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Abstract

We focus on recovering the 2D Euclidean structure
in one view from the projections of N parallel con-
ics in this paper. This work denotes that the conic
dual to the absolute points is the general form of the
conic dual to the circular points, but it does not en-
code the Euclidean structure. Therefore, we have
to recover the circular point-envelope to find out
some useful information about the Euclidean struc-
ture, which relies on the fact that the line at infinity
and the symmetric axis can be recovered. We pro-
vide a solution to recover the two lines and deduce
the constraints for recovering the conic dual to the
circular points, then apply them on the camera cal-
ibration. Our work relaxes the problem conditions
and gives a more general framework than the past.
Experiments with simulated and real data are car-
ried out to show the validity of the proposed algo-
rithm. Especially, our method is applied in the en-
doscope operation to calibrate the camera for track-
ing the surgical tools, that is the main interest-point
we pay attention to.

1 Introduction

In the domain of computer vision, conics are considered as
one of the important image features similar to points and
lines. Recently, the planar conics-based camera calibration
has been widely investigated in some computer vision liter-
atures of the reference-list. However, the Euclidean struc-
tures can be recovered through the projections of circles or
ellipses on the image plane. The identifications of the ab-
solute conic (AC) are the keys to recovering the Euclidean
structures. In camera calibration, the imaged circular points
(ICPs) are computed and used to deduce the constraints of
the imaged absolute conic (IAC). Meng and Hu [Men et al.,
2003] applied a calibration pattern that is made up of a cir-
cle and a set of lines passing through its center and computed
the vanishing line and its intersection with the projected cir-
cle. Wu et al. [Wu et al., 2004], in their turn, proposed a
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quasi-affine invariance of two parallel circles for recovering
the ICPs. Gurdjos et al. [Gurdjos et al., 2006] extended Wu’s
works and analyzed the algebraic properties of N ≥ 2 par-
allel circles through the generalized eigenvalues of arbitrary
two circles in them. Kim et al. [Kim et al., 2005] just focused
on the projected concentric circles and gave the Rank-2 con-
straint for deducing the projected conic dual to the circular
points (CDCP) which consists of the two ICPs. Gurdjos and
Kim [Gurdjos et al., 2005] then proposed how to recover the
Euclidean structure from confocal conics in the same way.
More generally, the principal-axes aligned (PAA) conics pro-
vide enough constraints to recover the IAC, which are deeply
investigated and discussed in Ying’s paper [Ying and Zha,
2007].

The past works mainly focus on the researches under some
special conditions, for example, all conics are circles, or con-
ics have all principal axes aligned. In this paper, we investi-
gate the problem of recovering the Euclidean structure from
the projections of the N arbitrary conics under a more gen-
eral condition. Consider a set of N ≥ 2 parallel conics, and a
distinct pair of conics (C1,C2) in it. A linear family of pro-

jected conics is described as C̃(λ̃) = C̃1 − λ̃C̃2. It includes
three members called degenerate conics consisting of line-
pairs [Gurdjos et al., 2006] corresponding to the generalized

eigenvalues of (C̃1, C̃2). Without any constraints, no use-
ful information about the Euclidean structure can be deduced
from the degenerate conics. Only if (C1,C2) have at least
one common axis of symmetry [Wong et al., 2003], one of the
three degenerate conics can deduce the image of the symmet-
ric axis. However, this is not enough to recover the Euclidean
structure that we only know the symmetric axis. The key
problem is how to recover the line at infinity. Based on the
degenerate conics or some geometric properties of (C1,C2),
it is possible to determine the line at infinity, and then the
circular point-envelope can be recovered. With it, the planar
homography and the IAC can all be computed correspond-
ingly. In this paper, we will give a more general framework
on the problems of planar conics, which relaxes the prob-
lem conditions of the research works in [Gurdjos et al., 2006;
Ying and Zha, 2007].

