a is taken,
then the immediate reward is 0 and the next state will be s, 1;
if action b is taken, then the immediate reward is v;; further-
more, with probability 1/2%: the next state will be s;11 (re-
spectively terminal state ¢ if ¢ = n) and otherwise the next
state will be s”??. The state s**? has only one action which
incurs an immediate reward —L £ —2 E?:l v;, and the next
state will be ¢. See Figure 2.

Now consider the decision problem D(II**) with o =
1/2W. That is, to answer whether there exists = € I1** such
that

PrX,>V)>a.

We now show that the answer to D(IT*%) is positive if and
only if the answer to KSP is positive.

Suppose the answer to D(IT"*) is positive, i.e., there exists
a policy 7 € ITI** such that

Pr(X,>V)>a.



Define set I’ as all ¢ € [1
Observe this implies that

Z’Ui ZV

icel’

: n] such that 7 takes b in s;.

Furthermore, due to the extreme large negative reward in
bad
S b

Pr(X.>V) < Pr(s"is never reached.)

1 1
= Mierge = s
€l Qw; 22 ierr Wi

which implies that

1

w .

iel’

Thus, the answer to KSP is also positive.
Now suppose the answer to KSP is positive, i.e., there ex-
ists I C [1 : n] such that

Zwi <W; Zvi > V.

i€l i€l

Consider the following policy 7’ of the MDP: take action b
for all s; where 7 € I, and a otherwise. We have

Pr(s* is never reached.)

1 1
=l =—2>12" =0
H 2wi 221’51 wi T /
el
Furthermore, when s%?¢ is never reached, the cumulative re-
wardis ), ; v; > V. Thus, we have that
Pr( X, >V)>a,

i.e., the answer to D(IT%#) is also positive.

Thus, determining the answer to KSP is reduced to answer-
ing D(I1#), the probabilistic goal MDP. Since the former
is NP-complete, we conclude that probabilistic goal MDP is
NP-hard.

Notice that in this example, II** = II»** = II". Thus,
NP-hardness for the decision problems with respect to these
policy sets are established as well. Furthermore, Theorem 1
implies that D(IT"%), D(II%*%), D(II%*%%) are also NP-
hard. o

5 Pseudo-polynomial algorithms

In the previous section we showed that it is of little hope that
the probabilistic goal MDP can be solved in polynomial time.
In this section we develop a pseudo-polynomial algorithm to
handle this question. Recall that the running time of a pseudo-
polynomial algorithm is polynomial in the number of param-
eters and the size of the parameter, as opposed to polynomial
algorithms whose running time is polynomial in the number
of parameters and polylogarithmic in the size of the parame-
ters.

5.1 Integer Reward

The main technique of our pseudo-polynomial algorithm is
state augmentation. That is, we construct a new MDP in
which the state space is the Cartesian product of the original
state-space and the set of possible accumulated rewards. To
better understand the algorithm, we first consider in this sub-
section a special case where the immediate reward is integer-
valued, i.e., R C Z. We show that the probabilistic goal MDP
can be solved in time polynomial to |S|, | A| and K.

Theorem 3. Suppose that R C Z. In computational time
polynomial in T, |S|, |A| and K, one can solve D(II"%),
i.e., determine the correctness of the following claim:

Irel™: Pr(X,>V)>a.

Similarly, in computational time polynomial to T, |S|, |A]
and K, one can solve the probabilistic goal MDP, i.e., find
7 € ™Y that maximizes Pr(X, > V). Moreover, there
exists an optimal solution to probabilistic goal MDP that be-
longs to TIH5%,

Proof. Tt suffices to show that an optimal solution to the prob-
abilistic goal MDP
7" = arg max Pr(X, > V),
mellh
together with the optimal value Pr(X,- > V), can be ob-
tained by solving an MDP with 27 K |S]| states.

We construct a new MDP as follows: each state is a pair
(s,C) where s € S and C' is an integer in [T K, T K], and
the initial state is (sg,0). The action set for (s, C) is As, for
all C. In time ¢, the transition between states is defined as
follows:

Pr((s',C")

a,(s,0)) = pe(s']a, s) x g:(C" — Cls,a).

