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Abstract

The variability of human behavior during plan ex-
ecution poses a difficult challenge for human-robot
teams. In this paper, we use the concepts of theory
of mind to enable robots to account for two sources
of human variability during team operation. When
faced with an unexpected action by a human team-
mate, a robot uses a simulation analysis of differ-
ent hypothetical cognitive models of the human to
identify the most likely cause for the human’s be-
havior. This allows the cognitive robot to account
for variances due to both different knowledge and
beliefs about the world, as well as different pos-
sible paths the human could take with a given set
of knowledge and beliefs. An experiment showed
that cognitive robots equipped with this function-
ality are viewed as both more natural and intelli-
gent teammates, compared to both robots who ei-
ther say nothing when presented with human vari-
ability, and robots who simply point out any dis-
crepancies between the human’s expected, and ac-
tual, behavior. Overall, this analysis leads to an
effective, general approach for determining what
thought process is leading to a human’s actions.

1 Introduction

Our goal is to build shoulder-to-shoulder human-robot sys-
tems that operate in open, real-world environments. One
of the main challenges in designing robots for human-robot
teams, however, is the variability of human behavior. For ex-
ample, during plan execution a human may forget the next
step, misremember what to do next, or even purposefully
modify the plan. This variability challenges the robot to rec-
oncile what the human is doing with the team’s overall goals;
meeting this challenge is considered a core component of suc-
cessful, natural collaboration [Grosz and Hunsberger, 2006].

To illustrate, consider a scenario where a human and a
robot are working together to patrol warehouses. When they
are ready to move to the next warehouse, the human moves
in an unexpected direction. The robot could say nothing and
implicitly trust the human, but in situations where the human
is making a mistake (e.g., they forgot where they were go-
ing to next), this could lead to the team acting inefficiently

or committing an error. The robot could question any unex-
pected move by the human, but this could lead to irritation on
the human’s part, since many times the human will be behav-
ing purposefully. As an alternative to these two options, we
believe teamwork is most effective when, if there is a reason-
able likelihood that the human is making a mistake or acting
inappropriately, the robot says something; otherwise, it can
let the human continue as is.

In order for this informed middle ground to occur, the robot
must understand the thought process that leads to another’s
action or goal. It follows that we base our approach on the no-
tion of theory of mind (ToM), or the ability to infer the beliefs,
desires and intentions of others. Research in psychology has
shown that without ToM, people can be severely impaired in
their abilities to interact naturally with others [Baron-Cohen
et al., 1985], much as we argue that accounting for human
variability is a critical component to teamwork.

The goal of this work is to develop a flexible, intelligent
way for robots to use ToM to account for human variability
during team operation. Our approach simulates what human
teammates may be thinking by executing cognitive models of
them, which is a widely-used way to understand others from
both computational and psychological points of view [Gallese
and Goldman, 1998; Kennedy et al., 2009; Hiatt and Trafton,
2010]. Such cognitive models are cognitively plausible and
capture the core processes that people undergo as they solve
problems and perform tasks.

We extend the simulated execution of models in two ways
in order to make it possible to consider a wide range of vari-
ances. First, we run simulations of multiple hypothetical
models which differ in their knowledge about the world or
have different immediate goals. Second, we consider all pos-
sible paths a model may take during simulated execution, and
calculate the probability that execution follows each branch;
this accounts for different possible paths the human could
take with a given set of beliefs and knowledge. Overall, the
analysis leads to an effective, general approach for determin-
ing what thought process is leading to a human’s actions, al-
lowing their robotic teammates to be as intelligent as possible.

2 Related Work

Work in plan recognition (e.g., [Johansson and Suzic, 2005])
has had some success in observing human actions to infer
their plan. These approaches in general are somewhat limited,
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however, since they typically do not provide for cases where
the human and robot have different beliefs about the world.
Others have modeled theory of mind in terms of Markov ran-
dom fields [Butterfield et al., 2009], allowing for uncertainty
in what another’s beliefs are.

A cognitively plausible approach for theory of mind is in-
troduced in [Hiatt and Trafton, 2010]. In it, a cognitive model
infers what another knows by remembering whether or not
someone was present when they heard about a belief. The
other’s identified beliefs are then the basis for a cognitive sim-
ulation [Kennedy et al., 2009] to predict the other’s behavior.

[Breazeal et al., 2009] developed an architecture that uses
both top-down and bottom-up processing to infer another’s
beliefs and intentions. They employ a belief maintenance sys-
tem which tracks a human partner’s beliefs, and they assume
that it is possible to know another’s beliefs about the world
solely via observation.