This paper is organized as follows: Section 2 briefly intro-
duces some notations and basic equations. In Section 3, the
geometric and algebraic properties of the conics with a com-
mon axis of symmetry are introduced, about the symmetric
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axis, the line at infinity and the degenerate conics. Two differ-
ent conditions of camera calibration are proposed in Section
4. The results of synthetic and real experiments are shown
in Section 5. Finally, Section 6 presents some concluding re-
marks.

2 Notations And Basic Equations

2.1 Pinhole Camera Model

Let M = (X,Y, Z, 1)T be the 3D homogeneous coordinates
of a world point M , and m̃ = (u, v, 1)T be the homogeneous
coordinates of its projection in the image plane. M and m̃ are
related by the following equation in the pinhole model:

zMm̃ = K [R t]M with K =

[
fu s u0

0 fv v0
0 0 1

]
, (1)

where zM is a scale factor (projection depth of M); K is the
camera intrinsic matrix, with the focal length (fu, fv), the
principal point (u0, v0) and the skew factor s; [R t] is the
camera extrinsic matrix, that is the rotation and translation
from the world frame to the camera frame; P = K [R t] is
referred to the camera projection matrix. If we assume that
the world space is restricted to its x-y plane, the world-to-
image homography will then be expressed as:

H = K [r1 r2 t] ,

where r1, r2 are the first two columns of R.

2.2 The Equations of Conics’ Images

Any conic can be converted to another conic by some projec-
tive transformations. In the paper, we only focus on the cases
of closed conics (circles and ellipses). If the world space’s x-
y plane is restricted to the conic’s supporting plane, the conic
has the following form:

A(x−X0)
2 +B(y − Y0)

2 = 1, (2)

and its form in matrix is

C =

⎡
⎣ A 0 −AX0

0 B −BY0

−AX0 −BY0 AX2
0 +BY 2

0 − 1

⎤
⎦ , (3)

with the center of conic (X0, Y0). In the image plane, the
corresponding projected conic under H is of the form

C̃ = αH−T CH−1, (4)

with α is an unknown scale.

3 Properties of Two Conics With A Common

Axis of Symmetry

Suppose there are two central conics C1, C2 with a common
axis of symmetry ls in the same plane. Generally, we assign
the origin of the world space to the center of C1 and the x-axis
to line ls; C2 is centered at point (d, 0), with d > 0. Then C1,
C2 have the Euclidean representation in matrices

C1 =

[
A1 0 0
0 B1 0
0 0 −1

]
,C2 =

⎡
⎣ A2 0 −A2d

0 B2 0
−A2d 0 A2d

2 − 1

⎤
⎦ .

(5)

Figure 1: Two conics C1 and C2 have a common axis of sym-
metry ls. The line at infinity l∞ intersects the x-axis and y-
axis with the point vx and vy .

Without loss of generality, we set A1 = 1 to simplify the

description. And C̃1, C̃2 are denoted as the images of the two
conics.

3.1 The Generalized Eigenvalues and Eigenvectors

of (C̃1, C̃2)

Let (λ̃, Ṽ) resp. (λ,V) denote the vector of generalized
eigenvalues and the matrix of generalized eigenvectors of

(C̃1, C̃2) resp. (C1,C2). The vector of generalized eigen-

values λ̃ has the following linear relationship with λ up to a
scale factor β (computed by MAPLE):

λ̃ ∼ λ =

[
λ1

λ2

λ3

]
=

⎡
⎢⎢⎢⎣
(

1+A2−A2d
2
+
√
Π

2

)
(

1+A2−A2d
2−
√
Π

2

)
(

A2B1

B2

)
⎤
⎥⎥⎥⎦ , (6)

where Π = p1p2p3p4, p1 = 1 +
√
A2 +

√
A2d, p2 = 1 +√

A2−
√
A2d, p3 = 1−√

A2+
√
A2d, p4 = 1−√

A2−
√
A2d.