That is, a transition to (s’, C') happens if in the original MDP,
a transition to state s’ happens and the immediate reward is
C’—C. Notice that since the immediate reward of the original
MDP is bounded in [—K, K] and there are only T stages,
the accumulated reward of the original MDP is bounded in
[-TK,TK]. The immediate-reward of the new MDP is zero
except in the last stage, in which for states (s, C) with C' >
V,areward +1 is incurred.

It is easy to see that the solution to probabilistic goal MDP
is equivalent to a policy that maximizes the expected re-
ward for the new MDP. Note that there exists a determinis-
tic, Markovian policy to the latter, then the probabilistic goal
MDP has an optimal solution in T, |

Theorem 3 leads to the following algorithm for solving
probabilistic goal MDPs. Note that, not surprisingly, the pro-
posed algorithm indeed parallels the standard algorithm (also
pseudo-polynomial) solving KSP.

5.2 General Reward

In this section we relax the assumption that the reward is inte-
ger valued. We discretize the real-valued reward parameters
to obtain a new MDP that approximates the original one. The
new MDP is equivalent to an integer valued MDP, and hence
can be solved in pseudo-polynomial time thanks to results
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e Input: MDP < T, S, A, R,p,g >withR CZ, V € R.
e Output: 7 € I1"** that maximizes Pr(X, > V).
e Algorithm:

1. Construct MDP with augmented state-space.

2. Find a Markovian 7* that maximizes the expected
reward of the new MDP.

Construct the policy of the original MDP as fol-
lows: the action taken at stage t, state s, with an
accumulated reward C' equals to (s, C'). Output
the policy.

3.

in Section 5.1. To show that such approximation is legiti-
mate, we bound the performance gap that diminishes as the
discretization becomes finer.

Theorem 4. There exists an algorithm, whose running time
is polynomial in T, |S|, |A|, K and 1/, that finds a policy ,
such that

Pr(X, >V 4e) < Pr(X; >V); Vrelhv

Proof. Given an MDP (TS, A, R,p,g), with K
max,cr ||, and the grid size 6 > 0, we can construct a new
MDP < T,S, A, R, p,§ >, where R = {id|i € Z; —K /6 <
i < K/d}, and

’

~ _ Zr’:r<r/<r+5 gt (T/|S’ CL), ifre 7%7
ge(rls,a) = { 0 - otherwise.

Observe that, by scaling the parameters, the new MDP is
equivalent to an integer reward MDP whose reward parame-
ters are bounded by K/§. Hence the probabilistic goal MDP
for the new MDP can be solved in time polynomial to T, | S|,
|A|, K and 1/6. Furthermore, as the next lemma shows, we
can bound the error introduced by discretization.

)

Lemma 1. Let 7 be any policy, and 7 be the solution to the
new probabilistic goal MDP. We have that

Pr(X, >V +T6) < Pr(X;z >V).
Proof. Fix t, s, a, by definition of §,, we have that for any c
S anlrls,a) <3 gilrls,a) < 3 Gulrls,a).
r>c r>c r>c—4

Since the realization of reward parameters are independent,
and there are T’ stages, this implies that

Pr(X, >V +T68) < Pr(X, >V) < Pr(X, >V),
where X denotes the (ranAdom) total reward for the new MDP.
Since 7 maximizes Pr(X, > V), the lemma follows. O

The theorem follows by setting § = ¢/T. U

6 Chance Constrainted MDPs

Thus far we investigated the case where we want to find
a policy that maximizes the probability of achieving a pre-
determined target V. Another reasonable formulation is to
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treat this probability as a constraint: the decision maker may
be interested in maximizing the expected reward while in the
mean time ensures that the probability of achieving the tar-
get V is larger than a threshold. This leads to the Chance
Constrained MDP (CC-MDP) formulation.

Problem 3 (Chance Constrained MDP). GivenV € R and
a € (0,1), find a policy © € I that solves

E(Xx)
Subject to: Pr(X,>V)>a.

Notice that checking the the feasibility of CC-MDP is
equivalent to (NP-hard) D(7"*), which implies the NP-
hardness of CC-MDP. Nevertheless, similar as the probabilis-
tic goal MDP, there exists a pseudo-polynomial algorithm
that solves CC-MDP. However, in contrast to the probabilis-
tic goal MDP, the optimal policy may be randomized. For
succinctness we focus in this section the integer-reward case.
Note that the general reward case can be approximated to ar-
bitrary precision using discretization.