Although the above two approaches provide useful infor-
mation for theory of mind, they are limited due to some strict
assumptions: e.g., that an agent can know exactly what an-
other knows by observing them, and that inconsistencies in
predicted versus observed behavior arise solely from differ-
ences in beliefs about the world. This work mainly attempts
to address the assumption that variances in human behav-
ior arise solely from differences in beliefs about the world,
as such assumptions are very limiting in real-world, human-
robot teamwork scenarios. For example, the human agent
may forget something that they and the robot learned together.
Or, the human agent may hold the same beliefs about the
world but have a side goal of which the robot is unaware.

3 Robot Architecture

We use the cognitive architecture ACT-R, a hybrid
symbolic/sub-symbolic production-based system [Anderson,
2007], as the basis for our robotic architecture and our cog-
nitive models of humans. ACT-R consists of a number of
modules, buffers and a central pattern matcher; its embodied
configuration, ACT-R/E, is used on robotic (and simulated
robotic) agents (Figure 1) [Trafton et al., 2009]. Modules
contain a fairly specific cognitive faculty typically associated
with a particular region of the brain; for example, the inten-
tional module handles goal management, and the declarative
module manages memories. Each module has one or more
buffers that communicate directly with it as an interface to
the rest of ACT-R; e.g., the retrieval buffer works with the
declarative module to handle the access of memories.

At any point in time, there is at most one symbolic item,
or chunk, in any individual buffer; a module’s job is to de-
cide when to put chunks into its buffer(s). Chunks represent
knowledge or memories related to any of the modules, can be
learned during execution, and, in addition to symbolic infor-
mation, contain subsymbolic information (e.g., activation).

When retrieving chunks from memory via the retrieval
buffer, if more than one chunk exactly matches the retrieval
request, the one with the highest total activation (based on
recency and frequency of chunk access) is selected. Ran-
dom noise, present in human models but not in robotic mod-
els, can also affect chunks’ total activations, making chuck

Figure 1: The embodied ACT-R architecture.
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Figure 2: A sample ACT-R production. This production can
fire when the goal is of type patrol-goal, the current room is A
(in building 1) and the next room is B; it attempts to retrieve
a memory chunk of what building room B is in.

retrieval non-deterministic; the noise for a candidate chunk
during a retrieval request is drawn from a logistic distribution
with mean 0 and standard deviation the model parameter σc.

The pattern matcher uses the contents of the buffers, if any,
to match specific productions which, when fired, can modify
the current contents of the buffers. A sample production is
shown in Figure 2. If more than one production can fire at
any given time, the one with the highest expected utility is
fired; a production’s expected utility can be initially set and
adjusted via a reinforcement learning process. Random noise
(according to the model parameter σp) can also affect produc-
tion selection, again leading to non-determinism.

ACT-R interfaces with the world through the visual, motor,
vocal and aural modules. While developing our approach, we
used the robotic simulation environment Stage [Collett et al.,
2005] as the model’s “world.” It provides object locations to
the visual module, and accepts motor commands for the simu-
lated robot. Natural language understanding uses the Sphinx
speech recognizer [Lee et al., 1990] with the Agent Devel-
opment Environment facilitating integration [Scheutz, 2006].
Speech output is done via Apple’s speech synthesis tool “say.”

4 Approach

Our goal is to enable teams of humans and robots to fully
function in the real-world. This stresses the importance of
understanding human variability during execution; e.g., the
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importance for a robot to understand a human teammate’s ac-
tions even if they do not exactly reflect the team plan.

We base our approach on the concept of theory of mind, or
the ability to infer and understand the beliefs, desires, and in-
tentions of others. That is, when faced with an instance of hu-
man variability (e.g., an unexpected action by a human team-
mate), a robot tries to identify what different beliefs, desires
or intentions the human teammate has that is leading to their
different behavior. It uses cognitive models as its tool. Cog-
nitive models capture the core processes that people undergo
as they solve problems and perform tasks; they are grounded
in actual experimental data of human behavior. Therefore, by
using cognitive models as the basis of its concept of theory of
mind, a robot has a much richer insight into its human team-
mates. We first describe the approach at a high level; then,
Sections 4.1 and 4.2 go into further detail.