The generalized eigenvector ṽy corresponding to the general-

ized eigenvalue λ̃3 = βλ3 is the vanishing point of y-axis.
After getting the vanishing point ṽy , the image of the sym-
metric axis ls can be computed by the following formulation

l̃s = C̃iṽy, (i = 1, 2). (7)

If the eccentricities e1, e1 of C1 and C2 are known, the

scale factor β can be computed according to λ̃3 in (6). From

the eigenvalues of λ̃, the parameter d can also be determined
by the following equation:

d =

√
(λ̃1 − β)(λ̃2 − β)

λ̃1λ̃2

. (8)

Now, we discuss how to order the generalized eigenvalues

of λ̃. Since λ̃1, λ̃2 are a pair of symmetric values, it is not
necessary to distinguish their differences. Therefore, what we

have to do is just finding which is λ̃3. Actually, it has some-

thing to do with the degenerate conic members of (C̃1, C̃2),

and only the degenerate conic with the parameter λ̃3 consists
of two real lines. A degenerate conic consists of which kind
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of lines, this depends on the absolute signature [Gurdjos et
al., 2006] of it. If the absolute signature is equal or less than

1, then the conic’s corresponding parameter is λ̃3.

3.2 The Degenerate Conics of (C̃1, C̃2)

In the three degenerate conics of (C̃1, C̃2), the one with pa-

rameter λ̃3 is very helpful for recovering the line at infinity.
It is described in the following form

C̃(λ̃3) ∼ H−T

⎡
⎣1−

A2B1

B2

A2B1d
B2

0
A2B1d

B2

B1−B2−B1A2d
2

B2

⎤
⎦H−1.

(9)
Actually, if d = 0, it becomes the work described in [Ying

and Zha, 2007], so this case will not be discussed. If d �= 0,
we will discuss the problem under two conditions: e1 = e2
or not. When e1 �= e2, C̃(λ̃3) consists of the images of two
parallel lines perpendicular to the symmetric axis ls, and each
of them is through a pair of conjugate intersection points of

(C̃1, C̃2) respectively. It is not enough to establish the con-
straints of the line at infinity by just knowing this. There-
fore, some additional constraints are introduced, which will
be given in Section 3.3.

When e1 = e2, we have C̃(λ̃3) ∼ l̃∞ξ̃
T
+ ξ̃̃l

T

∞, where l̃∞
is the projected line at infinity, and

ξ̃ ∼ H−T ξ = H−T

⎡
⎣ 2d

0
A2 − 1− d2

⎤
⎦ . (10)

The line ξ passes through a pair of conjugate intersection
points of C1,C2. Obviously, the line ξ is called the radical
line, if C1 and C2 are two circles. The other pair of conjugate
intersection points are the absolute points IA and JA, and they
have the standard form [Ying and Zha, 2007]:

IA = [1,
√
e2 − 1, 0]T ,

JA = [1,−
√
e2 − 1, 0]T ,

where e is the eccentricity. The projected absolute points ĨA
and J̃A lie on the vanishing line l̃∞.

To distinguish l̃∞ and ξ̃, we firstly observe the general-

ized eigenvectors of (C̃1, C̃2) corresponding to the general-

ized eigenvalues λ̃1, λ̃2. They have the following form:

λ̃1 : ṽ1 ∼ H

⎡
⎣A2−1+A2d

2
+
√
Π

2A2d

0
1

⎤
⎦ , (11)

λ̃2 : ṽ2 ∼ H

⎡
⎣A2−1+A2d

2−√Π

2A2d

0
1

⎤
⎦ . (12)

We notice that the two image points ṽ1, ṽ2 are located at both

sides of ξ̃ or on it, but at the same side of l̃∞. Therefore,

based on the positions of ṽ1, ṽ2, the vanishing line l̃∞ can be
determined by the same way as described in [Gurdjos et al.,
2006].