Theorem S. Given an MDP such that R € 7Z, V € R,
a € [0,1], the Chance Constrained MDP can be solved in
a time polynomial in T, |S|,|A|, K. Furthermore, there ex-
ists an optimal solution T belongs to I1H5%°,

Maximize:

Proof. Similar to the probabilistic goal MDP case, we con-
struct a new MDP with augmented state space (s,C). The
transition probability is defined in a same way as in the proba-
bilistic goal MDP. However, we define the immediate reward
as a pair (r!,r?), both of which take non-zero values only
at the last stage. In the last stage, if the state is (s, C), the
first reward component is C' and the second one is 1(c>v).
Thus, observe that for a given policy 7 of this new MDP, the
expected value of the first and the second component of the
accumulated reward equals to the expected reward and proba-
bility of meeting the target of the original MDP, respectively.
Thus, the chance constrained MDP is equivalent to find a pol-
icy of the second MDP that solves the following problem.

E(X})

E(X7) > o,

where X! and X2 are the first and second component of the
cumulative reward, respectively. Observe that Equation (1)
is the well-studied constrained MDP formulation, which can
be solved in polynomial time by converting it into a linear
program [Altman, 1999]. It is also known that there exists
a Markovian randomized optimal solution. Therefore, the
chance constrained MDP can be solved in pseudo-polynomial
time, and one optimal solution belongs to IT%::%, |

We note that for CC-MDP , II*5% is inferior to ITtS%:%,
i.e., randomization may be necessary for optimal policies.
This property is inherited from constrained MDPs and is due
to the fact that we want to satisfy the probabilistic constraint
while maximizing the expected reward.

Maximize:

)
Subject to:

7 Numerical Results

In this section we briefly report some simulation results that
illustrate the performance of the proposed approach. We con-
sider the following machine replacement example which is



similar in spirit to [Delage and Mannor, 2010]. There are
four possible states for a machine. The larger the state num-
ber, the worse the machine is. One can either replace the ma-
chine, which incurs a random cost, and the next state is s0,
or “do nothing,” with no cost, and the next state will be one
state larger; see Figure 3. Fix T' = 20. We compute the pol-
icy that minimizes the expected cost as in the standard MDP,
and the policies that maximizes the probability that the cost
is no larger than 5,6, 7, 8,9, respectively. For each policy,
1000 simulations are performed and the relative error is un-
der 1%. We plot the performance of each policy in Figure 4:
for a given x, the y-value is the frequency that the cumulative
cost of a policy is smaller or equal to x. The simulation re-
sult clearly shows that each policy maximizes the chance of
reaching its respective target.

+1 (60%)
+3 (40%

+1 (60%)
+5 (40%)

Figure 3: Simulation: Machine replacement dynamics
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Target=5

6 7 8 9 10 15
Target Cost

Figure 4: Simulation Result

8 Conclusion and Discussions

In this paper we proposed and investigated the probabilistic
goal MDP model where the decision maker maximizes the
probability that the cumulative reward of a policy is above a
fixed target. We showed that while this formulation is NP-
hard, it can be solved in pseudo-polynomial time using state
augmentation. We further discussed the chance constrained
MDP formulation and showed it to be solvable in pseudo-
polynomial time.

The classical objective for MDP, considers only the ex-
pected cumulative reward, and hence may not capture the
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risk preference of the decision maker. The main thrust of this
work is to address this shortcoming, with a decision criterion
that is both intuitively appealing and also justified from a de-
cision theory perspective, without sacrificing too much of the
computational efficiency of the classical approach.

From an algorithmic perspective, the proposed algorithm
for solving probabilistic MDPs may appear to be “easy” and
not scale well, partly due to the fact that the problem is NP-
hard. However, we believe that by embedding the proba-
bilistic MDP into a large scale MDP, it opens doors to use
more scalable methods, in the spirit of approximate dynamic
programming, that have been developed to handle large-scale
MDPs, to approximately solve the probabilistic MDP. This is
an interesting and important issue for future research.
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