We account for two possible sources of variability when
trying to explain a human teammate’s behavior. The first is
at the model level (e.g., within a single model for the human
agent). Model execution is not deterministic; as mentioned
earlier (Section 3), execution can differ in what memories are
retrieved in response to a request, as well as what productions
fire at any given time. Our approach analyzes the simulation
to see what different paths the execution of a model might
take, assigning each path a probability. We refer to this pro-
cess as probabilistic simulation analysis. With this informa-
tion it is possible to find the total probability that model exe-
cution results in the human’s observed behavior, or the most
likely execution path that matches the human’s actions.

A second level of variance involves different hypothetical
cognitive models. Some differences between models that may
lead to differing behavior are:

• Different knowledge or beliefs about the world (such as
the belief that an item is in a different location, or the
knowledge that a task has already been completed)

• A different, acceptable subgoal (such as stopping for wa-
ter before continuing to patrol)

• Different parameterizations for activation equations for
knowledge (such as a good, or a bad, memory)

• Different parameterizations for utility functions for pro-
duction rules (such as preferring to go left instead of
right around an obstacle)

Our current work focuses on differences in knowledge or be-
liefs about the world, and on different subgoals.

During execution, there are two triggers for our analysis.
The first is if the robot directly observes the human perform-
ing, or stating they intend to perform, an unexpected action.
An example is if the robot believes that the team should be
walking west, but the human starts walking north. The second
trigger applies to cases where direct line-of-sight is not avail-
able and the human is expected to be traveling. We integrate
in a model of how long it takes to travel between two points
[Kennedy and Trafton, under review] to allow the robot to
predict, for example, whether the human deviated from plan
while patrolling down a hallway out of sight of the robot.

When an unexpected action occurs or the human is tak-
ing longer than predicted, the agent performs a probabilistic

simulation analysis to try to find out what the human is think-
ing. The agent uses its own ACT-R model with random noise
added in as the human’s model (see Section 4). The spawned
simulation therefore includes all of the robot model’s produc-
tions and chunks, including subsymbolic information.

Ultimately, the simulation returns the possible execution
paths of the model, if any, that lead to the human’s observed
action, and the probability that each path will be taken. If no
path of the simulation is likely to lead to the observed action,
the agent can create different hypothetical models for the hu-
man and perform a probabilistic simulation analysis on them
to discern what model differences are most likely to lead to
the human’s observed behavior. Once a likely difference is
found by either of these two methods, the robot can commu-
nicate to the human its understanding of the situation with the
goal of reconciling the teammates’ intentions (e.g., “oh, you
want to to go by the office to get your walkie-talkie,” or, “you
forgot, our orders were changed and now we go west next”).
Otherwise, if no model is likely to lead to the observed behav-
ior, the robot defaults to asking the human what it is doing.

In the next two sections, we discuss our approach in more
detail. We first discuss how we perform the probabilistic sim-
ulation analysis. Then, we discuss the details of how the dif-
ferent hypothetical models can be generated.

4.1 Probabilistic Simulation Analysis

Our approach depends on a simulation analysis which ana-
lyzes hypothetical models of human teammates. Instead of
simply executing a hypothetical model from start to finish, as
ACT-R is designed to do, we modify the structure of execu-
tion to consider all possible execution paths that could occur,
as well as each path’s associated probability. The analysis oc-
curs in parallel to the execution of the cognitive model con-
trolling the robot. By structuring things in this way, we per-
form a fairly complicated analysis with minimal additional
architectural overhead, an additional benefit of our approach.

There are two classes of branch points during execution:
when there is more than one chunk matching to a memory
retrieval request, or when there is more than one production
that can fire at any given time. At these branch points, the
analysis calculates the probability of each branch being fol-
lowed. Then, the first branch is followed; the others are saved
and are explored after the first finishes. Ultimately, all pos-
sible branches are explored, and all possible paths (i.e., what
productions were fired and what chunks were retrieved) along
with their associated probabilities are returned (Figure 3).

The probability that any given branch will be followed is
straightforward to calculate; we use in our analysis the same
calculations that are used internally in ACT-R. The probabil-
ity of a chunk i being retrieved is approximately [Anderson
and Lebiere, 1998]:

P (i) =
eAi/t

∑
j e

Aj/t

The variable Ai is the total activation of chunk i,
∑

j iterates
over the set of chunks that exactly match the memory retrieval
request (including i), and t equals

√
6 · σc/π, where σc is the

standard deviation of the random activation noise.
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Figure 3: A model probabilistic simulation trace. Outlined
boxes indicate productions fired and filled boxes indicate
chunks retrieved. There are two branch points during the ex-
ecution of this model: one after the first production is fired,
and one after chunk r2b is retrieved. Overall, the probably of
this model leading to the observed behavior is 82%.