The other two degenerate conics are denoted by C̃(λ̃i)(i =
1, 2); each of them consists of a pair of conjugate complex

lines. One of the two lines is through the point ĨA and ṽi,

denoted by ũ1 + iũ2; the other is through the point J̃A and
ṽi, denoted by ũ1 − iũ2. When C1 and C2 are circles, these
complex lines are called the isotropic line.

3.3 The Vanishing Point of ls and The Line at
Infinity l∞

As shown in Fig.1, C1 intersects ls with point a1 and a2, C2

intersects ls with point a3 and a4. The corresponding images
of 4 intersection points are respectively ã1, ã2, ã3, ã4, which

can be determined in close form according to C̃1, C̃2 and l̃s.
The vanishing point of x-axis, ṽx, can then be related with
ã1, ã2, ã3, ã4 in the cross-ratio equations

Cross(ã1, ã3, ã4, ṽx) = −p4
p1

, (13)

Cross(ã2, ã3, ã4, ṽx) = −p2
p3

. (14)

And p4/p1, and p2/p3 can be represented in λ̃:

p4
p1

=
1−

√
λ̃1λ̃2/|β| −

√
(λ̃1 − β)(λ̃2 − β)/|β|

1 +
√

λ̃1λ̃2/|β|+
√
(λ̃1 − β)(λ̃2 − β)/|β|

, (15)

p2
p3

=
1 +

√
λ̃1λ̃2/|β| −

√
(λ̃1 − β)(λ̃2 − β)/|β|

1−
√
λ̃1λ̃2/|β|+

√
(λ̃1 − β)(λ̃2 − β)/|β|

. (16)

According to the equations (13,14,15,16), the image point ṽx
can be solved in the closed-form. After getting ṽx, we can

compute the image of the line at infinity, l̃∞, by the following
equation

l̃∞ = ṽx × ṽy. (17)

3.4 The Conic Dual to The Absolute Points

After recovering the line at infinity, the conic dual to the ab-
solute points C∗∞ can also be identified, which is a degenerate
line conic (rank 1 or 2). In the Euclidean coordinate system,
it has the following form [Ying and Zha, 2007]:

C∗∞ = IAJTA + JAITA =

⎡
⎣1 1− e2

0

⎤
⎦ . (18)

Proposition 1 Under any projective transformation H, l∞ is

the null vector of C∗∞, so C̃
∗
∞ l̃∞ = 0.

Proof. The absolute points are defined on the line l∞, so

ITAl∞ = JT
Al∞ = 0. Therefore,

C̃
∗
∞ l̃∞ = H(IAJT

A + JAITA)H
T H−T l∞

= H(IA(J
T
Al∞) + JA(I

T
Al∞)) = 0.

Proposition 2 Under any projective transformation H, the
line passing through the absolute point IA (or JA) and one
real finite point, lies on C∗∞. If the line is denoted by w̃1±iw̃2,
then we have the following constraints:
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w̃T
1 C̃

∗
∞w̃2 = 0, w̃T

1 C̃
∗
∞w̃1 − w̃T

2 C̃
∗
∞w̃2 = 0. (19)

From [Ying and Zha, 2007], we also know that the dual conic
C∗∞ is fixed under a scale and translation transformation.

Proposition 3 Once the conic C∗∞ is identified on the projec-
tive plane then projective distortion may be rectified up to an
affinity. The two scaling parameters [Hartley and Zisserman,
2003] of the affinity are related with parameter e. Their ratio
is equal to 1√

|e2−1| .

Actually, a rectifying homography U can be computed from

the SVD-like decomposition of C̃
∗
∞:

C̃
∗
∞ = U

[
1

1
0

]
UT ,

and it satisfies U ∼ H up to an affinity A. The matrix A is
described as the following form:

A =

[
Q t

0T 1

]
,

where Q is 2 × 2 non-singular matrix, and it can be decom-

posed as Q = Ldiag(s1, s2)N
T from the SVD. s1 and s2 are

the scaling parameters of the affinity A. The ratio of them
s1 : s2 is equal to 1√

|e2−1| . With knowing the parameter e,

there are only 4 d.o.f in the matrix U. If e = 0, then the
affinity A degenerates to a similarity S.

C∗∞ is a set of conics with parameter e. If e = 0, the
degenerate conic is called the conic dual to the circular points,

denoted by C̃
∗0
∞ under a projective transformation H, which

encodes the Euclidean structure in 2D projective space. It
satisfies the following constraints:

C̃
∗0
∞ l̃∞ = 0, (20)

x̃
T
1 C̃

∗0
∞ l̃s = 0, x̃

T
2 C̃

∗0
∞ l̃s = 0, (21)

ũ
T
1 C̃

∗0
∞ũ2 = 0, ũ

T
1 C̃

∗0
∞ũ1 − 1

|e2 − 1| ũ
T
2 C̃

∗0
∞ũ2 = 0 (22)

where x̃1 = ṽy × õ1, x̃2 = ṽy × õ2; the image of conic center
õi(i = 1, 2) can be determined easily according to the the

pole-polar relationship between l̃∞ and C̃1, C̃2 [Hartley and
Zisserman, 2003].

4 Calibration Algorithm

4.1 Calibration with The Central Conics e1 = e2
Assume that the eccentricities of C1 and C2 are equal, we can

computed the scale factor β in λ̃3. Having the scale factor β,

we can determine ṽy and l̃s according to equation (6,7). Then

the degenerate conic C̃(λ̃3) is determined. From a SVD-like

decomposition of it, the projected line at infinity l̃∞ is recov-
ered. Based on the constraints of (20,21,22), the conic dual
to the circular points is recovered. A rectifying homography
matrix U can be computed from the SVD-like decomposition

C̃
∗0
∞ = Udiag(1, 1, 0)UT , where U ∼ HS for a similarity S.

After performing the rectification, we can get the real homog-
raphy H = [h1 h2 h3], and the constraints for calibration

hT
1 ωh2 = 0, (23)

hT
1 ωh1 = hT

2 ωh2, (24)

where ω = K−T K−1 is the IAC. At least three images of the
calibration object are needed to calibrate the camera’s intrin-
sic parameters.

4.2 Calibration with The Central Conics e1 �= e2
Assume that the eccentricities of C1 and C2 are all known and
e1 �= e2, we can computed the scale factor β in λ̃3 and the
vector ṽy . Thus ṽx is computed from equation (13,14,15,16).

Then ṽx and ṽy can determine the vanishing line l̃∞. We can
obtain the images of the absolute points of conic (C1,C2)

by intersecting l̃∞ and (C̃1, C̃2). It is easy to find the lines
through them and the conics’ centers. According to the equa-

tion (20,21,22), we can get C̃
∗0
∞. Then the homography H can

be easily recovered, which deduces the same constraints as
the equation (23,24).

5 Experiments

We performed a number of experiments, both simulated and
real, to assess our algorithm with respect to noise sensitivity
and test its validity in the endoscope operation.

5.1 Simulated Data

The simulated camera has the following parameters: fu =
fv = 900, u0 = 512, v0 = 384, and s = 0. The resolution
of the simulated image is 1024 × 768. A simulated pattern
consisting of a circle and an ellipse is applied to test our al-
gorithm. The axis of symmetry coincides with the ellipse’s
major axis and the circle’s diameter. Twenty synthetic images
are captured, and Gausian noise of zero mean and σ standard
deviation is added to the pixel coordinates. Varying the noise
level σ from 0 to 1.5 pixels, we performed a series of tests
to investigate the influence of the noise on determining the
camera intrinsic parameters (s is constrained to 0). The esti-
mated camera parameters (fu, fv, u0, v0) are compared with
the ground truth, and the relative errors are computed. As
shown in Fig.2, the relative errors of each camera parameters
increase almost linearly with the noise level.