Similarly, the probability of a production m firing is:

P (m) =
eEm/t

∑
n e

En/t

Only, here, Em is the expected utility of production m,
∑

n
iterates over the set of productions that match the current state
of the buffers (including m), and t equals

√
6 · σp/π, where

σp is the standard deviation of the random utility noise.

4.2 Generating Different Hypothetical Models

In complex, teamwork scenarios, a robot can not always as-
sume that its human teammate has beliefs and knowledge
identical to its own, just like a human teammate would not
assume that her teammate has identical beliefs and knowl-
edge to her. In addition to analyzing single models for possi-
ble variances, therefore, we also analyze hypothetical models
of the human teammate, which differ in what knowledge and
beliefs they have about the world or in their immediate sub-
goals, to see if they could explain possible variances.

A priori, a robot has no way of generating hypothetical
models. When it observes behavior differences that a sim-
ulation analysis of its own model does not explain, it defaults
to ask the human why he is doing what he is doing. The robot
remembers the human’s answer and, the next time it is per-
forming this task and the human does something unexpected,
it includes a check to see if the newly learned difference leads
to the human’s observed behavior. For example, imagine that
during a patrol the human started to walk in an unexpected di-
rection. When asked, the human states that he is going to get
new batteries for his flashlight. The robot marks the accept-
able subgoal of getting new batteries as a possible cause of a
behavior difference and adds a representation of that differ-
ence to its declarative memory; then, next time this situation
arises, the robot has the ability to check to see if getting new
batteries could possibly be what is leading to the human’s un-
expected behavior. For now, we consider all learned subgoals
as valid, and leave the judgement of which subgoals may or
may not be acceptable to future work.

Our use of cognitive models works nicely with the learned
differences in terms of providing a natural prioritization or-
der for hypothetical models. Recall that chunk activation in
declarative memory is based on recency and frequency; a nat-
ural way to prioritize the learned variances, therefore, is to
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Figure 4: Sample dialogue about a human’s unexpected ac-
tion, and the patrol scenario.

sort them by their total activation. This means that recent
variances, and variances which happen often, will be priori-
tized over their older, less-used counterparts. Further, for the
same reasons, if variances have happened with very low fre-
quency and not very recently, they will be forgotten.

Because we are performing theory of mind over short
time scales of seconds and minutes, the branching factor of
our analysis has not caused any computational issues. If
our approach were extended to work in long-term situations,
approximations such as pruning or Monte Carlo methods
[Metropolis and Ulam, 1949] could be used for the simulation
analysis; for hypothetical models, the natural prioritization of
the models would be useful in pruning the search space.

5 Demonstration in Simulation

In simulation, we demonstrated our approach in two different
scenarios: a patrol scenario, and an office meeting scenario.
Both scenarios present two main situations where the human
acts in an unexpected way, providing a total of four theory
of mind opportunities. The models of human behavior for
the two scenarios had an average of 134 chunks and 49 pro-
duction rules. There were an average of 4.25 hypothetical
outcomes considered per analysis.

For the patrol scenario, we assume that the robot has prior
experience patrolling with the human. At the beginning of the
scenario, the robot and human are told to patrol the west area
next, instead of south. After completing the current area, the
human then starts walking towards the security office instead
of to their next patrol area; using our approach, the robot in-
fers that it is because the human had forgotten her radio in
the office, and wished to retrieve it before continuing. It did
this by considering a hypothetical model which contained the
acceptable deviation of the human retrieving her forgotten ra-
dio. It learned about this possible variance during prior pa-
trols with the human, where the human also forgot her radio.

The human next starts walking south; the robot is able to
figure out that the human forgot about the change in orders,
and correct her (Figure 4). This realization derived from a
probabilistic simulation analysis, where chunks representing
the old orders and the new orders were competing for re-
trieval, and the robot recognized that the wrong one might be
retrieved. The meeting scenario has two analogous situations
in which the human acts unexpectedly, one of which involves
the human being late to a meeting and the robot inferring why,
and our approach also works successfully in these cases.

We also demonstrated our approach on a humanoid Mo-
bile, Dexterous, Social (MDS) robot [Breazeal et al., 2008];
this is available as a paper companion video.
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Figure 5: The MDS Robot.
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Figure 6: Sample dialogue about a human’s unexpected ac-
tion for each condition, and the patrol scenario.