5.2 Endoscope Operation

In the computer aided surgery, the tool tracking of the en-
doscope operation is a hot research point. Before and in
the process of tracking, it is necessary to calibrate the en-
doscope’s intrinsic and extrinsic parameters. Zhang’s calibra-
tion method [Zhang, 2000] has a very mature algorithm, but it
is not suitable for utilizing in the endoscope operation of cav-
ity. Some special methods for the calibration of endoscope
(for example, [Yamagushi et al., 2004]) also have this kind of
problems. The calibration process then can not be integrated
into the mid-part of the operation process. The reason is that
the calibration object can not be combined with the operation
tool easily. We are in great need of a suitable calibration ob-
ject, which can be put into the body cavity and lead to the
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Figure 2: Relative errors of the focal length (fu, fv) and the
principal point (u0, v0) under 16 different noise levels.

intracavity calibration. Therefore, we do some research on
the conics with a common axis of symmetry. Our purpose is
trying to apply the new calibration object in the endoscope
operation. A simulated endoscope operation experiment is
performed to test the new algorithm. The experiment setup is
shown in Fig.3(a). A pair of tools are put into a fake cavity,
and one of them is marked with three conics, the tool’s axis is
also the symmetric axis of conics. The calibrated endoscope
is moving and tracking the tool’s position. If the initial pose
of tracking is missing, we will estimate the tool’s pose ac-
cording to the algorithm in this paper. The estimated tool po-
sitions in the tracking are shown in Fig.3(b), where the white
lines denote the tool’s direction axis and position. From the
images of Fig.3(b), we can see that the estimation results are
good enough for the tracking.

5.3 Real Images

To fully evaluate our camera calibration algorithm, we also
carried out an experiment on real images. We utilized a
pattern consisting of two ellipses and a circle as the cali-
bration object. By using a Point Grey FLEA2 camera, we
took some images of the calibration object at different views.
Some sample images are shown in Fig.4(a). The resolution of
these images is 1024 × 768. Edges were extracted by using
Canny’s edge detector (Fig.4(b)) and the ellipses (Fig.4(c))
were obtained by using a least squares ellipse-fitting algo-
rithm [Fitzgibbon et al., 1999]. The calibration results of real
experiment are listed in Table.1 (s is constrained to 0), where
the result from Zhang’s method [Zhang, 2000] is taken as the
ground truth.

From Table.1, it can be seen that the calibration results of
our calibration method are near to those of Zhang’s [Zhang,
2000] calibration method. Although our approach is not bet-
ter than Zhang’s in the real data experiment, it is still compa-
rable to Zhang’s, and can be considered as a direction to the
research on camera calibration.

(a)
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Figure 3: (a) The endoscope operation experiment. (b) The
experiment results of the tool tracking.

6 Conclusions

We discussed the geometric and algebraic properties of the
projected central conics with a common axis of symmetry
in this paper. According to the properties of conics via the
generalized eigen decomposition, the image of the symmet-
ric axis can be obtained. After solving the images of the con-
ics’ centers, the vanishing line is computed. Then the 2D
Euclidean structure is recovered, and the constraints of IAC
are deduced which are suitable for the central conics’ calibra-
tion. Extensive experiments on simulated and real data were
performed, and very satisfactory results were obtained. The
experiment results show that our calibration technique is ac-
curate and robust.

Acknowledgments

The author would like to thank Sandrine Voros and Philippe
Cinquin for their technical supports.

2083



Method fu fv u0 v0
Zhang’s[Zhang, 2000] 896.32 892.56 520.78 385.15
Ours 951.53 948.08 516.92 383.12

Table 1: Camera calibration using a Point Grey FLEA2 camera.

(a) (b) (c)

Figure 4: Point Grey FLEA2 camera. (a) Sample images of
the calibration object. (b) Edge map of the corresponding
sample images. (c) Ellipses obtained by the ellipse-fitting al-
gorithm.
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