6 Experiment and Results

We ran an experiment where we compared our approach with
two alternate ways of accommodating human variability. Hu-
man participants were shown three videos each of the two
different scenarios described above, in which human actors
interacted with a humanoid MDS robot (Figure 5). Each of
the three videos showed a different way to account for the
human’s variability: using the approach described in this pa-
per to perform theory of mind (ToM); simple correction (SC),
where the robot points out the discrepancy between their ac-
tion and the robot’s expected action without reasoning about
what is causing the difference; or blindly following (BF),
where the robot silently goes along with the human’s actions.
Figure 6 shows a sample dialogue for one of the ToM oppor-
tunities in the patrol scenario for each of the three conditions.

We had 35 participants. Participants watched the videos
one scenario at a time. Each participant was assigned the
videos within a scenario to watch in a random order; which
scenario they watched first was also determined randomly.
After watching all three videos for the first scenario, partici-
pants filled out a questionnaire. While doing so, participants
were able to watch any video from the scenario, as well as
a “trailer” version of each video which highlighted its dif-
ferences from the other conditions. This process was then
repeated with the second scenario.

As part of the questionnaire, participants performed both
a ranking (ordered from best to worse) and a Likert rating of
the three videos from that scenario for both the intelligence
and the naturalness of the robot in the video; e.g., “How in-
telligent/natural was the robot in the video?”. Both rankings
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Figure 7: Rankings for the three conditions, where 3 is best.
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Figure 8: Ratings for the three conditions, where 7 is best.

and ratings are ordinal data, so nonparametric statistics were
used throughout. Participant scores for rankings and ratings
for both scenarios were averaged together.

6.1 Ranking and Rating Results

As Figure 7 suggests, participants found the robot’s
behavior to differ in both intelligence, Kruskal-Wallis
χ2(2, N = 35) = 86.1, p < 0.05 and naturalness, Kruskal-
Wallis χ2(2, N = 35) = 59.8, p < 0.05 across the condi-
tions. These omnibus statistics show a statistically significant
difference between conditions, but it does not show which
conditions are different from each other. With respect to pair-
wise differences, the Steel-Dwass posthoc pairwise statistic
showed that all three conditions were statistically different
from each other for both perceived intelligence (all ps < .05)
and perceived naturalness of the interactions (all ps < .05).

The results were similar for participant’s ratings of in-
telligence and naturalness (Figure 8), and statistical signifi-
cance was also found between the conditions (intelligence:
χ2(2, N = 35) = 66.7, p < 0.05, all ps < .05; naturalness:
χ2(2, N = 35) = 44.5, p < 0.05, all ps < .05).

These results suggest that people found the ToM robot
more intelligent and natural than either a robot that provides
a simple correction or simply follows and trusts the human.
This finding held both in a relative sense and in an absolute
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sense, where the ToM robot was perceived as very intelligent
and natural, and above the mid-point of 4 on a 7-point scale.

7 Conclusions and Future Work

In this paper, we describe a system based on the notion of
theory of mind which can account for human variability dur-
ing teamwork. A robot with ToM is able to infer and under-
stand the beliefs, desires and intentions of others; by bring-
ing this functionality to human-robot teamwork situations, a
robot can understand why a human partner would act differ-
ently than expected, and act as a more effective teammate.

To accomplish this, a robotic teammate analyzes different
cognitive models of human partners. It accounts for variabil-
ity within the execution of a single model (e.g., exploring
different possible paths the human could take with a given
set of beliefs), and variability that occurs from the execution
of different models (e.g., exploring different possible beliefs
the human could have). If an execution path is found that is
likely to lead to the human’s unexpected behavior, the robot
can say something to the human, if desired, demonstrating
understanding of the human’s unexpected actions and ensur-
ing team cohesiveness. Experiments have shown that robots
who do this are viewed as both more intelligent and more nat-
ural than robots who either: (1) follow the human teammate
around, ignoring all variances; or (2) point out the discrep-
ancy between the human’s action and the expected one with-
out reasoning about the difference’s cause.

One step for the future is to assign person-specific prob-
abilities to generated hypothetical models, instead of solely
ranking them by the activation of their associated learned
variances. For example, if one human partner has a par-
ticularly bad memory, the robot may boost the likelihood
that a “forgetful” hypothetical model explains the human’s
variance. Similar adjustments could be made for variances
caused by a human consistently favoring different produc-
tions than the robotic agent. This would combine very nicely
with including in different parameters activation equations
for knowledge, or utility functions for production rules, when
generating different hypothetical models.
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